導航:首頁 > 源碼編譯 > 研究生數學建模演算法總結

研究生數學建模演算法總結

發布時間:2023-02-03 07:13:17

㈠ 【數學建模演算法】(29)數據的統計描述和分析(上)

數理統計 研究的對象是受隨機因素影響的數據,以下數理統計就簡稱統計,統計是以概率論為基礎的一門應用學科。
數據樣本少則幾個,多則成千上萬,人們希望能用少數幾個包含其最多相關信息的數值來體現數據樣本總體的規律。描述性統計就是搜集、整理、加工和分析統計數據,使之系統化、條理化,以顯示出數據資料的趨勢、特徵和數量關系。它是統計推斷的基礎,實用性較強,在統計工作中經常使用。
面對一批數據如何進行描述與分析,需要掌握 參數估計 假設檢驗 這兩個數理統計的最基本方法。
我們將用 Matlab 的統計工具箱(Statistics Toolbox)來實現數據的統計描述和分析。

一組數據(樣本)往往是雜亂無章的,做出它的頻數表和直方圖,可以看作是對這組數據的一個初步整理和直觀描述。
將數據的取值范圍劃分為若干個區間,然後統計這組數據在每個區間中出現的次數,稱為 頻數 ,由此得到一個頻數表。以數據的取值為橫坐標,頻數為縱坐標,畫出一個階梯形的圖,稱為 直方圖 ,或 頻數分布圖
若樣本容量不大,能夠手工做出頻數表和直方圖,當樣本容量較大時則可以藉助Matlab這樣的軟體了。讓我們以下面的例子為例,介紹頻數表和直方圖的作法。

(1)數據輸入
數據輸入通常有兩種方法,一種是在交互環境中直接輸入,如果在統計中數據量比較大,這樣作不太方便;另一種辦法是先把數據寫入一個純文本數據文件data.txt中,數據列之間用空格和Tab鍵分割,之後以data.txt為文件名存放在某個子目錄下,用Matlab中的load命令讀入數據,具體做法是:
先把txt文件移入Matlab的工作文件夾中,之後在Matlab命令行或腳本中輸入:

這樣就在內存中建立了一個變數data它是一個包含有 個數據的矩陣。
為了得到我們需要的100個身高和體重均為一列的數據,我們對矩陣做如下處理:

(2)作頻數表及其直方圖
求頻數用hist函數實現,其用法是:

得到數組(行列均可) 的頻數表。它將區間 等分為 份(預設時 為10), 返回 個小區間的頻數, 返回 個小區間的中點。

同樣的一個函數名hist還可以用來畫出直方圖。
對於本例的數據,可以編寫如下程序畫出數據的直方圖。

得直方圖如下:

下面我們介紹幾種常用的統計量。

算術平均值 (簡稱均值)描述數據取值的平均位置,記作 ,

中位數 是將數據由小到大排序後位於中間位置的那個數值。
Matlab 中 mean(x)返回 x 的均值,median(x)返回中位數。

標准差 定義為:

它是各個數據與均值偏離程度的度量,這種偏離不妨稱為 變異

方差 是標准差的平方 。

極差 是 的最大值與最小值之差。

Matlab 中 std(x)返回 x 的標准差,var(x)返回方差,range(x)返回極差。

你可能注意到標准差 s 的定義(2)中,對 的平方求和卻被 除,這是出於無偏估計的要求。若需要改為被 除,Matlab 可用 std(x,1)和 var(x,1)來實現。

隨機變數 的 階 中心距 為 。

隨機變數 的 偏度 峰度 指的是 的標准化變數 的三階中心矩和四階中心矩:

偏度反映分布的對稱性, 稱為右偏態,此時數據位於均值右邊的比位於左邊的多; 稱為左偏態,情況相反;而 接近 0 則可認為分布是對稱的。

峰度是分布形狀的另一種度量,正態分布的峰度為 3,若 比 3 大得多,表示分布有沉重的尾巴,說明樣本中含有較多遠離均值的數據,因而峰度可以用作衡量偏離正態分布的尺度之一。

Matlab 中 moment(x,order)返回 x 的 order 階中心矩,order 為中心矩的階數。skewness(x)返回 x 的 偏度 ,kurtosis(x)返回 峰度

