Ⅰ 低亮度圖片增強方法:基於多圖像融合的低亮度圖片增強演算法
這篇博客介紹兩篇基於多圖像融合的低亮度圖片增強演算法:
基於多圖像融合的低亮度質量評價演算法主要考慮融合多幅圖片來進行低亮度圖片的增強。
由Retinex理論:
其中 是亮度分量, 是RGB通道上的反射分量, 是待增強的分量。
首先,使用RGB通道上每個pixel的最大值最為亮度分量的一個估計值。
因為圖像的亮度分量一般是局部光滑的,所以文章中使用了形態學中的閉環操作來進一步估計亮度分量:
公式中除以255是為了將亮度分量限制到了[0,1],文章中選取了disk作為結構元素。
亮度分量通過guided filter來保持the shape of large contours:
是中心在 上的窗口。
multi_fusion融合了多幅增強的亮度分量:
最後,權重由以下公式表示:
文章中首先將各個亮度分量 通過Laplacian金字塔分解為多個尺度上特徵圖,將權重 使用高斯金字塔光滑過度的部分。
將第 金字塔層的圖像進行融合:
融合多個金字塔層的圖像:
其中 是上采樣操作。
最後增強的圖片由下式得到:
EFF考慮融合同一場景下不同曝光程度的圖片來增強低亮度圖片。
為了得到完美曝光的圖片,Exposure Fusion框架融合了不同曝光的圖片:
其中 是各個顏色通道上的不同曝光率下的圖片, 為對應的權重。
由之前基於相機響應模型的低亮度圖片增強演算法,我們可以得到同一場景下,不同曝光率的圖片間的轉換公式:
在這篇文章中,作者只考慮了兩種曝光率的圖片,第一種是低亮度下的圖片,另一種是低亮度下的圖片使用曝光增強後的圖片。
由於需要將曝光完好的像素賦予更大的權重,所以文章中使用圖片的亮度分量作為權重:
其中 用來調節增強的程度
對於亮度分量的求解可參考原文或是之前介紹基於相機響應模型的低亮度圖片增強演算法的博客。
與之前介紹基於相機響應模型的低亮度圖片增強演算法的博客中一致:
文章中首先排除了原圖中曝光較好的像素點:
其中 只包含了曝光不足的像素點。
的亮度部分定義為:
則對於曝光率增強後的亮度分量有:
將曝光不足的像素點轉化為曝光正常的像素點後,可以提供的信息應該變大,所以,這里使用了圖片墒最大化來求解曝光比:
則由
可得到增強後的圖片。
https://xueyangfu.github.io/projects/sp2016.html
https://t.github.io/OpenCE/caip2017.html
Ⅱ 求圖像處理演算法中,調整亮度、對比度、飽和度的演算法!
我覺得你了解這幾個調整工具的演算法,還沒有了解一下圖層混合模式的計算方法有意義。亮度就是一幅照片中的黑白灰分布情況,對比度是亮部和暗部的差距,飽和度就是顏色純度,前兩者是灰度概念,飽和度才和顏色有關系。
而且亮度、對比度作為概念來理解,當然很有意義,但是這個調整工具PS已經把它弱化了,因為它調整太過粗放,用色階和曲線都能更精確的實現。
Ⅲ 圖像處理的演算法有哪些
圖像處理基本演算法操作從處理對象的多少可以有如下劃分:
一)點運算:處理點單元信息的運算
二)群運算:處理群單元 (若干個相鄰點的集合)的運算
1.二值化操作
圖像二值化是圖像處理中十分常見且重要的操作,它是將灰度圖像轉換為二值圖像或灰度圖像的過程。二值化操作有很多種,例如一般二值化、翻轉二值化、截斷二值化、置零二值化、置零翻轉二值化。
2.直方圖處理
直方圖是圖像處理中另一重要處理過程,它反映圖像中不同像素值的統計信息。從這句話我們可以了解到直方圖信息僅反映灰度統計信息,與像素具體位置沒有關系。這一重要特性在許多識別類演算法中直方圖處理起到關鍵作用。
3.模板卷積運算
模板運算是圖像處理中使用頻率相當高的一種運算,很多操作可以歸結為模板運算,例如平滑處理,濾波處理以及邊緣特徵提取處理等。這里需要說明的是模板運算所使用的模板通常說來就是NXN的矩陣(N一般為奇數如3,5,7,...),如果這個矩陣是對稱矩陣那麼這個模板也稱為卷積模板,如果不對稱則是一般的運算模板。我們通常使用的模板一般都是卷積模板。如邊緣提取中的Sobel運算元模板。
Ⅳ 圖像變換的目的是什麼,常用的圖像變換演算法有哪些
圖像變換的目的為了有效和快速地對圖像進行處理和分析,需要將原定義在圖像空間的圖像以某種形式轉換到另外的空間,利用空間的特有性質方便地進行一定的加工,最後再轉換回圖像空間以得到所需的效果。
圖像變換是對圖像處理演算法的總結,它可以分為四個部分:空域變換等維度演算法,空域變換變維度演算法,值域變換等維度演算法和值域變換變維度演算法。
