❶ "演算法"的基本特徵有哪些
一個演算法應該具有以下五個重要的特徵:
1,有窮性(Finiteness):演算法的有窮性是指演算法必須能在執行有限個步驟之後終止;
2,確切性(Definiteness):演算法的每一步驟必須有確切的定義;
3,輸入項(Input):一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定出了初始條件;
4,輸出項(Output):一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒有輸出的演算法是毫無意義的;
5,可行性(Effectiveness):演算法中執行的任何計算步驟都是可以被分解為基本的可執行的操作步,即每個計算步都可以在有限時間內完成(也稱之為有效性)。
(1)簡潔性是演算法特徵嗎擴展閱讀:
演算法(Algorithm)是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制。
也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。
不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
演算法中的指令描述的是一個計算,當其運行時能從一個初始狀態和(可能為空的)初始輸入開始,經過一系列有限而清晰定義的狀態,最終產生輸出並停止於一個終態。
一個狀態到另一個狀態的轉移不一定是確定的。隨機化演算法在內的一些演算法,包含了一些隨機輸入。
形式化演算法的概念部分源自嘗試解決希爾伯特提出的判定問題,並在其後嘗試定義有效計算性或者有效方法中成形。
這些嘗試包括庫爾特·哥德爾、Jacques Herbrand和斯蒂芬·科爾·克萊尼分別於1930年、1934年和1935年提出的遞歸函數,阿隆佐·邱奇於1936年提出的λ演算,1936年Emil Leon Post的Formulation 1和艾倫·圖靈1937年提出的圖靈機。
即使在當前,依然常有直覺想法難以定義為形式化演算法的情況。
參考資料:網路----演算法
❷ 演算法的特徵是什麼
1、可行性
演算法中執行的任何計算步驟都是可以被分解為基本的可執行的操作步驟,即每個計算步驟都可以在有限時間內完成(也稱之為有效性)。
2、有窮性
演算法的有窮性是指演算法必須能在執行有限個步驟之後終止。
3、確切性
演算法的每一步驟必須有確切的定義。
演算法的方法
窮舉法,或稱為暴力破解法,其基本思路是:對於要解決的問題,列舉出它的所有可能的情況,逐個判斷有哪些是符合問題所要求的條件,從而得到問題的解。它也常用於對於密碼的破譯,即將密碼進行逐個推算直到找出真正的密碼為止。
例如一個已知是四位並且全部由數字組成的密碼,其可能共有10000種組合,因此最多嘗試10000次就能找到正確的密碼。理論上利用這種方法可以破解任何一種密碼,問題只在於如何縮短試誤時間。因此有些人運用計算機來增加效率,有些人輔以字典來縮小密碼組合的范圍。
❸ 演算法的基本特徵是
演算法
3分鍾了解今日頭條演算法原理(科普版)
02:43
什麼是演算法
04:28
概述
歷史發展
演算法分類
演算法特徵
演算法要素
演算法評定
目錄
1摘要
2基本信息
3概述
4歷史發展
5演算法分類
6演算法特徵
7演算法要素
數據的運算和操作
演算法的控制結構
8演算法評定
9描述方式
10史料記載
11基本方法
12參考資料
演算法是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制;它是求解問題類的、機械的、統一的方法,常用於計算、數據處理(英語:Data processing)和自動推理。可以理解為有基本運算及規定的運算順序所構成的完整的解題步驟。或者看成按照要求設計好的有限的確切的計算序列,並且這樣的步驟和序列可以解決一類問題。