在以上用 Matlab 計算各個統計量的命令中,若 x 為矩陣,則作用於 x 的列,返回一個行向量。

對例1給出的學生身高和體重,用Matlab 計算這些統計量,程序如下:

統計量中最重要、最常用的是均值和標准差,由於樣本是隨機變數,它們作為樣本的函數自然也是隨機變數,當用它們去推斷總體時,有多大的可靠性就與統計量的概率分布有關,因此我們需要知道幾個重要分布的簡單性質。

隨機變數的特性完全由它的(概率)分布函數或(概率)密度函數來描述。設有隨機變數 ,其分布函數定義為 的概率,即 。若 是連續型隨機變數,則其密度函數 與 的關系為:

上 分位數是下面常用的一個概念,其定義為:對於 ,使某分布函數 的 ,稱為這個分布的上 分位數,記作 。
我們前面畫過的直方圖是頻數分布圖,頻數除以樣本容量 ,稱為頻率, 充分大時頻率是概率的近似,因此直方圖可以看作密度函數圖形的(離散化)近似。

正態分布可以說是最常見的(連續型)概率分布,成批生產時零件的尺寸,射擊中彈著點的位置,儀器反復量測的結果,自然界中一種生物的數量特徵等,多數情況下都服從正態分布,這不僅是觀察和經驗的總結,而且有著深刻的理論依據, 即在大量相互獨立的、作用差不多大的隨機因素影響下形成的隨機變數,其極限分布為正態分布

鑒於正態分布的隨機變數在實際生活中如此地常見,記住下面 3 個數字是有用的:

若 為相互獨立的、服從標准正態分布 的隨機變數,則它們的平方和 服從 分布,記作 , 稱為自由度,它的期望 ,方差 。

若 ,且相互獨立,則 服從 分布,記作 稱自由度。
分布的密度函數曲線和 曲線形狀相似。理論上 時, ,實際上當 時它與 就相差無幾了。

若 ,且相互獨立,則 服從 分布,記作 稱自由度。

Matlab統計工具箱中有27種概率分布,這里只對上面所述4中分布列出命令的字元:

工具箱對每一種分布都提供五類函數,其命令的字元是:

當需要一種分布的某一種函數時,將以上所列的分布命令字元與函數命令字元接起來,並輸入自變數(可以是標量、數組或矩陣)和參數就行了,如:

設總體 , 為一容量 的樣本,其均值 和標准差 由式(1),(2)確定,則用 和 構造的下面兩個分布在統計中是非常有用的。



設有兩個總體 和 ,及由容量分別為 的兩個樣本確定的均值 和標准差 ,則:


其中:
且要求

㈡ 數學建模做題技巧

一. 數學的重要性:
學了這么多年的書,感覺最有用的就是數學課了,相信還是有很多人和我一樣的想法的
。 大家回想一下:有什麼課自始至終都用到?我想了一下只有數學了,當然還有英語。
特別到了大學,學信號處理和通信方面的課時,更是感到了數學課的重要性。計算機:
數據結構,編程演算法....哪個不需要數學知識和思想。有這樣的說法,數學系的人學計
算機才是最牛的。信號與系統:這個變換那個變換的。通信:此編碼彼編碼的。數字圖
像與模式識別:這個概率論和數理統計到處都是。線性代數和矩陣論也是經常出現。
二. 數學的學習方法:
最重要的是遇到問題首先不畏懼,然後知道類似的問題別人是如何處理,我們是否可以
借鑒,然後再比較我們的問題和已有的問題有何異同,已有的方法有什麼不足,我們應
從哪裡著手考慮新方法。思考路線比具體推導更重要。數學並非說得越玄乎越顯水平。
真正的理解在於抓住實質,"如果你還覺得某個東西很難、很繁、很難記住,說明你還沉
迷於細節,沒有抓住實質,抓住了實質,一切都是簡單的。"這是概率之父Kolmogorov的
名言。我們平時在學習數學時,也時刻問自己,能不能向一個外行講清楚這是怎麼回事
,如果不能,說明我們自己還沒有真正理解。數學推導的功夫應該是在課下通過大量的
練習得到的,在課下花的時間要遠大於課上的時間。
三. 數學軟體介紹:
在當今30多個數學類(為區別於文字處理和作圖類而加的修飾詞)科技應用軟體中,就
軟體數學處理的原始內核而言,可分為兩大類。一類是數值計算(Number Crunching)
)型軟體,如Matlab, Xmath,MLAB等。這類軟體對大批數據具有較強的管理、計算和
可視化能力,運行效率高。另一類是數學分析(Math Analysis)型軟體,如Mathemati
ca、Maple,Macsyma等。它們以符號計算見長,並可得到解析符號解和任意精度解,但
處理大量量數據時運行效率較低。經過多年的國際競爭,MATLAB已經占據了數值型軟體
市場的主導地位,處於其後的是Xmath;而Maple,Mathematica,Macsyma位居符號軟體的
前三名(見IEEE Spectrum)。 在國際流行的科技應用軟體中,Mathcad 別具特色。該
軟體的開發商Mathsoft公司一開始就把面向教學和辦公作為Mathcad的市場目標。在對待
數值計算、符號分析、文字處理、圖形能力的開發商,不以專業水準為追求,而盡力集
各種功能於一體。MathWorks公司順應多功能需求之潮流,在其卓越數值計算和圖視能力
的基礎商,又率先在專業水平上開拓其符號計算,文字處理,可視化建模模擬和實時控
制能力,精心營造適合多學科、多部門要求的新一代科技應用軟體MATLAB。
對電子系同學最常用的軟體而且基本上唯一使用的數學軟體就是matlab了。Matlab 5.3
版本(最新版本6.0版)完全安裝,包括幫助、以及各種工具箱一共竟需要1G多硬碟空間
。當然,這一個G的容量並不是被各種垃圾文件所充斥,相反的,它是由無數在Matlab系
統上運行的函數文件所佔據。由此可以看出Matlab的功能是多麼的全面。1984年,計算
數學家Steve Bangert、Steve Kleiman、John Little、Cleve Morer在原來 FORTRAN程
序的基礎上開發了一個解決線性系統計算問題的C語言程序,他們給它起了個響亮的名字
Matlab(Matrix Laboratory)。從此以後,Matlab系統便一發而不可收拾,成千上萬的軟
件工程師、計算科學家、和各種應用領域的科技工作人員加入了Matlab的開發者的行列
。他們把各自科研、應用領域中的常用演算法用Matlab系統提供的編程語言做成程序集,
於是就產生了Matlab的特色之一:"工具箱系統"(Toolbox)。在Matlab5.3 中大約有幾十
個工具箱,其中包括通信,信號系統分析、離散信號分析、優化、偏微分方程、小波變
換、地圖、財經、電力系統、神經網路,數值計算等等。工具箱中每一個函數都是採用
了該領域中最先進的高效演算法,無數這樣的函數文本文件組成了Matlab這個巨無霸,由
此可見,Matlab對於解決工程問題是極其具有優越性的。是我們電子系學生的最愛。上
面介紹了Matlab的主要特色之一:工具箱。下面來談談它的另一個特色,就是與其他語
