導航:首頁 > 源碼編譯 > lcs演算法導論

lcs演算法導論

發布時間:2023-01-29 01:24:35

⑴ 在c++中 如何將二位數組定義為參數如何調用

首先 你這個二維數組的長度是否固定,如果是 比如一定是a[10][10],那麼可以這樣做
void func(int a[10][10]....)
如果不固定可以這樣
用x和y表示數組的最大size
那麼 void func(int x, int y, int a[x][y]...)

⑵ C語言中兩個數組相比較的問題

這個就是演算法導論里的最長公共子序列問題(可以網路搜: LCS)

⑶ c++中 需要熟練掌握的 理論知識。

勸你先配合c++研究些演算法會更好:

第一階段:練經典常用演算法,下面的每個演算法給我打上十到二十遍,同時自己精簡代碼,因為太常用,所以要練到寫時不用想,10-15分鍾內打完,甚至關掉顯示器都可以把程序打出來。

1.最短路(Floyd、Dijstra,BellmanFord)
2.最小生成樹(先寫個prim,kruscal要用並查集,不好寫)
3.大數(高精度)加減乘除
4.二分查找. (代碼可在五行以內)
5.叉乘、判線段相交、然後寫個凸包.
6.BFS、DFS,同時熟練hash表(要熟,要靈活,代碼要簡)
7.數學上的有:輾轉相除(兩行內),線段交點、多角形面積公式.
8. 調用系統的qsort, 技巧很多,慢慢掌握.
9. 任意進制間的轉換

第二階段:練習復雜一點,但也較常用的演算法。
如:
1. 二分圖匹配(匈牙利),最小路徑覆蓋
2. 網路流,最小費用流。
3. 線段樹.
4. 並查集。
5. 熟悉動態規劃的各個典型:LCS、最長遞增子串、三角剖分、記憶化dp
6.博弈類演算法。博弈樹,二進製法等。
7.最大團,最大獨立集。
8.判斷點在多邊形內。
9. 差分約束系統.
10. 雙向廣度搜索、A*演算法,最小耗散優先.

第三階段:
前兩個階段是打基礎,第三階段是鍛煉在比賽中可以快速建立模型、想新演算法。這就要平時多做做綜合的題型了。
1. 把oibh上的論文看看(大概幾百篇的,我只看了一點點,呵呵)。
2. 平時掃掃zoj上的難題啦,別老做那些不用想的題.(中大acm的版主經常說我挑簡單的來做:-P )
3. 多參加網上的比賽,感受一下比賽的氣氛,評估自己的實力.
4. 一道題不要過了就算,問一下人,有更好的演算法也打一下。
5. 做過的題要記好 :-)

下面轉自:http://hi..com/wilworld/blog/item/88b1b844d37e4049500ffe6a.html

演算法書有很多可以參考:

1、Concrete Mathematics --- A Foundation For Computer Science
Ronald L. Graham , Donald E. Knuth , Oren Patashnik
這本書《具體數學》是Stanford計算機系的教材(1970 年開始給研究生授課),書的內容是Knuth的巨著TAOCP第一章的擴展,涉及了計算機科學領域內幾乎所有可能遇到的數學知識。書中許多經典問題的解答比目前廣泛流傳的解法更易懂。對於提高大家的數學修養有很大幫助。

2、Introction to Algorithms
Thomas H. Cormen ,Charles E. Leiserson ,Ronald L. Rivest ,Clifford Stein
《演算法導論》MIT計算機系的經典演算法教材。作者Rivest獲得過ACM Turing Award,牛!本書內容全面,語言通俗,很適合大家入門。

3、實用演算法的分析和程序設計
吳文虎 王建德
大名鼎鼎的「黑書」。內容包括了競賽需要的各種演算法,各種層次的讀者都適合。

【這里是我自己加的:其實所謂"黑書",還有一本,《演算法藝術與信息學競賽》作者:劉汝佳 黃亮,很經典,很流行】
4、網路演算法與復雜性理論
謝政 李建平
內容很豐富的圖論教材

5、演算法+數據結構=程序
N.Wirth
Pascal語言的發明人Wirth教授的名著,深入闡述了演算法與數據結構的關系,對每個演算法都提供詳細的Pascal源程序,適合各種水平的讀者。

最後,在學習演算法提升戰鬥力的同時,也要多做題目,實戰是很有必要的。其實並不是所有的題目都是靠演算法的,有一些題目是有多種可以優化的手段,也有一些工程性比較強的題目。上手做和把題做精還是有很大區別的(慚愧的說,我就是屬於上手做,沒有做精,所以……)。

願每一位程序設計競賽愛好者挑戰極限!

