『壹』 模糊C均值聚類演算法(FCM)
【嵌牛導讀】FCM演算法是一種基於劃分的聚類演算法,它的思想就是使得被劃分到同一簇的對象之間相似度最大,而不同簇之間的相似度最小。模糊C均值演算法是普通C均值演算法的改進,普通C均值演算法對於數據的劃分是硬性的,而FCM則是一種柔性的模糊劃分。
【嵌牛提問】FCM有什麼用?
【嵌牛鼻子】模糊C均值聚類演算法
【嵌牛正文】
聚類分析是多元統計分析的一種,也是無監督模式識別的一個重要分支,在模式分類、圖像處理和模糊規則處理等眾多領域中獲得最廣泛的應用。它把一個沒有類別標記的樣本按照某種准則劃分為若乾子集,使相似的樣本盡可能歸於一類,而把不相似的樣本劃分到不同的類中。硬聚類把每個待識別的對象嚴格的劃分某類中,具有非此即彼的性質,而模糊聚類建立了樣本對類別的不確定描述,更能客觀的反應客觀世界,從而成為聚類分析的主流。
模糊聚類演算法是一種基於函數最優方法的聚類演算法,使用微積分計算技術求最優代價函數,在基於概率演算法的聚類方法中將使用概率密度函數,為此要假定合適的模型,模糊聚類演算法的向量可以同時屬於多個聚類,從而擺脫上述問題。 模糊聚類分析演算法大致可分為三類:
1)分類數不定,根據不同要求對事物進行動態聚類,此類方法是基於模糊等價矩陣聚類的,稱為模糊等價矩陣動態聚類分析法。
2)分類數給定,尋找出對事物的最佳分析方案,此類方法是基於目標函數聚類的,稱為模糊C 均值聚類。
3)在攝動有意義的情況下,根據模糊相似矩陣聚類,此類方法稱為基於攝動的模糊聚類分析法。
我所學習的是模糊C 均值聚類演算法,要學習模糊C 均值聚類演算法要先了解慮屬度的含義,隸屬度函數是表示一個對象x 隸屬於集合A 的程度的函數,通常記做μA (x),其自變數范圍是所有可能屬於集合A 的對象(即集合A 所在空間中的所有點),取值范圍是[0,1],即0<=μA (x)<=1。μA (x)=1表示x 完全隸屬於集合A ,相當於傳統集合概念上的x ∈A 。一個定義在空間X={x}上的隸屬度函數就定義了一個模糊集合A ,或者叫定義在論域X={x}上的模糊子集A 。對於有限個對象x 1,x 2,……,x n 模糊集合A 可以表示為:A ={(μA (x i ), x i ) |x i ∈X } (6.1)
有了模糊集合的概念,一個元素隸屬於模糊集合就不是硬性的了,在聚類的問題中,可以把聚類生成的簇看成模糊集合,因此,每個樣本點隸屬於簇的隸屬度就是[0,1]區間裡面的值。
FCM 演算法需要兩個參數一個是聚類數目C ,另一個是參數m 。一般來講C 要遠遠小於聚類樣本的總個數,同時要保證C>1。對於m ,它是一個控制演算法的柔性的參數,如果m 過大,則聚類效果會很次,而如果m 過小則演算法會接近HCM 聚類演算法。演算法的輸出是C 個聚類中心點向量和C*N的一個模糊劃分矩陣,這個矩陣表示的是每個樣本點屬於每個類的隸屬度。根據這個劃分矩陣按照模糊集合中的最大隸屬原則就能夠確定每個樣本點歸為哪個類。聚類中心表示的是每個類的平均特徵,可以認為是這個類的代表點。從演算法的推導過程中我們不難看出,演算法對於滿足正態分布的數據聚類效果會很好。
通過實驗和演算法的研究學習,不難發現FCM演算法的優缺點:
首先,模糊c 均值泛函Jm 仍是傳統的硬c 均值泛函J1 的自然推廣。J1 是一個應用很廣泛的聚類准則,對其在理論上的研究已經相當的完善,這就為Jm 的研究提供了良好的條件。