言和編譯器之間的介面。這個問題一直是關於Matlab的最熱門的話題。原因很簡單,1.
Matlab如此全面高效的演算法和功能都是建立在Matlab提供的平台上才能運行,這樣限制
了這些程序的使用范圍,即如果想應用這些程序,你首先必需在你的計算機上安裝一個
多達幾百兆的Matlab,給使用帶來了不便。另外,由於Matlab採用的是逐行解釋的方式
來執行代碼,因此運行速度比編譯為exe 的二進制文件要慢,因此,利用編譯器,把m文
件變為二進制的exe或dll文件,會大大縮短計算時間. 盡管Matlab是一個完善的系統,
但畢竟術業有專攻,各種語言的可視化編程環境(如VC,C++Builder,Delphi等)在用戶
界面設計和其他系統功能方面具有Matlab不能比擬的快捷和高效,因此,如何把Matlab
強大的數值計算功能與可視編程集成環境IDE結合起來,開發用戶操作方便、計算功能完
備、運行快捷的應用程序便成為程序開發者的最大願望。Matlab中包含了大量的矩陣運
算、數值運算函數、圖形操作函數、用戶圖形界面函數等等,用他可以象C語言一樣書寫
函數流程,而且開發WIN圖形界面的用戶程序。Matlab強大的功能、方便的操作給它贏得
了世界上最流行的數學軟體的桂冠。難怪在網上大家奔走相告"出國前一定要把Matlab學
好"。
四. 其他數學軟體簡介(也算開開眼界盡管基本上不用(除了第一個外)):
1. Matcom:Matcom是MathTools開發的一個m文件解釋器(即將Matlab中的編程語
言解
釋為C語言),不僅可以把m文件編譯為可以獨立執行的exe或dll文件,而且可以自動產
生C源代碼,供其他高級語言編譯器使用。Matcom所實現的在C語言中直接書寫類似於ma
tlab語句的功能,帶來了以下幾個明顯的優點:一,是利用Matcom編制的程序可以在任
何不安裝 Matlab系統的計算機上運行; 二是運行速度比m文件快了數倍;三是實現了Ma
tlab強大的計算功能與各種C編譯器界面設計 的完美組合。我現在最喜歡用的就是在vc
上作界面來方便用戶操作,用Matcom庫實現演算法計算,這樣相得益彰,用這種方法編成
的程序,操作方便簡潔,計算圖形功能強大,速度快。
2. Mathmatica:最令人著迷的是它的完美的符號運算功能。所謂符號運算是指它
所處
理的對象不僅僅是常見的數字(如12或3.14),而是一些帶有代數符號的表達式,我們
在代數中曾經學過運用代數的運算規則,對一個含有符號的表達式進行恆等變換,一個
函數就是一種規則或者說映射,比如定義如下一個規則,我們就可以運用這法則將下式
變換。而Mathematica正是具有這種類似人類思維的功能,它能不斷學會並記憶各種變化
規則,並把這些各式各樣的變化應用到各種表達式上,無論形式多麼復雜,總能得到我
們想得到的帶有代數符號的結果。而在C語言或其他編程語言中,對於一個符號,必須先
聲明,然後賦值才能使用。因此它所表達的含意是有限的,而Mathematica完全拋開了這
種限制,一個符號可以表示任意對象,沒有類型限制,真正實現了"代數"中的"代"字。
Mathematica象一個不知疲倦的公式推導家,它能在一秒鍾之內將一個復雜的函數關系復
合上萬次,它能在各種復雜表達式形式中找到最簡單的。Mathematica對於大一、大二的
同學可能是一個福音,對於大家在高等數學、線性代數中常碰到的對表達式求極限、微
分、定積分、不定積分、級數、向量代數等內容在Mathematica都有內部函數來直接計算
結果。當然,希望大家還是自己動手練一練公式推導的基本功,把Mathematica當作一個
檢驗工具是無可厚非。Mathematica4.0中, 系統函數涵蓋了微積分、線性代數、概率、
幾何、圖論、組合數學、數論數學、特殊函數等絕大多數常用數學分支。
3. Mathcad 8.0,Maple 5: 著名的符號運算數學軟體,與Mathematica 類似,內
存管
理較好,SAS 6.12 統計學專業軟體,壓縮文件100多M(最權威的統計軟體)。
4. 其他:SPSS 8.0 社會科學統計軟體包;Lindo/Lingo 50線性、非線性規劃軟體
;A
nsys 5.4 權威的有限元法(FEM)計算軟體,安裝文件約200~300M ;Algo 有限元法軟
件包;Statistics 統計軟體 ;Datafit 數值擬合專業軟體 ;Origin 6.0 微軟的數據