⑷ 動態規劃 最長公共子序列 過程圖解

首先需要科普一下,最長公共子序列(longest common sequence)和最長公共子串(longest common substring)不是一回事兒。

這里給出一個例子:有兩個母串
cnblogs
belong
比如序列bo, bg, lg在母串cnblogs與belong中都出現過並且出現順序與母串保持一致,我們將其稱為公共子序列。最長公共子序列(Longest Common Subsequence,LCS),顧名思義,是指在所有的子序列中最長的那一個。

子串是要求更嚴格的一種子序列, 要求在母串中連續地出現
在上述例子的中,最長公共子序列為blog(cnblogs,belong),最長公共子串為lo(cnblogs, belong)。

給一個圖再解釋一下:

如上圖,給定的字元序列: {a,b,c,d,e,f,g,h},它的子序列示例: {a,c,e,f} 即元素b,d,g,h被去掉後,保持原有的元素序列所得到的結果就是子序列。同理,{a,h},{c,d,e}等都是它的子序列。
它的子串示例:{c,d,e,f} 即連續元素c,d,e,f組成的串是給定序列的子串。同理,{a,b,c,d},{g,h}等都是它的子串。

這個問題說明白後,最長公共子序列(以下都簡稱LCS)就很好理解了。
給定序列s1={1,3,4,5,6,7,7,8},s2={3,5,7,4,8,6,7,8,2},s1和s2的相同子序列,且該子序列的長度最長,即是LCS。
s1和s2的其中一個最長公共子序列是 {3,4,6,7,8}

求解LCS問題,不能使用暴力搜索方法。 一個長度為n的序列擁有 2的n次方個子序列,它的時間復雜度是指數階 ,太恐怖了。解決LCS問題,需要藉助動態規劃的思想。

動態規劃演算法通常用於求解具有某種最優性質的問題。在這類問題中,可能會有許多可行解。每一個解都對應於一個值,我們希望找到具有最優值的解。動態規劃演算法與分治法類似,其基本思想也是將待求解問題分解成若干個子問題,先求解子問題,然後從這些子問題的解得到原問題的解。與分治法不同的是,適合於用動態規劃求解的問題,經分解得到子問題往往不是互相獨立的。若用分治法來解這類問題,則分解得到的子問題數目太多,有些子問題被重復計算了很多次。 為了避免大量的重復計算,節省時間,我們引入一個數組,不管它們是否對最終解有用,把所有子問題的解存於該數組中,這就是動態規劃法所採用的基本方法。

解決LCS問題,需要把原問題分解成若干個子問題,所以需要刻畫LCS的特徵。

設A=「a0,a1,…,am」,B=「b0,b1,…,bn」,且Z=「z0,z1,…,zk」為它們的最長公共子序列。不難證明有以下性質:
如果am=bn,則zk=am=bn,且「z0,z1,…,z(k-1)」是「a0,a1,…,a(m-1)」和「b0,b1,…,b(n-1)」的一個最長公共子序列;
如果am!=bn,則若zk!=am,蘊涵「z0,z1,…,zk」是「a0,a1,…,a(m-1)」和「b0,b1,…,bn」的一個最長公共子序列;
如果am!=bn,則若zk!=bn,蘊涵「z0,z1,…,zk」是「a0,a1,…,am」和「b0,b1,…,b(n-1)」的一個最長公共子序列。

有些同學,一看性質就容易暈菜,所以我給出一個圖來讓這些同學理解一下:

以我在第1小節舉的例子(S1={1,3,4,5,6,7,7,8}和S2={3,5,7,4,8,6,7,8,2}),並結合上圖來說:

假如S1的最後一個元素 與 S2的最後一個元素相等,那麼S1和S2的LCS就等於 {S1減去最後一個元素} 與 {S2減去最後一個元素} 的 LCS 再加上 S1和S2相等的最後一個元素。