其次,從數學上看,Jm與Rs的希爾伯特空間結構(正交投影和均方逼近理論) 有密切的關聯,因此Jm 比其他泛函有更深厚的數學基礎。
最後,FCM 聚類演算法不僅在許多鄰域獲得了非常成功的應用,而且以該演算法為基礎,又提出基於其他原型的模糊聚類演算法,形成了一大批FCM類型的演算法,比如模糊c線( FCL) ,模糊c面(FCP) ,模糊c殼(FCS) 等聚類演算法,分別實現了對呈線狀、超平面狀和「薄殼」狀結構模式子集(或聚類) 的檢測。
模糊c均值演算法因設計簡單,解決問題范圍廣,易於應用計算機實現等特點受到了越來越多人的關注,並應用於各個領域。但是,自身仍存在的諸多問題,例如強烈依賴初始化數據的好壞和容易陷入局部鞍點等,仍然需要進一步的研究。
『貳』 幾種主要類聚方法的比較和試驗
引言 聚類分析是人類的區分標志之一,從孩提時代開始,一個人就下意識地學會區分動植物,並且不斷改進。這一原理在如今不少領域得到了相應的研究和應用,比如模式識別、數據分析、圖像處理、Web文檔分類等。 將物理或抽象對象的集合分成由類似的對象組成的多個類的過程被稱為聚類。由聚類所生成的簇是一組數據對象的集合,這些對象與同一個簇中的對象彼此相似,與其他簇中的對象相異。「物以類聚,人以群分」,在自然科學和社會科學中,存在著大量的分類問題。 聚類技術正在蓬勃發展,對此有貢獻的研究領域包括數據挖掘、統計學、機器學習、空間資料庫技術、生物學以及市場營銷等。各種聚類方法也被不斷提出和改進,而不同的方法適合於不同類型的數據,因此對各種聚類方法、聚類效果的比較成為值得研究的課題。 1 聚類演算法的分類 現在有很多的聚類演算法,而在實際應用中,正確選擇聚類演算法的則取決於數據的類型、聚類的目的等因素。如果聚類分析被用作描述或探查的工具,可以對同樣的數據嘗試多種演算法,以發現數據可能揭示的結果。 已知的聚類演算法可以大致劃分為以下幾類:劃分方法、層次方法、基於密度的方法、基於網格的方法和基於模型的方法。 每一個類型的演算法都被廣泛地應用著,例如:劃分方法中的k-means聚類演算法、層次方法中的凝聚型層次聚類演算法、基於模型方法中的神經網路聚類演算法等。 聚類問題的研究早已不再局限於上述的硬聚類,即每一個數據只能被歸為一類,模糊聚類也是聚類分析中研究較為廣泛的一個「流派」。模糊聚類通過隸屬函數來確定每個數據隸屬於各個簇的程度,而不是將一個數據對象硬性地歸類到某一簇中。目前已有很多關於模糊聚類的演算法被提出,如FCM演算法。 本文主要分析和比較k-means聚類演算法、凝聚型層次聚類演算法、神經網路聚類演算法之SOM,以及模糊聚類的FCM演算法。通過通用測試數據集進行聚類效果的比較和分析。 2 四種常用聚類演算法研究 2.1 k-means聚類演算法 k-means是劃分方法中較經典的聚類演算法之一。該演算法的效率高,使得在對大規模數據進行聚類時廣泛應用。目前,許多演算法均圍繞著該演算法進行擴展和改進。 k-means演算法以k為參數,把n個對象分成k個簇,使簇內具有較高的相似度,而簇間的相似度較低。k-means演算法的處理過程如下:首先,隨機地選擇k個對象,每個對象初始地代表了一個簇的平均值或中心;對剩餘的每個對象,根據其與各簇中心的距離,將它賦給最近的簇;然後重新計算每個簇的平均值。這個過程不斷重復,直到准則函數收斂。通常,採用平方誤差准則,其定義如下: 這里E是資料庫中所有對象的平方誤差的總和,p是空間中的點,mi是簇Ci的平均值。