分析繪圖軟體,可以與Excel資料庫通訊;Netlib 網路並行計算庫 ;Isoft 電磁模擬軟
件 ;Auto 非線性動力系統計算軟體 ;Flexpde 2.10 求解偏微分方程的數值軟體;Te
cplot 8.0流速與值線流體力學 ;RATS 數值分析軟體。
一、是數學建模競賽
數學建模競賽就是這樣。它名曰數學,當然要用到數學知識,但卻與以往所說的那種數
學競賽(那種純數學競賽)不同。它要用到計算機,甚至離不開計算機,但卻不是純粹的
計算機競賽,它涉及物理,化學,生物,電子,農業,管理等各學科,各領域的知識,
但也不是這些學科領域里的純知識競賽。它涉及各學科,各領域,但又不受任何一個具
體的學科,領域的局限。它要用到各方面的綜合的知識,但還不限此。選手們不只是要
有各方面的知識,還要有駕域這些知識,應用這些知識處理實際問題的能力。知識是無
止境的,你還必須有善於獲得新的知識的能力。總之,數學建模競賽,即要比賽各方面
的綜合知識,也比賽各方面的綜合能力。它的特點就是綜合,它的優點也是綜合。在這
個意義上看,它與任何一個學科領域內的知識競賽都不相同的特點就是不純,它的優點
也就是不純,綜合就是不純。純數學競賽,如中學生的國際數學奧林匹克競賽,或美國
大學生的普特南數學競賽,已經有很長的歷史,也為大家所熟悉。特別是近若干年來我
國選手在國際數學奧林匹克競賽中年年取得好成績,更使這項競賽在我國有很高的知名
度,在全國各地的質量教高的中學中廣泛開展。純數學競賽主要考核選手對數學基礎知
識的掌握情況邏輯推理及證明的能力和技巧思維是否敏捷,計算能力的強弱等。試題都
是純數學問題,考試方式是閉卷考試。參賽學生在規定的時間(一般每次為三小時)內獨
立做題,不準交頭接耳相互討論,不準看任何書籍和參考資料,不準用計算機(器) 。考
題都有標准答案。當然,選手的解答方法可以與標准答案不同,但其解答方法的正確與
否也是絕對的,特別是計算題的得數一定要與標准答案相同。考試結果,對每個選手的
答案給出分數,按分數高低來判定優劣。 盡管也要對參賽的團體(代表一個國家,地區
或學校)計算團體總分,但這個團體總分也是將每個團體的選手得分加起來得到的,在比
賽過程中同一團體的選手們絕對不能互相幫助。因此,這樣的競賽從本質上說是個人賽
而不相幫助。因此,這樣的競賽從本質上說是個人賽而不是團體賽。團體要獲勝主要靠
每名選手個自的水平高低而不存在互相配合的問題(當然在訓練過程中可以互相幫助)。
這樣的競賽,對於吸引青年人熱愛數學從而走上數學研究的道路,對於培養數學家和數
學專門人才,起了很大的作用。
隨著社會的發展,數學在社會各領域中的應用越來越廣泛,作用越來越大,不但運用於
自然科學各個領域,各學科,而且滲透到經濟,軍事,管理以至於社會科學和社會活動
的各個領域。但是,社會對數學的需求並不只是需要在各部門中從事實際工作的人善於
運用數學知識及數學大思維放法來解決他們每天面臨的大量的實際問題,取得經濟效益
和社會效益。他們不是為了應用數學知識而尋找實際問題(就象在學校里做數學應用題)
,而是為了解決實際問題而需要用到數學。而且不止是要用到數學,很可能還要用到別
的學科,領域的知識,要用到工作經驗和常識。特別是在現代社會,要真正解決一個實
際問題幾乎都離不開計算機。可以這樣說,在實際工作中遇到的問題,完全純粹的只用
現成的數學知識就能解決的問題幾乎是沒有的。你所能遇到的都是數學和其他東西混雜
在一起的問題,不是"干凈的"數學,而是"臟"的數學。其中的數學奧妙不是明擺在那裡
等著你去解決,而是暗藏在深處等著你去發現。也就是說,你要對復雜的問題進行分析
,發現其中的可用數學語來描述的關系或規律,把這個實際問題化成一個數學問題,這
就稱為數學模型,建立數學模型的這個過程就稱為數學建模。模型這個詞對我們來說並
不陌生,它可以說是對某種事物的一種仿製品。比如飛機模型,就是模仿飛機造出來的
。既然是仿造,就不是真的,只能是"假冒",但不能是"偽劣",必須真實地反映所模仿
的對象的某一方面的屬性。如果只是模仿飛機的模樣,這樣的飛機模型只要看起像飛機
就行了,可以擺在展覽館供人參觀,照相,但不能飛。如果要模仿飛機的飛行原理,就
得造一個能飛起來的飛機模型,比如航空模型比賽的作品,它在空氣中的飛行原理與飛
機有相同之處。但當然不像飛機那樣靠燒燃料來飛行,外觀上也不必那麼像飛機,可見