演算法中的指令描述的是一個計算,當其運行時能從一個初始狀態和(可能為空的)初始輸入開始,經過一系列有限而清晰定義的狀態,最終產生輸出並停止於一個終態。一個狀態到另一個狀態的轉移不一定是確定的。隨機化演算法在內的一些演算法,包含了一些隨機輸入。
基本信息
中文名
演算法
外文名
Algorithm
拼音
suanfa
出處
數學 計算機
定義
是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制
展開全部
概述
求解問題類的、機械的、統一的方法,它由有限多個步驟組成,對於問題類中的每個給定的具體問題,機械地執行這些步驟就可以得到問題的解答。演算法的這種特性,使得計算不僅可以由人,而且可以由計算機來完成。用計算機解決問題的過程可以分成三個階段:分析問題、設計演算法和實現演算法。[1]
歷史發展
中國古代的籌算口決與珠算口決及其執行規則就是演算法的雛形,這里,所解決的問題類是算術運算。古希臘數學家歐幾里得在公元前3世紀就提出了一個演算法,來尋求兩個正整數的最大公約數,這就是有名的歐幾里得演算法,亦稱輾轉相除法。中國早已有「算術「、「演算法」等詞彙,但是它們的含義是指當時的全部數學知識和計算技能,與現代演算法的含義不盡相同。英文algorithm(演算法)一詞也經歷了一個演變過程,最初的拼法為algorism或algoritmi,原意為用阿拉伯數字進行計算的過程。這個詞源於公元 9世紀波斯數字家阿爾·花拉子米的名字的最後一部分。[1]
在古代,計算通常是指數值計算。現代計算已經遠遠地突破了數值計算的范圍,包括大量的非數值計算,例如檢索、表格處理、判斷、決策、形式邏輯演繹等。
在20世紀以前,人們普遍地認為,所有的問題類都是有演算法的。20世紀初,數字家們發現有的問題類是不存在演算法的,遂開始進行能行性研究。在這一研究中,現代演算法的概念逐步明確起來。30年代,數字家們提出了遞歸函數、圖靈機等計算模型,並提出了丘奇-圖靈論題(見可計算性理論),這才有可能把演算法概念形式化。按照丘奇-圖靈論題,任意一個演算法都可以用一個圖靈機來實現,反之,任意一個圖靈機都表示一個演算法。
按照上述理解,演算法是由有限多個步驟組成的,它有下述兩個基本特徵:每個步驟都明確地規定要執行何種操作;每個步驟都可以被人或機器在有限的時間內完成。人們對於演算法還有另一種不同的理解,它要求演算法除了上述兩個基本特徵外,還要具有第三個基本特徵:雖然有些步驟可能被反復執行多次,但是在執行有限多次之後,就一定能夠得到問題的解答。也就是說,一個處處停機(即對任意輸入都停機)的圖靈機才表示一個演算法,而每個演算法都可以被一個處處停機的圖靈機來實現[1]
演算法分類
演算法可大致分為基本演算法、數據結構的演算法、數論與代數演算法、計算幾何的演算法、圖論的演算法、動態規劃以及數值分析、加密演算法、排序演算法、檢索演算法、隨機化演算法、並行演算法。[1]
演算法可以宏泛的分為三類:
有限的,確定性演算法 這類演算法在有限的一段時間內終止。他們可能要花很長時間來執行指定的任務,但仍將在一定的時間內終止。這類演算法得出的結果常取決於輸入值。
有限的,非確定演算法 這類演算法在有限的時間內終止。然而,對於一個(或一些)給定的數值,演算法的結果並不是唯一的或確定的。
無限的演算法 是那些由於沒有定義終止定義條件,或定義的條件無法由輸入的數據滿足而不終止運行的演算法。通常,無限演算法的產生是由於未能確定的定義終止條件。[1]
演算法特徵
1、輸入項:一個演算法有零個或多個輸入,以刻畫運算對象的初始情況。例如,在歐幾里得演算法中,有兩個輸入,即m和n。[1]
2、確定性:演算法的每一個步驟必須要確切地定義。即演算法中所有有待執行的動作必須嚴格而不含混地進行規定,不能有歧義性。例如,歐幾里得演算法中,步驟1中明確規定「以m除以n,而不能有類似以m除n以或n除以m這類有兩種可能做法的規定。
