❶ 我是計算機系的,數學建模都需要用到哪些軟體編程有什麼要求,演算法和數據結構要求高嗎求專業詳細解答
貪心演算法,蟻群演算法,遺傳演算法,進化演算法,基於文化的遺傳演算法,禁忌演算法,蒙特卡洛演算法,混沌隨機演算法,序貫數論演算法,粒子群演算法,模擬退火演算法。
模擬退火+遺傳演算法混合編程例子:
http://..com/question/43266691.html
自適應序貫數論演算法例子:
http://..com/question/60173220.html
❷ 螞蟻演算法中的單迴路TSP問題是什麼,還有多迴路VRP問題麻煩下數學建模高手指導一下!!
大哥...那個叫蟻群演算法不叫螞蟻演算法...那個...你可以去看下去年東三省的B題...
❸ 數學建模中,給出非常多的節點,求這些節點的最短路徑(類似一條線的路徑),應該用什麼演算法好
下面是我自己編寫的一段代碼,用來求過包含兩千多個點的最短路,速度很快,比遺傳、蟻群快而且最短路更短。你可以試試看,有問題再問我。
function [S,len]=short(P)
% 此程序用來求相同類型點間的最短路
% P表示某一類型的點的坐標矩陣
% p是最短路徑
% d是路徑權值和
%建立權值矩陣
n=length(P);%求該類型點的數量
W=zeros(n,n);
for i=1:n %計算權值並填充權值矩陣,由於各點聯通,此權值矩陣就是該圖的最短路矩陣
for j=(i+1):n
W(i,j)=sqrt((P(i,1)-P(j,1))^2+(P(i,2)-P(j,2))^2);
end
end
for i=2:n
for j=1:(i-1)
W(i,j)=W(j,i);
end
end
%求通過所有點的最短路
%先求從i點至j點,必須通過指定其他n-2個點的最短路,選出其中的的最短路
S=zeros(1,n);
S(1)=1; %先插入1,2點,以此為基準,每次插進一個新點
S(2)=2;
d1=2*W(1,2);
for i=3:n %新加入的點的標號
d1i=zeros(1,i); %插入第i個點,有i中可能的距離,其中最小值將為該輪的d1
for j=1:i %新加入點的位置,插入第i個點是有i個空位可供選擇
if j==1 %在第一個空位插入
d1i(j)=d1+W(i,S(1))+W(i,S(i-1))-W(S(1),S(i-1)); %插入點在首端時,距離為原距離與第i點與上一次插入後的第1位置的點之間距離之和
end
if j>1 & j<i %在中間的空位插入
d1i(j)=d1+W(S(j-1),i)+W(i,S(j))-W(S(j-1),S(j));
end
if j==i
d1i(j)=d1+W(S(i-1),i)+W(S(1),i)-W(S(1),S(i-1));
end
end
[d1,I]=min(d1i);
S((I+1):i)=S(I:(i-1)); %將第I位後面的點後移一位
S(I)=i;%將第i點插入在I位置
end
len=d1;
下面這段代碼是我用來把上面的結果保存到txt文件中的代碼,如果你需要,可以用用。代碼是我上次用過的沒有改,你自己按照需要自己改吧。
clear
close all
clc
loaddata
X=[C;E;I;J];
[S,len]=short(X);
DrawPath(S,X);
print(1,'-dpng','cmeiju3.png');
% 將結果保存至txt文件
fid=fopen('cmeijulujin.txt','wt'); %創建alunjin.txt文件
fprintf(fid,'c號刀具\n');
fprintf(fid,'%d %d\n',X(S));
save('cmeijus','S');
save('cmeijulen','len');
❹ 2013年全國大學生數學建模比賽B題第三問解題思路求指導說下可以用的方法就好謝謝.
第一問和第二問可以用灰度匹配模型,第三問用蟻群演算法。我上傳一些資料給你,希望對你有幫助吧。等我們隊做完了,再把圖片發給你。
❺ 數學建模怎樣處理一堆數據然後求出最優解
優化問題的話可以考慮用lingo求解,語法不難,看一個例子就會了,問題復雜的話需要比較長的時間,起碼是半個小時,有的還要一晚上,因為它是不停迭代求解。也可以用MATLAB進行演算法求解,比較著名的有模擬退火演算法,蟻群演算法,粒子群演算法等等,都有現成的程序。
❻ MATLAB建模方法有哪些
建模覆蓋的內容很廣,可以分為兩大塊:優化和統計,因此建模方法也可以由這兩大塊劃分。
一.優化:
智能演算法: 遺傳演算法,粒子群演算法,模擬退火演算法,蟻群演算法...
基礎優化演算法: 目標規劃,整數規劃...
排隊論
二.統計:
分類/聚類演算法: k-means...
預測: 時間序列演算法,灰色預測演算法,指數平滑演算法,
評價: 模糊綜合評價,信息熵評價,粗糙集,數據包絡分析,層次分析,
智能演算法:神經網路,svm...
回歸/擬合:多元線性擬合,最小二乘法
數據處理:小波變換
❼ 《蟻群演算法在MATLAB中的實現》
語法結構和c差不多,你可以在矩陣操作上多下一下功夫。