該目標函數使生成的簇盡可能緊湊獨立,使用的距離度量是歐幾里得距離,當然也可以用其他距離度量。k-means聚類演算法的演算法流程如下: 輸入:包含n個對象的資料庫和簇的數目k; 輸出:k個簇,使平方誤差准則最小。 步驟: (1) 任意選擇k個對象作為初始的簇中心; (2) repeat; (3) 根據簇中對象的平均值,將每個對象(重新)賦予最類似的簇; (4) 更新簇的平均值,即計算每個簇中對象的平均值; (5) until不再發生變化。 2.2 層次聚類演算法 根據層次分解的順序,層次聚類演算法分為凝聚的層次聚類演算法和分裂的層次聚類演算法。 凝聚型層次聚類的策略是先將每個對象作為一個簇,然後合並這些原子簇為越來越大的簇,直到所有對象都在一個簇中,或者某個終結條件被滿足。絕大多數層次聚類屬於凝聚型層次聚類,它們只是在簇間相似度的定義上有所不同。四種廣泛採用的簇間距離度量方法如下: 這里給出採用最小距離的凝聚層次聚類演算法流程: (1) 將每個對象看作一類,計算兩兩之間的最小距離; (2) 將距離最小的兩個類合並成一個新類; (3) 重新計算新類與所有類之間的距離; (4) 重復(2)、(3),直到所有類最後合並成一類。 2.3 SOM聚類演算法 SOM神經網路是由芬蘭神經網路專家Kohonen教授提出的,該演算法假設在輸入對象中存在一些拓撲結構或順序,可以實現從輸入空間(n維)到輸出平面(2維)的降維映射,其映射具有拓撲特徵保持性質,與實際的大腦處理有很強的理論聯系。 SOM網路包含輸入層和輸出層。輸入層對應一個高維的輸入向量,輸出層由一系列組織在2維網格上的有序節點構成,輸入節點與輸出節點通過權重向量連接。學習過程中,找到與之距離最短的輸出層單元,即獲勝單元,對其更新。同時,將鄰近區域的權值更新,使輸出節點保持輸入向量的拓撲特徵。 演算法流程: (1) 網路初始化,對輸出層每個節點權重賦初值; (2) 將輸入樣本中隨機選取輸入向量,找到與輸入向量距離最小的權重向量; (3) 定義獲勝單元,在獲勝單元的鄰近區域調整權重使其向輸入向量靠攏; (4) 提供新樣本、進行訓練; (5) 收縮鄰域半徑、減小學習率、重復,直到小於允許值,輸出聚類結果。 2.4 FCM聚類演算法 1965年美國加州大學柏克萊分校的扎德教授第一次提出了『集合』的概念。經過十多年的發展,模糊集合理論漸漸被應用到各個實際應用方面。為克服非此即彼的分類缺點,出現了以模糊集合論為數學基礎的聚類分析。用模糊數學的方法進行聚類分析,就是模糊聚類分析。 FCM演算法是一種以隸屬度來確定每個數據點屬於某個聚類程度的演算法。該聚類演算法是傳統硬聚類演算法的一種改進。 演算法流程: (1) 標准化數據矩陣; (2) 建立模糊相似矩陣,初始化隸屬矩陣; (3) 演算法開始迭代,直到目標函數收斂到極小值; (4) 根據迭代結果,由最後的隸屬矩陣確定數據所屬的類,顯示最後的聚類結果。 3 試驗 3.1 試驗數據 實驗中,選取專門用於測試分類、聚類演算法的國際通用的UCI資料庫中的IRIS數據集,IRIS數據集包含150個樣本數據,分別取自三種不同的鶯尾屬植物setosa、versicolor和virginica的花朵樣本,每個數據含有4個屬性,即萼片長度、萼片寬度、花瓣長度,單位為cm。在數據集上執行不同的聚類演算法,可以得到不同精度的聚類結果。 3.2 試驗結果說明 文中基於前面所述各演算法原理及演算法流程,用matlab進行編程運算,得到表1所示聚類結果。 