㈠ 機器學習一般常用的演算法有哪些
機器學習是人工智慧的核心技術,是學習人工智慧必不可少的環節。機器學習中有很多演算法,能夠解決很多以前難以企的問題,機器學習中涉及到的演算法有不少,下面小編就給大家普及一下這些演算法。
一、線性回歸
一般來說,線性回歸是統計學和機器學習中最知名和最易理解的演算法之一。這一演算法中我們可以用來預測建模,而預測建模主要關注最小化模型誤差或者盡可能作出最准確的預測,以可解釋性為代價。我們將借用、重用包括統計學在內的很多不同領域的演算法,並將其用於這些目的。當然我們可以使用不同的技術從數據中學習線性回歸模型,例如用於普通最小二乘法和梯度下降優化的線性代數解。就目前而言,線性回歸已經存在了200多年,並得到了廣泛研究。使用這種技術的一些經驗是盡可能去除非常相似(相關)的變數,並去除噪音。這是一種快速、簡單的技術。
二、Logistic 回歸
它是解決二分類問題的首選方法。Logistic 回歸與線性回歸相似,目標都是找到每個輸入變數的權重,即系數值。與線性回歸不同的是,Logistic 回歸對輸出的預測使用被稱為 logistic 函數的非線性函數進行變換。logistic 函數看起來像一個大的S,並且可以將任何值轉換到0到1的區間內。這非常實用,因為我們可以規定logistic函數的輸出值是0和1並預測類別值。像線性回歸一樣,Logistic 回歸在刪除與輸出變數無關的屬性以及非常相似的屬性時效果更好。它是一個快速的學習模型,並且對於二分類問題非常有效。
三、線性判別分析(LDA)
在前面我們介紹的Logistic 回歸是一種分類演算法,傳統上,它僅限於只有兩類的分類問題。而LDA的表示非常簡單直接。它由數據的統計屬性構成,對每個類別進行計算。單個輸入變數的 LDA包括兩個,第一就是每個類別的平均值,第二就是所有類別的方差。而在線性判別分析,進行預測的方法是計算每個類別的判別值並對具備最大值的類別進行預測。該技術假設數據呈高斯分布,因此最好預先從數據中刪除異常值。這是處理分類預測建模問題的一種簡單而強大的方法。
四、決策樹
決策樹是預測建模機器學習的一種重要演算法。決策樹模型的表示是一個二叉樹。這是演算法和數據結構中的二叉樹,沒什麼特別的。每個節點代表一個單獨的輸入變數x和該變數上的一個分割點。而決策樹的葉節點包含一個用於預測的輸出變數y。通過遍歷該樹的分割點,直到到達一個葉節點並輸出該節點的類別值就可以作出預測。當然決策樹的有點就是決策樹學習速度和預測速度都很快。它們還可以解決大量問題,並且不需要對數據做特別准備。
五、樸素貝葉斯
其實樸素貝葉斯是一個簡單但是很強大的預測建模演算法。而這個模型由兩種概率組成,這兩種概率都可以直接從訓練數據中計算出來。第一種就是每個類別的概率,第二種就是給定每個 x 的值,每個類別的條件概率。一旦計算出來,概率模型可用於使用貝葉斯定理對新數據進行預測。當我們的數據是實值時,通常假設一個高斯分布,這樣我們可以簡單的估計這些概率。而樸素貝葉斯之所以是樸素的,是因為它假設每個輸入變數是獨立的。這是一個強大的假設,真實的數據並非如此,但是,該技術在大量復雜問題上非常有用。所以說,樸素貝葉斯是一個十分實用的功能。
六、K近鄰演算法
K近鄰演算法簡稱KNN演算法,KNN 演算法非常簡單且有效。KNN的模型表示是整個訓練數據集。KNN演算法在整個訓練集中搜索K個最相似實例(近鄰)並匯總這K個實例的輸出變數,以預測新數據點。對於回歸問題,這可能是平均輸出變數,對於分類問題,這可能是眾數類別值。而其中的訣竅在於如何確定數據實例間的相似性。如果屬性的度量單位相同,那麼最簡單的技術是使用歐幾里得距離,我們可以根據每個輸入變數之間的差值直接計算出來其數值。當然,KNN需要大量內存或空間來存儲所有數據,但是只有在需要預測時才執行計算。我們還可以隨時更新和管理訓練實例,以保持預測的准確性。
七、Boosting 和 AdaBoost