3、有窮性:一個演算法在執行有窮步滯後必須結束。也就是說,一個演算法,它所包含的計算步驟是有限的。例如,在歐幾里得演算法中,m和n均為正整數,在步驟1之後,r必小於n,若r不等於0,下一次進行步驟1時,n的值已經減小,而正整數的遞降序列最後必然要終止。因此,無論給定m和n的原始值有多大,步驟1的執行都是有窮次。
4、輸出:演算法有一個或多個的輸出,即與輸入有某個特定關系的量,簡單地說就是演算法的最終結果。例如,在歐幾里得演算法中只有一個輸出,即步驟2中的n。
5、能行性:演算法中有待執行的運算和操作必須是相當基本的,換言之,他們都是能夠精確地進行的,演算法執行者甚至不需要掌握演算法的含義即可根據該演算法的每一步驟要求進行操作,並最終得出正確的結果。[1]
❹ 演算法特徵有哪些
一個演算法應該具有以下五個重要的特徵:
1、有窮性: 一個演算法必須保證執行有限步之後結束;
2、確切性: 演算法的每一步驟必須有確切的定義;
3、輸入:一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定除了初始條件;
4、輸出:一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒有輸出的演算法是毫無意義的;
5、可行性: 演算法原則上能夠精確地運行,而且人們用筆和紙做有限次運算後即可完成
參考資料: http://ke..com/view/7420.html?tp=4_01
❺ 演算法及其特性有哪些
1.演算法的重要特性(1)有窮性:一個演算法必須在執行有窮步驟之後正常結束,而不能形成無窮循環。
(2)確定性:演算法中的每一條指令必須有確切的含義,不能產生多義性。
(2)可行性:演算法中的每一條指令必須是切實可執行的,即原則上可以通過已經實現的基本運算執行有限次來實現。
(4)輸入:一個演算法應該有零個或多個輸入。
(5)輸出:一個演算法應該有一個或多個輸出,這些輸出是同輸入有特定關系的量。
2.演算法描述的方法(1)框圖描述:該方法使用流程圖或N-S圖來描述演算法。
(2)自然語言描述:該方法採用自然語言,同時添加高級程序設計語言如while、for和if等基本控制語句來描述演算法。這類描述方法自然、簡潔,但缺乏嚴謹性和結構性。
(2)類語言描述:這是介於程序設計語言和自然語言之間演算法描述形式,其特徵是突出演算法設計的主體部分而有意忽略某些過於嚴格的語法細節,如類C或C++的偽語言。這種演算法不能直接在計算機上運行,但專業設計人員經常使用它來描述演算法,它具有容易編寫、閱讀和格式統一的特點。
(4)程序設計語言描述:採用某種高級程序設計語言(如C或C++)來描述。這是可以在計算機上運行並獲得結果的演算法描述。
本課程將採用偽C語言進行演算法描述。
2.演算法與程序的關系演算法的含義與程序十分相似,但二者是有區別的。演算法和程序都是用來表達解決問題的邏輯步驟;演算法是對解決問題方法的具體描述,程序是演算法在計算機中的具體實現;一個程序不一定滿足有窮性(死循環),而演算法一定滿足有窮性;程序中的指令必須是機器可執行的,而演算法中的指令則無此限制;一個演算法若用計算機語言來書寫,則它就可以是一個程序。因此,程序是演算法,但演算法不一定是程序。4.演算法設計要求在演算法設計中,對同一個問題可以設計出不同的求解演算法。如何評價這些演算法的優劣,從而為演算法設計和選擇提供可靠的依據?通常可從以下四個方面評價演算法的質量:
(1)正確性:演算法應該能夠正確地執行預先規定的功能,並達到所期望的性能要求。
(2)可讀性:演算法應該好讀,以有利於讀者對程序的理解,便於調試和修改。
(2)健壯性:演算法應具有容錯處理。當輸入非法數據時,演算法應對其作出反應,而不是產生莫名其妙的輸出結果。
(4)效率與低存儲量需求:效率指的是演算法執行的時間。對於同一個問題,如果有多種演算法可以求解,執行時間短的演算法效率高。演算法存儲量指的是演算法執行過程中所需要的最大存儲空間。高效率和低存儲量這兩者與問題的規模有關。