其中空域變換主要指圖像在幾何上的變換,而值域變換主要指圖像在像素值上的變換。等維度變換是在相同的維度空間中,而變維度變換是在不同的維度空間中,例如二維到三維,灰度空間到彩色空間。
(4)原圖整體偏亮有哪些增強演算法處理擴展閱讀:
相關延伸:圖像簡介
21世紀是一個充滿信息的時代,圖像作為人類感知世界的視覺基礎,是人類獲取信息、表達信息和傳遞信息的重要手段。數字圖像處理,即用計算機對圖像進行處理,其發展歷史並不長。數字圖像處理技術源於20世紀20年代,當時通過海底電纜從英國倫敦到美國紐約傳輸了一幅照片,採用了數字壓縮技術。
首先數字圖像處理技術可以幫助人們更客觀、准確地認識世界,人的視覺系統可以幫助人類從外界獲取3/4以上的信息,而圖像、圖形又是所有視覺信息的載體,盡管人眼的鑒別力很高;
可以識別上千種顏色,但很多情況下,圖像對於人眼來說是模糊的甚至是不可見的,通過圖象增強技術,可以使模糊甚至不可見的圖像變得清晰明亮。
在計算機中,按照顏色和灰度的多少可以將圖像分為二值圖像、灰度圖像、索引圖像和真彩色RGB圖像四種基本類型。大多數圖像處理軟體都支持這四種類型的圖像。
中國物聯網校企聯盟認為圖像處理將會是物聯網產業發展的重要支柱之一,它的具體應用是指紋識別技術。
Ⅳ 在圖像處理中有哪些演算法
1、圖像變換:
由於圖像陣列很大,直接在空間域中進行處理,涉及計算量很大。採用各種圖像變換的方法,如傅立葉變換、沃爾什變換、離散餘弦變換等間接處理技術,將空間域的處理轉換為變換域處理,可減少計算量,獲得更有效的處理。它在圖像處理中也有著廣泛而有效的應用。
2、圖像編碼壓縮:
圖像編碼壓縮技術可減少描述圖像的數據量,以便節省圖像傳輸、處理時間和減少所佔用的存儲器容量。
壓縮可以在不失真的前提下獲得,也可以在允許的失真條件下進行。
編碼是壓縮技術中最重要的方法,它在圖像處理技術中是發展最早且比較成熟的技術。
3、圖像增強和復原:
圖像增強和復原的目的是為了提高圖像的質量,如去除雜訊,提高圖像的清晰度等。
圖像增強不考慮圖像降質的原因,突出圖像中所感興趣的部分。如強化圖像高頻分量,可使圖像中物體輪廓清晰,細節明顯;如強化低頻分量可減少圖像中雜訊影響。
4、圖像分割:
圖像分割是數字圖像處理中的關鍵技術之一。
圖像分割是將圖像中有意義的特徵部分提取出來,其有意義的特徵有圖像中的邊緣、區域等,這是進一步進行圖像識別、分析和理解的基礎。
5、圖像描述:
圖像描述是圖像識別和理解的必要前提。
一般圖像的描述方法採用二維形狀描述,它有邊界描述和區域描述兩類方法。對於特殊的紋理圖像可採用二維紋理特徵描述。
6、圖像分類:
圖像分類屬於模式識別的范疇,其主要內容是圖像經過某些預處理(增強、復原、壓縮)後,進行圖像分割和特徵提取,從而進行判決分類。
圖像分類常採用經典的模式識別方法,有統計模式分類和句法模式分類。
圖像處理主要應用在攝影及印刷、衛星圖像處理、醫學圖像處理、面孔識別、特徵識別、顯微圖像處理和汽車障礙識別等。
數字圖像處理技術源於20世紀20年代,當時通過海底電纜從英國倫敦到美國紐約傳輸了一幅照片,採用了數字壓縮技術。
數字圖像處理技術可以幫助人們更客觀、准確地認識世界,人的視覺系統可以幫助人類從外界獲取3/4以上的信息,而圖像、圖形又是所有視覺信息的載體,盡管人眼的鑒別力很高,可以識別上千種顏色,
但很多情況下,圖像對於人眼來說是模糊的甚至是不可見的,通過圖象增強技術,可以使模糊甚至不可見的圖像變得清晰明亮。
Ⅵ 在圖像處理中有哪些演算法
太多了,去找本書看看吧!給個大概的介紹好了
圖像處理主要分為兩大部分:
1、圖像增強
空域方法有 直方圖均衡化
灰度線性變化
線性灰度變化
分段線性灰度變化
非線性灰度變化(對數擴展
指數擴展)
圖像平滑
領域平均法(加權平均法
非加權領域平均法)
中值濾波
圖像銳化
Roberts運算元
Sobel運算元
拉普拉斯運算元
頻域方法有
低通濾波
理想低通濾波
巴特沃斯低通濾波
指數低通濾波
梯形低通濾波
高通濾波
理想高通濾波
巴特沃斯高通濾波
指數高通濾波
梯形高通濾波
彩色圖像增強(真彩色、假彩色、偽彩色增強)
2、圖像模糊處理
圖像模糊處理
運動模糊(維納濾波
最小均方濾波
盲卷積
……
)
高斯模糊(維納濾波
最小均方濾波
盲卷積
……
)
圖像去噪處理
高斯雜訊
(維納濾波
樣條插值
低通濾波
……
)
椒鹽雜訊
(中值濾波
……
)