假如S1的最後一個元素 與 S2的最後一個元素不等(本例子就是屬於這種情況),那麼S1和S2的LCS就等於 : {S1減去最後一個元素} 與 S2 的LCS, {S2減去最後一個元素} 與 S1 的LCS 中的最大的那個序列。

假設Z=<z1,z2,⋯,zk>是X與Y的LCS, 我們觀察到
如果Xm=Yn,則Zk=Xm=Yn,有Zk−1是Xm−1與Yn−1的LCS;
如果Xm≠Yn,則Zk是Xm與Yn−1的LCS,或者是Xm−1與Yn的LCS。

因此,求解LCS的問題則變成遞歸求解的兩個子問題。但是,上述的遞歸求解的辦法中, 重復的子問題多,效率低下。改進的辦法——用空間換時間,用數組保存中間狀態,方便後面的計算。這就是動態規劃(DP)的核心思想了。
DP求解LCS
用二維數組c[i][j]記錄串x1x2⋯xi與y1y2⋯yj的LCS長度,則可得到狀態轉移方程

以s1={1,3,4,5,6,7,7,8},s2={3,5,7,4,8,6,7,8,2}為例。我們借用《演算法導論》中的推導圖:

圖中的空白格子需要填上相應的數字(這個數字就是c[i,j]的定義,記錄的LCS的長度值)。填的規則依據遞歸公式,簡單來說:如果橫豎(i,j)對應的兩個元素相等,該格子的值 = c[i-1,j-1] + 1。如果不等,取c[i-1,j] 和 c[i,j-1]的最大值。首先初始化該表:

S1的元素3 與 S2的元素5 不等,c[2,2] =max(c[1,2],c[2,1]),圖中c[1,2] 和 c[2,1] 背景色為淺黃色。

繼續填充:

至此,該表填完。根據性質,c[8,9] = S1 和 S2 的 LCS的長度,即為5。

本文S1和S2的最LCS並不是只有1個,本文並不是著重講輸出兩個序列的所有LCS,只是介紹如何通過上表,輸出其中一個LCS。

我們根據遞歸公式構建了上表,我們將從最後一個元素c[8][9]倒推出S1和S2的LCS。

c[8][9] = 5,且S1[8] != S2[9],所以倒推回去,c[8][9]的值來源於c[8][8]的值(因為c[8][8] > c[7][9])。

c[8][8] = 5, 且S1[8] = S2[8], 所以倒推回去,c[8][8]的值來源於 c[7][7]。

以此類推,如果遇到S1[i] != S2[j] ,且c[i-1][j] = c[i][j-1] 這種存在分支的情況,這里請都選擇一個方向(之後遇到這樣的情況,也選擇相同的方向)。

這就是倒推回去的路徑,棕色方格為相等元素,即LCS = {3,4,6,7,8},這是其中一個結果。

如果如果遇到S1[i] != S2[j] ,且c[i-1][j] = c[i][j-1] 這種存在分支的情況,選擇另一個方向,會得到另一個結果。

即LCS ={3,5,7,7,8}。

構建c[i][j]表需要Θ(mn),輸出1個LCS的序列需要Θ(m+n)。

參考:
https://blog.csdn.net/hrn1216/article/details/51534607
https://blog.csdn.net/u012102306/article/details/53184446

⑸ acm初學者要准備什麼 看什麼書啊

剛剛接觸信息學領域的同學往往存在很多困惑,不知道從何入手學習,在這篇文章里,我希望能將自己不多的經驗與大家分享,希望對各位有所幫助。
一、語言是最重要的基本功

無論側重於什麼方面,只要是通過計算機程序去最終實現的競賽,語言都是大家要過的第一道關。亞洲賽區的比賽支持的語言包括C/C++與JAVA。筆者首先說說JAVA,眾所周知,作為面向對象的王牌語言,JAVA在大型工程的組織與安全性方面有著自己獨特的優勢,但是對於信息學比賽的具體場合,JAVA則顯得不那麼合適,它對於輸入輸出流的操作相比於C++要繁雜很多,更為重要的是JAVA程序的運行速度要比C++慢10倍以上,而競賽中對於JAVA程序的運行時限卻往往得不到同等比例的放寬,這無疑對演算法設計提出了更高的要求,是相當不利的。其實,筆者並不主張大家在這種場合過多地運用面向對象的程序設計思維,因為對於小程序來說這不旦需要花費更多的時間去編寫代碼,也會降低程序的執行效率。