如表1所示,對於四種聚類演算法,按三方面進行比較: (1)聚錯樣本數:總的聚錯的樣本數,即各類中聚錯的樣本數的和; (2)運行時間:即聚類整個過程所耗費的時間,單位為s; (3)平均准確度:設原數據集有k個類,用ci表示第i類,ni為ci中樣本的個數,mi為聚類正確的個數,則mi/ni為第i類中的精度,則平均精度為: 3.3 試驗結果分析 四種聚類演算法中,在運行時間及准確度方面綜合考慮,k-means和FCM相對優於其他。但是,各個演算法還是存在固定缺點:k-means聚類演算法的初始點選擇不穩定,是隨機選取的,這就引起聚類結果的不穩定,本實驗中雖是經過多次實驗取的平均值,但是具體初始點的選擇方法還需進一步研究;層次聚類雖然不需要確定分類數,但是一旦一個分裂或者合並被執行,就不能修正,聚類質量受限制;FCM對初始聚類中心敏感,需要人為確定聚類數,容易陷入局部最優解;SOM與實際大腦處理有很強的理論聯系。但是處理時間較長,需要進一步研究使其適應大型資料庫。 4 結語 聚類分析因其在許多領域的成功應用而展現出誘人的應用前景,除經典聚類演算法外,各種新的聚類方法正被不斷被提出。
該文章僅供學習參考使用,版權歸作者所有。
『叄』 四種聚類方法之比較
四種聚類方法之比較
介紹了較為常見的k-means、層次聚類、SOM、FCM等四種聚類演算法,闡述了各自的原理和使用步驟,利用國際通用測試數據集IRIS對這些演算法進行了驗證和比較。結果顯示對該測試類型數據,FCM和k-means都具有較高的准確度,層次聚類准確度最差,而SOM則耗時最長。
關鍵詞:聚類演算法;k-means;層次聚類;SOM;FCM
聚類分析是一種重要的人類行為,早在孩提時代,一個人就通過不斷改進下意識中的聚類模式來學會如何區分貓狗、動物植物。目前在許多領域都得到了廣泛的研究和成功的應用,如用於模式識別、數據分析、圖像處理、市場研究、客戶分割、Web文檔分類等[1]。
聚類就是按照某個特定標准(如距離准則)把一個數據集分割成不同的類或簇,使得同一個簇內的數據對象的相似性盡可能大,同時不在同一個簇中的數據對象的差異性也盡可能地大。即聚類後同一類的數據盡可能聚集到一起,不同數據盡量分離。
聚類技術[2]正在蓬勃發展,對此有貢獻的研究領域包括數據挖掘、統計學、機器學習、空間資料庫技術、生物學以及市場營銷等。各種聚類方法也被不斷提出和改進,而不同的方法適合於不同類型的數據,因此對各種聚類方法、聚類效果的比較成為值得研究的課題。
1 聚類演算法的分類
目前,有大量的聚類演算法[3]。而對於具體應用,聚類演算法的選擇取決於數據的類型、聚類的目的。如果聚類分析被用作描述或探查的工具,可以對同樣的數據嘗試多種演算法,以發現數據可能揭示的結果。
主要的聚類演算法可以劃分為如下幾類:劃分方法、層次方法、基於密度的方法、基於網格的方法以及基於模型的方法[4-6]。
每一類中都存在著得到廣泛應用的演算法,例如:劃分方法中的k-means[7]聚類演算法、層次方法中的凝聚型層次聚類演算法[8]、基於模型方法中的神經網路[9]聚類演算法等。
目前,聚類問題的研究不僅僅局限於上述的硬聚類,即每一個數據只能被歸為一類,模糊聚類[10]也是聚類分析中研究較為廣泛的一個分支。模糊聚類通過隸屬函數來確定每個數據隸屬於各個簇的程度,而不是將一個數據對象硬性地歸類到某一簇中。目前已有很多關於模糊聚類的演算法被提出,如著名的FCM演算法等。