首先,Boosting 是一種集成技術,它試圖集成一些弱分類器來創建一個強分類器。這通過從訓練數據中構建一個模型,然後創建第二個模型來嘗試糾正第一個模型的錯誤來完成。一直添加模型直到能夠完美預測訓練集,或添加的模型數量已經達到最大數量。而AdaBoost 是第一個為二分類開發的真正成功的 boosting 演算法。這是理解 boosting 的最佳起點。現代 boosting 方法建立在 AdaBoost 之上,最顯著的是隨機梯度提升。當然,AdaBoost 與短決策樹一起使用。在第一個決策樹創建之後,利用每個訓練實例上樹的性能來衡量下一個決策樹應該對每個訓練實例付出多少注意力。難以預測的訓練數據被分配更多權重,而容易預測的數據分配的權重較少。依次創建模型,每一個模型在訓練實例上更新權重,影響序列中下一個決策樹的學習。在所有決策樹建立之後,對新數據進行預測,並且通過每個決策樹在訓練數據上的精確度評估其性能。所以說,由於在糾正演算法錯誤上投入了太多注意力,所以具備已刪除異常值的干凈數據十分重要。
八、學習向量量化演算法(簡稱 LVQ)
學習向量量化也是機器學習其中的一個演算法。可能大家不知道的是,K近鄰演算法的一個缺點是我們需要遍歷整個訓練數據集。學習向量量化演算法(簡稱 LVQ)是一種人工神經網路演算法,它允許你選擇訓練實例的數量,並精確地學習這些實例應該是什麼樣的。而學習向量量化的表示是碼本向量的集合。這些是在開始時隨機選擇的,並逐漸調整以在學習演算法的多次迭代中最好地總結訓練數據集。在學習之後,碼本向量可用於預測。最相似的近鄰通過計算每個碼本向量和新數據實例之間的距離找到。然後返回最佳匹配單元的類別值或作為預測。如果大家重新調整數據,使其具有相同的范圍,就可以獲得最佳結果。當然,如果大家發現KNN在大家數據集上達到很好的結果,請嘗試用LVQ減少存儲整個訓練數據集的內存要求
㈡ 想了解機器學習,需要知道哪些基礎演算法
學一些概率論,導數和線性代數。機器學習的本質是拿訓練樣本去做數據擬合函數,然後用擬合函數解析輸入量。機器學習比較基礎的是最小二乘法,梯度下降之類的。到後面要學線性擬合,logistic函數,SVM等等。
㈢ 人工智慧學會如何提高大腦的記憶力
說到黑匣子,沒有比人腦更黑的了。科學家感嘆道,我們的灰質問題非常復雜,它本身並不能完全理解。
但是如果我們不能挖掘我們自己的大腦,也許機器可以為我們做到這一點。在最新一期的「自然通信」 雜志上,賓夕法尼亞大學心理學家邁克爾卡哈納領導的研究人員表明,機器學習演算法- 眾所周知的不可思議的系統本身- 可用於解碼並增強人類記憶力。怎麼樣?通過觸發向大腦提供精確定時的電脈沖。
換句話說,研究人員可以使用一個黑匣子來解鎖另一個黑匣子的潛力。一方面這聽起來像是對一個荒謬困難的問題的一個相當優雅的解決方案,另一方面聽起來像是一場技術爆發式恐怖片的開始。
當談到大腦測量時,最好的錄音來自顱內。但是,人們和機構審查委員會通常不會以科學為名打開頭骨。因此Kahana和他的同事們與25位癲癇患者合作,每位患者的大腦中植入了100到200個電極(監測癲癇相關的電活動)。Kahana和他的團隊搭載這些植入物,使用電極在記憶任務中記錄高解析度的大腦活動。
首先,研究人員了解大腦記憶某些東西時的樣子。當患者閱讀並試圖內化單詞列表時,Kahana和他的團隊從每個植入電極每秒收集數千次電壓測量數據。後來,他們測試了患者的回憶建立數據,了解哪些大腦活動模式與記憶單詞和忘記單詞有關。
然後他們又做了。然後再次。在對每個測試對象進行兩次或三次訪問之後,他們收集了足夠的訓練數據以生成針對患者的演算法,這些演算法可以根據每個患者的電極活性單獨預測每個患者可能記住哪些字。
這是踢球者。這些電極不只是讀神經活動,他們也可以刺激它。因此,研究人員試圖刺激大腦改善- 或者正如他們所說的那樣,「拯救」- 實時記憶的形成。每隔幾秒鍾,主題會看到一個新單詞,新訓練的演算法將決定大腦是否准備好記住它。卡哈納說:「閉環系統讓我們記錄受試者大腦的狀態,分析它,並決定是否觸發刺激,全部在幾百毫秒內完成。