接著說C和C++。許多現在參加講座的同學還在上大一,C的基礎知識剛剛學完,還沒有接觸過C++,其實在賽場上使用純C的選手還是大有人在的,它們主要是看重了純C在效率上的優勢,所以這部分同學如果時間有限,並不需要急著去學習新的語言,只要提高了自己在演算法設計上的造詣,純C一樣能發揮巨大的威力。

而C++相對於C,在輸入輸出流上的封裝大大方便了我們的操作,同時降低了出錯的可能性,並且能夠很好地實現標准流與文件流的切換,方便了調試的工作。如果有些同學比較在意這點,可以嘗試C和C++的混編,畢竟僅僅學習C++的流操作還是不花什麼時間的。

C++的另一個支持來源於標准模版庫(STL),庫中提供的對於基本數據結構的統一介面操作和基本演算法的實現可以縮減我們編寫代碼的長度,這可以節省一些時間。但是,與此相對的,使用STL要在效率上做出一些犧牲,對於輸入規模很大的題目,有時候必須放棄STL,這意味著我們不能存在「有了STL就可以不去管基本演算法的實現」的想法;另外,熟練和恰當地使用STL必須經過一定時間的積累,准確地了解各種操作的時間復雜度,切忌對STL中不熟悉的部分濫用,因為這其中蘊涵著許多初學者不易發現的陷阱。

通過以上的分析,我們可以看出僅就信息學競賽而言,對語言的掌握並不要求十分全面,但是對於經常用到的部分,必須十分熟練,不允許有半點不清楚的地方,下面我舉個真實的例子來說明這個道理——即使是一點很細微的語言障礙,都有可能釀成錯誤:

在去年清華的賽區上,有一個隊在做F題的時候使用了cout和printf的混合輸出,由於一個帶緩沖一個不帶,所以輸出一長就混亂了。只是因為當時judge team中負責F題的人眼睛尖,看出答案沒錯只是順序不對(答案有一頁多,是所有題目中最長的一個輸出),又看了看程序發現只是輸出問題就給了個Presentation error(格式錯)。如果審題的人不是這樣而是直接給一個 Wrong Answer,相信這個隊是很難查到自己錯在什麼地方的。

現在我們轉入第二個方面的討論,基礎學科知識的積累。

二、以數學為主的基礎知識十分重要

雖然被定性為程序設計競賽,但是參賽選手所遇到的問題更多的是沒有解決問題的思路,而不是有了思路卻死活不能實現,這就是平時積累的基礎知識不夠。今年World Final的總冠軍是波蘭華沙大學,其成員出自於數學系而非計算機系,這就是一個鮮活的例子。競賽中對於基礎學科的涉及主要集中於數學,此外對於物理、電路等等也可能有一定應用,但是不多。因此,大一的同學也不必為自己還沒學數據結構而感到不知從何入手提高,把數學撿起來吧!下面我來談談在競賽中應用的數學的主要分支。

1、離散數學——作為計算機學科的基礎,離散數學是競賽中涉及最多的數學分支,其重中之重又在於圖論和組合數學,尤其是圖論。

圖論之所以運用最多是因為它的變化最多,而且可以輕易地結合基本數據結構和許多演算法的基本思想,較多用到的知識包括連通性判斷、DFS和BFS,關節點和關鍵路徑、歐拉迴路、最小生成樹、最短路徑、二部圖匹配和網路流等等。雖然這部分的比重很大,但是往往也是競賽中的難題所在,如果有初學者對於這部分的某些具體內容暫時感到力不從心,也不必著急,可以慢慢積累。

競賽中設計的組合計數問題大都需要用組合數學來解決,組合數學中的知識相比於圖論要簡單一些,很多知識對於小學上過奧校的同學來說已經十分熟悉,但是也有一些部分需要先對代數結構中的群論有初步了解才能進行學習。組合數學在競賽中很少以難題的形式出現,但是如果積累不夠,任何一道這方面的題目卻都有可能成為難題。

2、數論——以素數判斷和同餘為模型構造出來的題目往往需要較多的數論知識來解決,這部分在競賽中的比重並不大,但只要來上一道,也足以使知識不足的人冥思苦想上一陣時間。素數判斷和同餘最常見的是在以密碼學為背景的題目中出現,在運用密碼學常識確定大概的過程之後,核心演算法往往要涉及數論的內容。

