A. 演算法的五個特徵有什麼
1,有窮性(Finiteness):演算法的有窮性是指演算法必須能在執行有限個步驟之後終止;
2,確切性(Definiteness):演算法的每一步驟必須有確切的定義;
3,輸入項(Input):一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定出了初始條件;
4,輸出項(Output):一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒有輸出的演算法是毫無意義的;
5,可行性(Effectiveness):演算法中執行的任何計算步驟都是可以被分解為基本的可執行的操作步,即每個計算步都可以在有限時間內完成(也稱之為有效性)。
B. 演算法的五個特徵是
演算法的五個基本特徵:輸入、輸出、有窮性、確定性和可行性。
C. 演算法的重要特性有哪些呢
演算法的五個重要的特徵:確定性、可行性、輸入、輸出、有窮性/有限性。
演算法是解決「做什麼」和「怎麼做」的問題。解決一個問題可能有多種不同的演算法,從效率上考慮,其中最為核心的還是演算法的速度。因此,解決問題的步驟需要在有限的時間內完成,並且操作步驟中不可以有歧義性語句,以免後繼步驟無法繼續進行下去。通過對演算法概念的分析,可以總結出一個演算法必須滿足如下 5個特性。
(1)有窮性。一個演算法在執行有限步驟後,在有限時間內能夠實現的,就稱該演算法具有有窮性。
有的演算法在理論上滿足有窮性,在有限的步驟後能夠完成,但是計算機可能實際上會執行一天、一年、十年等等。演算法的核心就是速度,那麼這個演算法也就沒有意義了。總而言之,有窮性沒有特定的限度,取決於人們的需要。
(2)確定性。演算法中每一個步驟的表述都應該是確定的、沒有歧義的語句。在人們的日常生活中,遇到歧義性語句,可以根據常識、語境等理解,然而還有可能理解錯誤。計算機不比人腦,不會根據演算法的意義來揣測每一個步驟的意思,所以演算法的每一步都要有確定的含義。
(3)有零個或多個輸入。程序中的演算法和數據是相互聯系的。演算法中,需要輸入的是數據的量值。輸入可以是多個也可以是零個。其實,零個輸入並不是這個演算法沒有輸入,而是這個輸入沒有直觀地顯現出來,隱藏在演算法本身當中。
(4)有一個輸出或多個輸出。輸出就是演算法實現所得到的結果,是演算法經過數據加工處理後得到的結果。有的演算法輸出的是數值,有的是圖形,有的輸出並不是那麼顯而易見。沒有輸出的演算法是沒有意義的。
(5)可行性。演算法的可行性就是指每一個步驟都能夠有效地執行,並得到確定的結果,而且能夠用來方便地解決一類問題。
D. 計算機演算法必須具備哪5個特性
1、有窮性。一個演算法應包含有限的操作步驟,而不能是無限的。事實上「有窮性」往往指「在合理的范圍之內」。如果讓計算機執行一個歷時1000年才結束的演算法,這雖然是有窮的,但超過了合理的限度,人們不把他視為有效演算法。
2、確定性。演算法中的每一個步驟都應當是確定的,而不應當是含糊的、模稜兩可的。演算法中的每一個步驟應當不致被解釋成不同的含義,而應是十分明確的。也就是說,演算法的含義應當是唯一的,而不應當產生「歧義性」。
3、有零個或多個輸入性。所謂輸入是指在執行演算法是需要從外界取得必要的信息。
4、有一個或多個輸出。演算法的目的是為了求解,沒有輸出的演算法是沒有意義的。
5、有效性。 演算法中的每一個 步驟都應當能有效的執行。並得到確定的結果。
(4)演算法的五個特徵擴展閱讀
計算機演算法的產生背景:
歐幾里得演算法被人們認為是史上第一個演算法。 第一次編寫程序是Ada Byron於1842年為巴貝奇分析機編寫求解伯努利方程的程序,因此Ada Byron被大多數人認為是世界上第一位程序員。
因為查爾斯·巴貝奇未能完成他的巴貝奇分析機,這個演算法未能在巴貝奇分析機上執行。 因為"well-defined procere"缺少數學上精確的定義,19世紀和20世紀早期的數學家、邏輯學家在定義演算法上出現了困難。
E. 演算法有五個方面的重要特徵,包括輸入,確定性,輸出,能行性還有
演算法有五個方面的重要特徵包括有窮性、確切性、輸入項、輸出項、可行性。
1、有窮性(Finiteness)
演算法的有窮性是指演算法必須能在執行有限個步驟之後終止;
2、確切性(Definiteness)
演算法的每一步驟必須有確切的定義;
3、輸入項(Input)
一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定出了初始條件;
4、輸出項(Output)
一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒有輸出的演算法是毫無意義的;
5、可行性(Effectiveness)
演算法中執行的任何計算步驟都是可以被分解為基本的可執行的操作步驟,即每個計算步驟都可以在有限時間內完成(也稱之為有效性)。
(5)演算法的五個特徵擴展閱讀
1、迪傑斯特拉演算法(又譯戴克斯特拉演算法)
這種圖搜索演算法具有多種應用方式,能夠將需要解決的問題建模為圖,並在其中找到兩個節點間的最短路徑。
2、RSA 演算法
該演算法由 RSA 公司的創始人們開發而成,使得密碼學成果得以供世界上的每個人隨意使用,甚至最終塑造了當今密碼學技術的實現方式。
3、安全哈希演算法
這實際上並不是真正的演算法,而是由 NIST(美國國家標准技術研究所)所開發的一系列加密散列函數。然而,該演算法家族對於世界秩序的維持起到了至關重要的作用。
4、比例微積分演算法
該演算法旨在利用控制迴路反饋機制以最大程度控制期望輸出信號與實際輸出信號間的誤差。其適用於一切存在信號處理需求的場景,包括以自動化方式通過電子技術控制的機械、液壓或者熱力系統。
5、數據壓縮演算法
很難確定哪種壓縮演算法的重要性最高,因為根據實際應用需求,大家使用的演算法可能包括 zip、mp3 乃至 JPEG 以及 MPEG-2 等等。
F. 演算法的五個重要特性
演算法的五個特徵是:有窮性,確切性,輸入項,輸出項,可行性。實際上就以上五個特性是沒法解釋演算法與程序的區別的。因為演算法是程序的概述,程序是演算法的實現,演算法所具有的特性,程序都具有。如果沒有演算法的支持,程序只是一堆無序的代碼。
演算法(Algorithm)是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制。也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
形式化演算法的概念部分源自嘗試解決希爾伯特提出的判定問題,並在其後嘗試定義有效計算性或者有效方法中成形。這些嘗試包括庫爾特·哥德爾、Jacques Herbrand和斯蒂芬·科爾·克萊尼分別於1930年、1934年和1935年提出的遞歸函數,阿隆佐·邱奇於1936年提出的λ演算,1936年Emil Leon Post的Formulation 1和艾倫·圖靈1937年提出的圖靈機。即使在當前,依然常有直覺想法難以定義為形式化演算法的情況。