本文主要對k-means聚類演算法、凝聚型層次聚類演算法、神經網路聚類演算法之SOM,以及模糊聚類的FCM演算法通過通用測試數據集進行聚類效果的比較和分析。
2 四種常用聚類演算法研究
2.1 k-means聚類演算法
k-means是劃分方法中較經典的聚類演算法之一。由於該演算法的效率高,所以在對大規模數據進行聚類時被廣泛應用。目前,許多演算法均圍繞著該演算法進行擴展和改進。
k-means演算法以k為參數,把n個對象分成k個簇,使簇內具有較高的相似度,而簇間的相似度較低。k-means演算法的處理過程如下:首先,隨機地選擇k個對象,每個對象初始地代表了一個簇的平均值或中心;對剩餘的每個對象,根據其與各簇中心的距離,將它賦給最近的簇;然後重新計算每個簇的平均值。這個過程不斷重復,直到准則函數收斂。通常,採用平方誤差准則,其定義如下:
這里E是資料庫中所有對象的平方誤差的總和,p是空間中的點,mi是簇Ci的平均值[9]。該目標函數使生成的簇盡可能緊湊獨立,使用的距離度量是歐幾里得距離,當然也可以用其他距離度量。k-means聚類演算法的演算法流程如下:
輸入:包含n個對象的資料庫和簇的數目k;
輸出:k個簇,使平方誤差准則最小。
步驟:
(1) 任意選擇k個對象作為初始的簇中心;
(2) repeat;
(3) 根據簇中對象的平均值,將每個對象(重新)賦予最類似的簇;
(4) 更新簇的平均值,即計算每個簇中對象的平均值;
(5) until不再發生變化。
2.2 層次聚類演算法
根據層次分解的順序是自底向上的還是自上向下的,層次聚類演算法分為凝聚的層次聚類演算法和分裂的層次聚類演算法。
凝聚型層次聚類的策略是先將每個對象作為一個簇,然後合並這些原子簇為越來越大的簇,直到所有對象都在一個簇中,或者某個終結條件被滿足。絕大多數層次聚類屬於凝聚型層次聚類,它們只是在簇間相似度的定義上有所不同。四種廣泛採用的簇間距離度量方法如下:
這里給出採用最小距離的凝聚層次聚類演算法流程:
(1) 將每個對象看作一類,計算兩兩之間的最小距離;
(2) 將距離最小的兩個類合並成一個新類;
(3) 重新計算新類與所有類之間的距離;
(4) 重復(2)、(3),直到所有類最後合並成一類。
2.3 SOM聚類演算法
SOM神經網路[11]是由芬蘭神經網路專家Kohonen教授提出的,該演算法假設在輸入對象中存在一些拓撲結構或順序,可以實現從輸入空間(n維)到輸出平面(2維)的降維映射,其映射具有拓撲特徵保持性質,與實際的大腦處理有很強的理論聯系。
SOM網路包含輸入層和輸出層。輸入層對應一個高維的輸入向量,輸出層由一系列組織在2維網格上的有序節點構成,輸入節點與輸出節點通過權重向量連接。學習過程中,找到與之距離最短的輸出層單元,即獲勝單元,對其更新。同時,將鄰近區域的權值更新,使輸出節點保持輸入向量的拓撲特徵。
演算法流程:
(1) 網路初始化,對輸出層每個節點權重賦初值;
(2) 將輸入樣本中隨機選取輸入向量,找到與輸入向量距離最小的權重向量;
(3) 定義獲勝單元,在獲勝單元的鄰近區域調整權重使其向輸入向量靠攏;
(4) 提供新樣本、進行訓練;
(5) 收縮鄰域半徑、減小學習率、重復,直到小於允許值,輸出聚類結果。
2.4 FCM聚類演算法
1965年美國加州大學柏克萊分校的扎德教授第一次提出了『集合』的概念。經過十多年的發展,模糊集合理論漸漸被應用到各個實際應用方面。為克服非此即彼的分類缺點,出現了以模糊集合論為數學基礎的聚類分析。用模糊數學的方法進行聚類分析,就是模糊聚類分析[12]。