,模型所模仿的都只是真實事物的某一方面的屬性。而數學模型,就是用數學語言(可能
包括數學公式)去描述和模仿實際問題中的數量關系,空間形式等。這種模仿當然是近似
的,但又要盡可能的逼真。實際問題中的許多因素,在建立數學模型時你不可能,也沒
有必要把它們毫無遺漏地全部加以考慮,只能考慮其中的最主要的因素,舍棄其中的次
要因素,數學模型建立起來後,實際問題化成數學問題,就可以用數學工具,數學方法
去解答。如果有現成的數學工具當然好。如果沒有現成的數學工具,就促使數學家們(也
包括建立數學模型的人)尋找和發展出新的數學工具去解決它,這又推動了數學本身的發
展。例如,開普勒由行星運動的觀測數據總結出開普勒三定理(這就是行星運行的數學模
型),牛頓試圖用自己發現的力學定理去解釋它,但當時的數學工具是不夠用的,這使了
微積分的發明。求解數學模型,除了用到數學推理以外,通常還要處理大量數據,進行
大量計算。這在電子計算機發明之前是很難實現的。因此,很多數學模型,盡管從數學
理論上解決了,但由於計算量太大而沒法得到有用的結果,還是只有束之高閣。而計算
機的出現和迅速發展,給用數學模型解決實際問題打開了廣闊的道路。而在現在,要真
正解決一個實際問題,離了計算機幾乎是不行的。數學模型建立起來了,也用數學方法
或數據方法求出了解答,是不是就萬事大吉了呢?不是。既然數學模型只能近似地反映實
際問題中的關系和規律,到底反應的好不好,還需要接受檢驗。如果數學模型建立的不
好,如果沒有正確地描述所給的實際問題,數學解答再正確也是沒有用的。因此,在得
出數學解答之後還要讓所得的結論接受實際的考察,看它是否合理,是否可行。如果不
符合實際,還應設法找出原因,修改原來的模型,重新求解和檢驗,直到比較合理可行
,才算是得到一個解答,可以先付諸實施,但是,十全十美的答案是沒有的,已得到的
答案一定還有改進的餘地,還可以根據實際情況,或者繼續研究和改進;或者暫停告一段
落,待將來有新的情況和要求後再作該進。
上面所說的建立數學模型來解決問題的過程,是各行各業各個領域大量需要的,也是我
們的學生在走上工作單位後常常要做的工作。做這樣的事情,所需要的遠不只是數學知
識和解數學題的能力,而需要多方面的綜合能力。社會對具備這種能力的人的需求,比
對數學專門人才的需求要多的多。因此,在學校里就應當努力陪養和提高學生在這方面
的能力。當然有多種形式來達到這個目的。比如開設數學模型方面的課程;讓學生多接觸
實際工作,得到鍛煉,獲得知識及其他各方面的能力)去參與解決問題的全過程。這些實
際問題並不限於某一方面,可以涉及非常廣泛的,並不固定的范圍。這樣來促進應用人
才的培養。
二、數學模型的基礎
1. 數學模型的定義
現在數學模型還沒有一個統一的准確的定義,因為站在不同: 的角度可以有不同的定義
。不過我們可以給出如下定義。: "數學模型是關於部分現實世界和為一種特殊目的而作
的一個抽象的、簡化的結構。" : 具體來說,數學模型就是為了某種目的,用字母、數
學及其它:數學符號建立起來的等式或不等式以及圖表、圖象、框圖等描述客觀事物的特
征及其內在聯系的數學結構表達式。
2.建立數學模型的方法和步驟
第一、 模型准備 (問題的提出與分析)
首先要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特
征。
第二、 模型假設與符號說明
根據對象的特徵和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設
,是建模至關重要的一步。如果對問題的所有因素一概考慮,無疑是一種有勇氣但方法
欠佳的行為,: 所以高超的建模者能充分發揮想像力、洞察力和判斷力 ,善於辨別主次
,而且為了使處理方法簡單,應盡量使問題線性化、均勻化。
第三、 模型的建立與求解
通過對問題的分析和模型假設後建立數學模型(模型運用數學符號和數學語言來描述)
,並過設計演算法、運用計算機實現等途徑(根據模型的特徵和要求確定)求解模型!此
過程是整:個數模過程的最重要部分,需慎重對待!
第四、 型的檢驗
即通過問題所提供的數據或相對於實際生活中的情況對模型的合理性、准確性等進行判
別模型的優劣!可通過計算機模擬等手段來完成!
第五、 模型的完善與推廣
此步驟可根據建模時具體情況而定!
關於建模的步驟並不一定必須按照以上幾步進行,有興趣的同仁可參考建模的相關書籍