3、計算幾何——計算幾何相比於其它部分來說是比較獨立的,就是說它和其它的知識點很少有過多的結合,較常用到的部分包括——線段相交的判斷、多邊形面積的計算、內點外點的判斷、凸包等等。計算幾何的題目難度不會很大,但也永遠不會成為最弱的題。

4、線性代數——對線性代數的應用都是圍繞矩陣展開的,一些表面上是模擬的題目往往可以藉助於矩陣來找到更好的演算法。

5、概率論——競賽是以黑箱來判卷的,這就是說你幾乎不能動使用概率演算法的念頭,但這也並不是說概率就沒有用。關於這一點,只有通過一定的練習才能體會。

6、初等數學與解析幾何——這主要就是中學的知識了,用的不多,但是至少比高等數學多,我覺得熟悉一下數學手冊上的相關內容,至少要知道在哪兒能查到,還是必要的。

7、高等數學——純粹運用高等數學來解決的題目我接觸的只有一道,但是一些題目的敘述背景往往需要和這部分有一定聯系,掌握得牢固一些總歸沒有壞處。

以上就是競賽所涉及的數學領域,可以說范圍是相當廣的。我認識的許多人去搞信息學的競賽就是為了逼著自己多學一點數學,因為數學是一切一切的基礎。

三、數據結構與演算法是真正的核心

雖然數學十分十分重要,但是如果讓三個只會數學的人參加比賽,我相信多數情況下會比三個只會數據結構與演算法的人得到更為悲慘的結局。

先說說數據結構。掌握隊列、堆棧和圖的基本表達與操作是必需的,至於樹,我個人覺得需要建樹的問題有但是並不多。(但是樹往往是很重要的分析工具)除此之外,排序和查找並不需要對所有方式都能很熟練的掌握,但你必須保證自己對於各種情況都有一個在時間復雜度上滿足最低要求的解決方案。說到時間復雜度,就又該說說哈希表了,競賽時對時間的限制遠遠多於對空間的限制,這要求大家盡快掌握「以空間換時間」的原則策略,能用哈希表來存儲的數據一定不要到時候再去查找,如果實在不能建哈希表,再看看能否建二叉查找樹等等——這都是爭取時間的策略,掌握這些技巧需要大家對數據結構尤其是演算法復雜度有比較全面的理性和感性認識。

接著說說演算法。演算法中最基本和常用的是搜索,主要是回溯和分支限界法的使用。這里要說的是,有些初學者在學習這些搜索基本演算法是不太注意剪枝,這是十分不可取的,因為所有搜索的題目給你的測試用例都不會有很大的規模,你往往察覺不出程序運行的時間問題,但是真正的測試數據一定能過濾出那些沒有剪枝的演算法。實際上參賽選手基本上都會使用常用的搜索演算法,題目的區分度往往就是建立在諸如剪枝之類的優化上了。

常用演算法中的另一類是以「相似或相同子問題」為核心的,包括遞推、遞歸、貪心法和動態規劃。這其中比較難於掌握的就是動態規劃,如何抽象出重復的子問題是很多題目的難點所在,筆者建議初學者仔細理解圖論中一些以動態規劃為基本思想所建立起來的基本演算法(比如Floyd-Warshall演算法),並且多閱讀一些定理的證明,這雖然不能有什麼直接的幫助,但是長期堅持就會對思維很有幫助。

四、團隊配合

通過以上的介紹大家也可以看出,信息學競賽對於知識面覆蓋的非常廣,想憑一己之力全部消化這些東西實在是相當困難的,這就要求我們盡可能地發揮團隊協作的精神。同組成員之間的熟練配合和默契的形成需要時間,具體的情況因成員的組成不同而不同,這里我就不再多說了。

五、練習、練習、再練習

知識的積累固然重要,但是信息學終究不是看出來的,而是練出來的,這是多少前人最深的一點體會,只有通過具體題目的分析和實踐,才能真正掌握數學的使用和演算法的應用,並在不斷的練習中增加編程經驗和技巧,提高對時間復雜度的感性認識,優化時間的分配,加強團隊的配合。總之,在這里光有紙上談兵是絕對不行的,必須要通過實戰來鍛煉自己。