FCM演算法是一種以隸屬度來確定每個數據點屬於某個聚類程度的演算法。該聚類演算法是傳統硬聚類演算法的一種改進。
演算法流程:
(1) 標准化數據矩陣;
(2) 建立模糊相似矩陣,初始化隸屬矩陣;
(3) 演算法開始迭代,直到目標函數收斂到極小值;
(4) 根據迭代結果,由最後的隸屬矩陣確定數據所屬的類,顯示最後的聚類結果。
3 四種聚類演算法試驗
3.1 試驗數據
實驗中,選取專門用於測試分類、聚類演算法的國際通用的UCI資料庫中的IRIS[13]數據集,IRIS數據集包含150個樣本數據,分別取自三種不同的鶯尾屬植物setosa、versicolor和virginica的花朵樣本,每個數據含有4個屬性,即萼片長度、萼片寬度、花瓣長度,單位為cm。在數據集上執行不同的聚類演算法,可以得到不同精度的聚類結果。
3.2 試驗結果說明
文中基於前面所述各演算法原理及演算法流程,用matlab進行編程運算,得到表1所示聚類結果。
如表1所示,對於四種聚類演算法,按三方面進行比較:(1)聚錯樣本數:總的聚錯的樣本數,即各類中聚錯的樣本數的和;(2)運行時間:即聚類整個過程所耗費的時間,單位為s;(3)平均准確度:設原數據集有k個類,用ci表示第i類,ni為ci中樣本的個數,mi為聚類正確的個數,則mi/ni為第i類中的精度,則平均精度為:
3.3 試驗結果分析
四種聚類演算法中,在運行時間及准確度方面綜合考慮,k-means和FCM相對優於其他。但是,各個演算法還是存在固定缺點:k-means聚類演算法的初始點選擇不穩定,是隨機選取的,這就引起聚類結果的不穩定,本實驗中雖是經過多次實驗取的平均值,但是具體初始點的選擇方法還需進一步研究;層次聚類雖然不需要確定分類數,但是一旦一個分裂或者合並被執行,就不能修正,聚類質量受限制;FCM對初始聚類中心敏感,需要人為確定聚類數,容易陷入局部最優解;SOM與實際大腦處理有很強的理論聯系。但是處理時間較長,需要進一步研究使其適應大型資料庫。
聚類分析因其在許多領域的成功應用而展現出誘人的應用前景,除經典聚類演算法外,各種新的聚類方法正被不斷被提出。
『肆』 模糊c-均值聚類演算法的FCM 演算法簡介
假設樣本集合為X={x1 ,x2 ,…,xn },將其分成c 個模糊組,並求每組的聚類中心cj ( j=1,2,…,C) ,使目標函數達到最小。
『伍』 模糊c均值聚類中的隸屬度是什麼意思
模糊c-均值聚類演算法 fuzzy c-means algorithm (FCMA)或稱( FCM)。在眾多模糊聚類演算法中,模糊C-均值( FCM) 演算法應用最廣泛且較成功,它通過優化目標函數得到每個樣本點對所有類中心的隸屬度,從而決定樣本點的類屬以達到自動對樣本數據進行
『陸』 FCM什麼意思
回答:流式細胞術是一種生物學技術,用於對懸浮於流體中的微小顆粒進行計數和分選。這種技術可以用來對流過光學或電子檢測器的一個個細胞進行連續的多種參數分析。
流式細胞術(Flow CytoMetry,FCM)是對懸液中的單細胞或其他生物粒子,通過檢測標記的熒光信號,實現高速、逐一的細胞定量分析和分選的技術。
延伸:
其特點是通過快速測定庫爾特電阻、熒光、光散射和光吸收來定量測定細胞 DNA含量、細胞體積、蛋白質含量、酶活性、細胞膜受體和表面抗原等許多重要參數。根據這些參數將不同性質的細胞分開,以獲得供生物學和醫學研究用的純細胞群體。