⑴ 導數基本運演算法則
導數的基本公式:
y=c(c為常數)y'=0;y=x^ny'"=nx^(n-1);y=a^xy'=a^xIna,y=e^xy'=e^x;y=logaxy'=logae/x,y=Inxy'=1/x;y=sinxy'=cosx;y=cosxy'=-sinx。
導數的運演算法則:
①(u±v)'=u'±v';②(uv)'=u'v+uv';③(u/v)'=(u'v-uv')/v^2
導數:
導數是函數的局部性質。一個函數在某一點的導數描述了這個函數在這一點附近的變化率。如果函數的自變數和取值都是實數的話,函數在某一點的導數就是該函數所代表的曲線在這一點上的切線斜率。導數的本質是通過極限的概念對函數進行局部的線性逼近。例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。
不是所有的函數都有導數,一個函數也不一定在所有的點上都有導數。若某函數在某一點導數存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數一定連續;不連續的函數一定不可導。
⑵ 導數公式及運演算法則是什麼
有很多的同學是非常的想知道,導數公式及運演算法則是什麼,我整理了相關信息,希望會對大家有所幫助!
1 基本初等函數的導數公式
1 .C'=0(C為常數);
2 .(Xn)'=nX(n-1) (n∈Q);
3 .(sinX)'=cosX;
4 .(cosX)'=-sinX;
5 .(aX)'=aXIna (ln為自然對數)
特別地,(ex)'=ex
6 .(logaX)'=(1/X)logae=1/(Xlna) (a>0,且a≠1)
特別地,(ln x)'=1/x
7 .(tanX)'=1/(cosX)2=(secX)2
8 .(cotX)'=-1/(sinX)2=-(cscX)2
9 .(secX)'=tanX secX
10.(cscX)'=-cotX cscX
導數的四則運演算法則:
①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/ v2
④復合函數的導數
[u(v)]'=[u'(v)]*v' (u(v)為復合函數f[g(x)])
復合函數對自變數的導數,等於已知函數對中間變數的導數,乘以中間變數對自變數的導數--稱為鏈式法則。
導數是微積分的基礎,同時也是微積分計算的一個重要的支柱。
1 導數的求導法則
由基本函數的和、差、積、商或相互復合構成的函數的導函數則可以通過函數的求導法則來推導。基本的求導法則如下:
1、求導的線性:對函數的線性組合求導,等於先對其中每個部分求導後再取線性組合(即①式)。
2、兩個函數的乘積的導函數:一導乘二+一乘二導(即②式)。
3、兩個函數的商的導函數也是一個分式:(子導乘母-子乘母導)除以母平方(即③式)。
4、如果有復合函數,則用鏈式法則求導。
高階導數的求法
1.直接法:由高階導數的定義逐步求高階導數。
一般用來尋找解題方法。
2.高階導數的運演算法則:
⑶ 導數的基本公式與運演算法則
y=f(x)=c
(c為常數),則f'(x)=0
f(x)=x^n
(n不等於0)
f'(x)=nx^(n-1)
(x^n表示x的n次方)
f(x)=sinx
f'(x)=cosx
f(x)=cosx
f'(x)=-sinx
f(x)=a^x
f'(x)=a^xlna(a>0且a不等於1,x>0)
f(x)=e^x
f'(x)=e^x
f(x)=logaX
f'(x)=1/xlna
(a>0且a不等於1,x>0)
f(x)=lnx
f'(x)=1/x
(x>0)
f(x)=tanx
f'(x)=1/cos^2
x
f(x)=cotx
f'(x)=-
1/sin^2
x
導數運演算法則如下
(f(x)+/-g(x))'=f'(x)+/-
g'(x)
(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
(g(x)/f(x))'=(f(x)'g(x)-g(x)f'(x))/(f(x))^2
⑷ 導數的四則運演算法則公式是什麼
導數的四則運演算法則公式如下所示:
加(減)法則:[f(x)+g(x)]'=f(x)'+g(x)'。
乘法法則:[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x)。
除法法則:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2。
導數公式的用法:
一個函數也不一定在所有的點上都有導數。若某函數在某一點導數存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數一定連續;不連續的函數一定不可導。
函數y=f(x)在x0點的導數f'(x0)的幾何意義:表示函數曲線在點P0(x0,f(x0))處的切線的斜率(導數的幾何意義是該函數曲線在這一點上的切線斜率)。
以上內容參考:網路——導數
⑸ 導數的基本公式運演算法則
導數的基本公式運演算法則如下:
什麼是導數:
導數(Derivative)也叫導函數值,又名微商,是微積分學中重要的基礎概念,是函數的局部性質。
不是所有的函數都有導數,一個函數也不一定在所有的點上都有導數。若某函數在某一點導數存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數一定連續;不連續的函數一定不可導。
大約在1629年,法國數學家費馬研究了作曲線的切線和求函數極值的方法;1637年左右,他寫一篇手稿《求最大值與最小值的方法》。在作切線時,他構造了差分f(A+E)-f(A),發現的因子E就是我們所說的導數f'(A)。
⑹ 導數八個公式和運演算法則是什麼
八個公式:y=c(c為常數) y'=0;y=x^n y'=nx^(n-1);y=a^x y'=a^xlna y=e^x y'=e^x;y=logax y'=logae/x y=lnx y'=1/x ;y=sinx y'=cosx ;y=cosx y'=-sinx ;y=tanx y'=1/cos^2x ;y=cotx y'=-1/sin^2x。
運演算法則:
加(減)法則:[f(x)+g(x)]'=f(x)'+g(x)'
乘法法則:[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x)
除法法則:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2
一個函數在某一點的導數描述了這個函數在這一點附近的變化率。如果函數的自變數和取值都是實數的話,函數在某一點的導數就是該函數所代表的曲線在這一點上的切線斜率。
通過極限的概念對函數進行局部的線性逼近。例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。
(6)導數的基本初等公式與運演算法則擴展閱讀:
不是所有的函數都有導數,一個函數也不一定在所有的點上都有導數。若某函數在某一點導數存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數一定連續;不連續的函數一定不可導。
函數y=f(x)在x0點的導數f'(x0)的幾何意義:表示函數曲線在點P0(x0,f(x0))處的切線的斜率(導數的幾何意義是該函數曲線在這一點上的切線斜率)。
若導數大於零,則單調遞增;若導數小於零,則單調遞減;導數等於零為函數駐點,不一定為極值點。需代入駐點左右兩邊的數值求導數正負判斷單調性。
若已知函數為遞增函數,則導數大於等於零;若已知函數為遞減函數,則導數小於等於零。