它的工作。研究人員的系統使患者平均回憶詞的能力提高了15%。
這並不是Kahana實驗室第一次探索大腦刺激對記憶的影響。去年,該組織表明,電極脈沖似乎會改善或惡化召回,這取決於研究人員何時提供。在該研究中,當研究人員在低功能期間刺激大腦的記憶特異性區域(高功能時期的刺激具有相反效果)時,測試對象得分更高。這是一個重大發現,但在治療上無用;研究人員只能在進行記憶測試後才能識別記憶和大腦狀態之間的聯系。從腦部增強的角度來看,你真正想要的是在記憶過程中傳遞脈沖。
現在,Kahana和他的同事似乎利用他們的機器學習演算法關閉了循環。Kahana說:「我們只是用它來識別貓的圖像,而不是用它來識別貓的圖像,而是用它來構建一個解碼器- 這個東西可以看電子活動,並說出大腦是否處於有利於學習的狀態。如果大腦看起來像是在有效地編碼記憶,那麼研究人員就會放棄它。如果不是這樣,他們的系統會迅速提供電脈沖,將其推入更高功能的狀態- 就像大腦的起搏器一樣。
「這不是一個whom效應,但它絕對是有前途的,」加州大學聖地亞哥神經科學家布拉德利沃伊克說,誰是研究無關。現在的問題是這個領域的未來工作是否會產生更好的結果。如果患者的大腦植入了更多和更精確的電極,則演算法可以在更小的時間尺度上解碼更多的神經特徵,具有更多的特異性。更多的培訓數據也可能有所幫助;大多數癲癇患者最多隻能參加像這樣的研究幾周,這限制了研究人員與他們一起度過的時間。在三次以上的會話中訓練的機器學習演算法可能比Kahana最近的研究表現要好。
但即使有更高的解析度和更多的訓練數據,科學家也需要解決使用不透明演算法研究和操縱大腦的意義。事實是,雖然Kahana的系統可以在特定情況下改善詞彙回憶,但他並不確切知道它如何改善功能。這就是機器學習的本質。
幸運的是,Kahana的團隊已經考慮到了這一點,有些演算法比其他演算法更容易審查。對於這項特定的研究,研究人員使用了一種簡單的線性分類器,這使得他們可以得出一些關於個體電極活動如何可能有助於模型區分大腦活動模式的能力的推論。「在這一點上,我們現在還不能確定我們用於記錄大腦活動的功能之間是否存在相互作用,」負責該研究的機器學習分析的UPenn心理學家Youssef Ezzyat說。
更復雜的深度學習技術不一定會轉化為更大的認知增強。但是如果他們這樣做了,研究人員可能會絞盡腦汁地理解機器決定提供大腦增強的電子沖動。或者,如果他們真的變成惡魔般的話,他們會阻止他們。
㈣ 機器學習中需要掌握的演算法有哪些
在學習機器學習中,我們需要掌握很多演算法,通過這些演算法我們能夠更快捷地利用機器學習解決更多的問題,讓人工智慧實現更多的功能,從而讓人工智慧變得更智能。因此,本文為大家介紹一下機器學習中需要掌握的演算法,希望這篇文章能夠幫助大家更深入地理解機器學習。
首先我們為大家介紹的是支持向量機學習演算法。其實支持向量機演算法簡稱SVM,一般來說,支持向量機演算法是用於分類或回歸問題的監督機器學習演算法。SVM從數據集學習,這樣SVM就可以對任何新數據進行分類。此外,它的工作原理是通過查找將數據分類到不同的類中。我們用它來將訓練數據集分成幾類。而且,有許多這樣的線性超平面,SVM試圖最大化各種類之間的距離,這被稱為邊際最大化。而支持向量機演算法那分為兩類,第一就是線性SVM。在線性SVM中,訓練數據必須通過超平面分離分類器。第二就是非線性SVM,在非線性SVM中,不可能使用超平面分離訓練數據。
然後我們給大家介紹一下Apriori機器學習演算法,需要告訴大家的是,這是一種無監督的機器學習演算法。我們用來從給定的數據集生成關聯規則。關聯規則意味著如果發生項目A,則項目B也以一定概率發生,生成的大多數關聯規則都是IF_THEN格式。Apriori機器學習演算法工作的基本原理就是如果項目集頻繁出現,則項目集的所有子集也經常出現。