大家一定要問,我們去哪裡找題做,又如何檢驗程序是否正確呢?這大可不必擔心,現在已經有了很多網上做題的站點,這些站點提供了大量的題庫並支持在線判卷,你只需要把程序源碼提交上去,馬上就可以知道自己的程序是否正確,運行所使用的時間以及消耗的內存等等狀況。下面我給大家推薦幾個站點,筆者不建議大家在所有這些站點上做題,選擇一個就可以了,因為每個站點的題都有一定的難易比例,系統地做一套題庫可以使你對各種難度、各種類型的題都有所認識。

1、Ural:

Ural是中國學生對俄羅斯的Ural州立大學的簡稱 ,那裡設立了一個Ural Online Problem Set,並且支持Online Judge。Ural的不少題目演算法性和趣聞性都很強,得到了國內廣大學生的厚愛。根據「信息學初學者之家」網站的統計,Ural的題目類型大概呈如下的分布:

題型
搜索
動態規劃
貪心
構造
圖論
計算幾何
純數學問題
數據結構
其它

所佔比例
約10%
約15%
約5%
約5%
約10%
約5%
約20%
約5%
約25%

這和實際比賽中的題型分布也是大體相當的。有興趣的朋友可以去看看。

2、UVA:

UVA代表西班牙Valladolid大學(University de Valladolid)。該大學有一個那裡設立了一個PROBLEM SET ARCHIVE with ONLINE JUDGE ,並且支持ONLINE JUDGE,形式和Ural大學的題庫類似。不過和Ural不同的是,UVA題目多的多,而且比較雜,而且有些題目的測試數據比較刁鑽。這使得剛到那裡做題的朋友往往感覺到無所適從,要麼難以找到合適的題目,要麼Wrong Answer了很多次以後仍然不知道錯在那裡。 如果說做Ural題目主要是為了訓練演算法,那麼UVA題目可以訓練全方位的基本功和一些必要的編程素質。UVA和許多世界知名大學聯合辦有同步網上比賽,因此那裡強人無數,不過你先要使自己具有聽懂他們在說什麼的素質:)

3、ZOJ:

ZOJ是浙江大學建立的ONLINE JUDGE,是中國大學建立的第一個同類站點,也是最好和人氣最高的一個,筆者和許多班裡的同學就是在這里練習。ZOJ雖然也定位為一個英文網站,但是這里的中國學生比較多,因此讓人覺得很親切。這里目前有500多道題目,難易分配適中,且涵蓋了各大洲的題目類型並配有索引,除此之外,ZOJ的JUDGE系統是幾個網站中表現得比較好的一個,很少出現Wrong Answer和Presentation error混淆的情況。這里每月也辦有一次網上比賽,只要是注冊的用戶都可以參加。

說起中國的ONLINE JUDGE,去年才開始參加ACM競賽的北京大學現在也建立了自己的提交系統;而我們學校也是去年開始參加比賽,現在也有可能推出自己的提交系統,如果能夠做成,到時候大家就可以去上面做題了。同類網站的飛速發展標志著有越來越多的同學有興趣進入信息學的領域探索,這是一件好事,同時也意味著更激烈的競爭。

看看這篇文章對你有什麼幫助!我也是ACM初學者!

閱讀全文

與lcs演算法導論相關的資料

熱點內容
黃金拐點指標源碼 瀏覽:91
演算法導論第九章 瀏覽:276
鴿子為什麼生成伺服器沒反應 瀏覽:490
freebsdnginxphp 瀏覽:215
雜訊消除演算法 瀏覽:607
vue類似電腦文件夾展示 瀏覽:111
後備伺服器有什麼功效 瀏覽:268
連不上伺服器怎麼連 瀏覽:600
什麼構架的可以刷安卓系統 瀏覽:771
愛奇藝APP怎麼兌換CDK 瀏覽:994
程序員買4k顯示器還是2k顯示器 瀏覽:144
python多進程怎麼多窗口 瀏覽:818
電腦文件夾怎麼取消類別 瀏覽:47
cad拉線段命令 瀏覽:924
如何用電腦清理手機沒用的文件夾 瀏覽:100
儲存層次結構對程序員的意義 瀏覽:477
微信文件夾查看器 瀏覽:952
android視頻聊天開源 瀏覽:552
思科iso命令 瀏覽:944
手機網頁源碼里的視頻地址 瀏覽:681