三、數學建模參考資料:
1、《數學模型基礎》 王樹禾 中國科學技術大學出版社 1996
2、《數學模型》 譚永基,俞文 復旦大學出版社 1997
3、《數學建模競賽教程》 李尚志 江蘇教育出版社 1996
這些書均可在圖書館借到或在九章書店買到。其他方面的書也很多,有足夠時間可以去
翻翻。全國大學生數學建模競賽的有關信息,可在Internet上中國工業與應用數學學業
會 (CSIAM)的主頁內瀏覽,網址為:http://www.csiam.e.cn/。數學建模比賽每年
的9月下旬舉行,每年6月份報名,三人組成一個參賽隊。欲參加比賽的同學應該到數學
系旁聽數學模型課或者選修公共選修課"數學模型"。
《吉米多維奇數學分析習題集》
本書只適合超級大牛同學做。圖書館有借和海淀圖書城的九章數學書店有售。
《數學分析中的典型問題與方法》
裴禮文著,高教出版社。本書可謂寶典級的聖書。適合一般牛的同學。圖書館不多,九
章書店有售。
《大學生數學競賽試題解析選編》
第二版,李心燦等編,高教出版社。凡是科協課外小組的同學要求人手一本。裡面收集
了北京市大學生數學競賽的歷年真題,比較好,對於水平中等及中等以上的同學均有意
義。九章數學書店有售。
《高等數學復習題解與指導》
陳文燈著,上下兩本,北京理工大學出版社:該書講解十分詳盡,對於各類水平的同學
均有很大的幫助。嘔血推薦!!!九章書店有售。
《數學復習指南》
理工類,陳文燈等著。該書高數內容與上本書基本一致。但該書還有線性代數,概率論
等部分,非常全面。圖書館有借。各大書店均有售。適合所有水平的同學。
《高等數學解題過程的分析和研究》
錢昌本著。該書主要介紹高等數學的思維方法。例題很有啟發性。圖書館有借。九章書
店有售。
從常微分方程開始,數學課就變成沒底的東西,每一個標題做下去都是數學研究裡面龐
大的一塊。對於一門基本課程應該講些什麼也始終討論不斷。下面開始說參考書,毫無
疑問,我們還是得從我們強大的北方鄰國說起。
《常微分方程講義》
彼得羅夫斯基。在20世紀數學史上,這位前莫斯科大學校長占據著一個非常特殊的地位
。從學術上說,他在偏微那一塊有非常好的工作,五十年代谷先生去蘇聯讀學位的時候
還參加過他主持的討論班。他從三十年代末開始就轉向行政工作。在他早年的學生裡面
有許多後來蘇聯的高官,所以他就利用和這些昔日學生的關系為蘇聯數學界構築了一個
保護傘,他這本書在相當長的時期里是標准教材。
《常微分方程》
龐特里亞金。龐特里亞金院士十四歲時因化學實驗事故雙目失明,在母親的鼓勵和幫助
下,他以驚人的毅力走上了數學道路,別的不說,光看看他給後人留下的"連續群","最
佳過程的數學理論",你就不得不對他佩服得五體投地,有六體也投 下來了。他的這本
課本就是李迅經先生他們翻譯的。此書影響過很多我們的老師輩的人物。