接著我們給大家介紹一下決策樹機器學習演算法。其實決策樹是圖形表示,它利用分支方法來舉例說明決策的所有可能結果。在決策樹中,內部節點表示對屬性的測試。因為樹的每個分支代表測試的結果,並且葉節點表示特定的類標簽,即在計算所有屬性後做出的決定。此外,我們必須通過從根節點到葉節點的路徑來表示分類。
而隨機森林機器學習演算法也是一個重要的演算法,它是首選的機器學習演算法。我們使用套袋方法創建一堆具有隨機數據子集的決策樹。我們必須在數據集的隨機樣本上多次訓練模型,因為我們需要從隨機森林演算法中獲得良好的預測性能。此外,在這種集成學習方法中,我們必須組合所有決策樹的輸出,做出最後的預測。此外,我們通過輪詢每個決策樹的結果來推導出最終預測。
在這篇文章中我們給大家介紹了關於機器學習的演算法,具體包括隨機森林機器學習演算法、決策樹演算法、apriori演算法、支持向量機演算法。相信大家看了這篇文章以後對機器學習有個更全面的認識,最後祝願大家都學有所成、學成歸來。
㈤ 機器學習有幾種演算法
1. 線性回歸
工作原理:該演算法可以按其權重可視化。但問題是,當你無法真正衡量它時,必須通過觀察其高度和寬度來做一些猜測。通過這種可視化的分析,可以獲取一個結果。
2. 邏輯回歸
根據一組獨立變數,估計離散值。它通過將數據匹配到logit函數來幫助預測事件。
3. 決策樹
利用監督學習演算法對問題進行分類。決策樹是一種支持工具,它使用樹狀圖來決定決策或可能的後果、機會事件結果、資源成本和實用程序。根據獨立變數,將其劃分為兩個或多個同構集。
4. 支持向量機(SVM)
基本原理(以二維數據為例):如果訓練數據是分布在二維平面上的點,它們按照其分類聚集在不同的區域。基於分類邊界的分類演算法的目標是,通過訓練,找到這些分類之間的邊界(直線的――稱為線性劃分,曲線的――稱為非線性劃分)。對於多維數據(如N維),可以將它們視為N維空間中的點,而分類邊界就是N維空間中的面,稱為超面(超面比N維空間少一維)。線性分類器使用超平面類型的邊界,非線性分類器使用超曲面。
5. 樸素貝葉斯
樸素貝葉斯認為每個特徵都是獨立於另一個特徵的。即使在計算結果的概率時,它也會考慮每一個單獨的關系。
它不僅易於使用,而且能有效地使用大量的數據集,甚至超過了高度復雜的分類系統。
6. KNN(K -最近鄰)
該演算法適用於分類和回歸問題。在數據科學行業中,它更常用來解決分類問題。
這個簡單的演算法能夠存儲所有可用的案例,並通過對其k近鄰的多數投票來對任何新事件進行分類。然後將事件分配給與之匹配最多的類。一個距離函數執行這個測量過程。
7. k – 均值
這種無監督演算法用於解決聚類問題。數據集以這樣一種方式列在一個特定數量的集群中:所有數據點都是同質的,並且與其他集群中的數據是異構的。
8. 隨機森林
利用多棵決策樹對樣本進行訓練並預測的一種分類器被稱為隨機森林。為了根據其特性來分類一個新對象,每棵決策樹都被排序和分類,然後決策樹投票給一個特定的類,那些擁有最多選票的被森林所選擇。
9. 降維演算法
在存儲和分析大量數據時,識別多個模式和變數是具有挑戰性的。維數簡化演算法,如決策樹、因子分析、缺失值比、隨機森林等,有助於尋找相關數據。
10. 梯度提高和演演算法
這些演算法是在處理大量數據,以作出准確和快速的預測時使用的boosting演算法。boosting是一種組合學習演算法,它結合了幾種基本估計量的預測能力,以提高效力和功率。
綜上所述,它將所有弱或平均預測因子組合成一個強預測器。
㈥ 干貨 | 基礎機器學習演算法
本篇內容主要是面向機器學習初學者,介紹常見的機器學習演算法,當然,歡迎同行交流。
哲學要回答的基本問題是從哪裡來、我是誰、到哪裡去,尋找答案的過程或許可以借鑒機器學習的套路:組織數據->挖掘知識->預測未來。組織數據即為設計特徵,生成滿足特定格式要求的樣本,挖掘知識即建模,而預測未來就是對模型的應用。
特徵設計依賴於對業務場景的理解,可分為連續特徵、離散特徵和組合高階特徵。本篇重點是機器學習演算法的介紹,可以分為監督學習和無監督學習兩大類。
無監督學習演算法很多,最近幾年業界比較關注主題模型,LSA->PLSA->LDA 為主題模型三個發展階段的典型演算法,它們主要是建模假設條件上存在差異。LSA假設文檔只有一個主題,PLSA 假設各個主題的概率分布不變(theta 都是固定的),LDA 假設每個文檔和詞的主題概率是可變的。
LDA 演算法本質可以藉助上帝擲骰子幫助理解,詳細內容可參加 Rickjin 寫的《 LDA 數據八卦》文章,淺顯易懂,順便也科普了很多數學知識,非常推薦。
監督學習可分為分類和回歸,感知器是最簡單的線性分類器,現在實際應用比較少,但它是神經網路、深度學習的基本單元。
線性函數擬合數據並基於閾值分類時,很容易受雜訊樣本的干擾,影響分類的准確性。邏輯回歸(Logistic Regression)利用 sigmoid 函數將模型輸出約束在 0 到 1 之間,能夠有效弱化雜訊數據的負面影響,被廣泛應用於互聯網廣告點擊率預估。
邏輯回歸模型參數可以通過最大似然求解,首先定義目標函數 L ( theta ),然後 log 處理將目標函數的乘法邏輯轉化為求和邏輯(最大化似然概率 -> 最小化損失函數),最後採用梯度下降求解。
相比於線性分類去,決策樹等非線性分類器具有更強的分類能力,ID3 和 C4.5 是典型的決策樹演算法,建模流程基本相似,兩者主要在增益函數(目標函數)的定義不同。
線性回歸和線性分類在表達形式上是類似的,本質區別是分類的目標函數是離散值,而回歸的目標函數是連續值。目標函數的不同導致回歸通常基於最小二乘定義目標函數,當然,在觀測誤差滿足高斯分布的假設情況下,最小二乘和最大似然可以等價。
當梯度下降求解模型參數時,可以採用 Batch 模式或者 Stochastic 模式,通常而言,Batch 模式准確性更高,Stochastic 模式復雜度更低。
上文已經提到,感知器雖然是最簡單的線性分類器,但是可以視為深度學習的基本單元,模型參數可以由自動編碼( Auto Encoder )等方法求解。
深度學習的優勢之一可以理解為特徵抽象,從底層特徵學習獲得高階特徵,描述更為復雜的信息結構。例如,從像素層特徵學習抽象出描述紋理結構的邊緣輪廓特徵,更進一步學習獲得表徵物體局部的更高階特徵。
俗話說三個臭皮匠賽過諸葛亮,無論是線性分類還是深度學習,都是單個模型演算法單打獨斗,有沒有一種集百家之長的方法,將模型處理數據的精度更進一步提升呢?當然,Model Ensembe l就是解決這個問題。Bagging 為方法之一,對於給定數據處理任務,採用不同模型/參數/特徵訓練多組模型參數,最後採用投票或者加權平均的方式輸出最終結果。
Boosting為Model Ensemble 的另外一種方法,其思想為模型每次迭代時通過調整錯誤樣本的損失權重提升對數據樣本整體的處理精度,典型演算法包括 AdaBoost 、GBDT 等。
不同的數據任務場景,可以選擇不同的 Model Ensemble 方法,對於深度學習,可以對隱層節點採用 DropOut 的方法實現類似的效果。
介紹了這么多機器學習基礎演算法,說一說評價模型優劣的基本准則。欠擬合和過擬合是經常出現的兩種情況,簡單的判定方法是比較訓練誤差和測試誤差的關系,當欠擬合時,可以設計更多特徵來提升模型訓練精度,當過擬合時,可以優化特徵量降低模型復雜度來提升模型測試精度。
特徵量是模型復雜度的直觀反映,模型訓練之前設定輸入的特徵量是一種方法,另外一種比較常用的方法是在模型訓練過程中,將特徵參數的正則約束項引入目標函數/損失函數,基於訓練過程篩選優質特徵。
模型調優是一個細致活,最終還是需要能夠對實際場景給出可靠的預測結果,解決實際問題。期待學以致用! 作者 曉惑 本文轉自阿里技術,轉載需授權