㈢ 數學建模具體介紹

數學建模可以說是應用數學的方法,建立實際生活中的模型,去解決現實生活中的具體問題,這些問題可以是生活的細小方面,也可以是國計民生的大方面。首先要有一定的數學理論基礎,學習多元統計分析中插值擬合等數據處理方法,學習圖論、最優化、預測等等各種演算法,有人總結過數學建模十大演算法,可以去看看。不過數學建模的演算法卻不止只有十來個;然後可以多看看一些學者專家寫的論文,會有很大的幫助的。網路里有,萬方、維普、知網也有很多專業的。學習建模是個艱辛的過程,每年九月會有全國大學生數學競賽,相信通過努力,一定會取得好成績的。

㈣ 關於數學建模

數學建模
數學模型(Mathematical Model)是一種模擬,是用數學符號、數學式子、程序、圖形等對實際課題本質屬性的抽象而又簡潔的刻劃,它或能解釋某些客觀現象,或能預測未來的發展規律,或能為控制某一現象的發展提供某種意義下的最優策略或較好策略。數學模型一般並非現實問題的直接翻版,它的建立常常既需要人們對現實問題深入細微的觀察和分析,又需要人們靈活巧妙地利用各種數學知識。這種應用知識從實際課題中抽象、提煉出數學模型的過程就稱為數學建模(Mathematical Modeling)。
過程
模型准備
了解問題的實際背景,明確其實際意義,掌握對象的各種信息。用數學語言來描述問題。
模型假設
根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。
模型建立
在假設的基礎上,利用適當的數學工具來刻劃各變數之間的數學關系,建立相應的數學結構(盡量用簡單的數學工具)。
模型求解
利用獲取的數據資料,對模型的所有參數做出計算(或近似計算)。
模型分析
對所得的結果進行數學上的分析。
模型檢驗
將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋。如果模型與實際吻合較差,則應該修改假設,再次重復建模過程。
模型應用
應用方式因問題的性質和建模的目的而異。

大學生數學建模競賽
全國大學生數學建模競賽
全國大學生數學建模競賽是國家教育部高教司和中國工業與應用數學學會共同主辦的面向全國大學生的群眾性科技活動,目的在於激勵學生學習數學的積極性,提高學生建立數學模型和運用計算機技術解決實際問題的綜合能力,鼓勵廣大學生踴躍參加課外科技活動,開拓知識面,培養創造精神及合作意識,推動大學數學教學體系、教學內容和方法的改革。競賽題目一般來源於工程技術和管理科學等方面經過適當簡化加工的實際問題,不要求參賽者預先掌握深入的專門知識,只需要學過普通高校的數學課程。題目有較大的靈活性供參賽者發揮其創造能力。參賽者應根據題目要求,完成一篇包括模型的假設、建立和求解,計算方法的設計和計算機實現,結果的分析和檢驗,模型的改進等方面的論文(即答卷)。競賽評獎以假設的合理性、建模的創造性、結果的正確性和文字表述的清晰程度為主要標准。 全國統一競賽題目,採取通訊競賽方式,以相對集中的形式進行;競賽一般在每年9月末的三天內舉行;大學生以隊為單位參賽,每隊3人,專業不限。
全國大學生數學建模競賽章程(2008年)
第一條 總則 全國大學生數學建模競賽(以下簡稱競賽)是教育部高等教育司和中國工業與應用數學學會共同主辦的面向全國大學生的群眾性科技活動,目的在於激勵學生學習數學的積極性,提高學生建立數學模型和運用計算機技術解決實際問題的綜合能力,鼓勵廣大學生踴躍參加課外科技活動,開拓知識面,培養創造精神及合作意識,推動大學數學教學體系、教學內容和方法的改革。 第二條 競賽內容 競賽題目一般來源於工程技術和管理科學等方面經過適當簡化加工的實際問題,不要求參賽者預先掌握深入的專門知識,只需要學過高等學校的數學課程。題目有較大的靈活性供參賽者發揮其創造能力。參賽者應根據題目要求,完成一篇包括模型的假設、建立和求解、計算方法的設計和計算機實現、結果的分析和檢驗、模型的改進等方面的論文(即答卷)。競賽評獎以假設的合理性、建模的創造性、結果的正確性和文字表述的清晰程度為主要標准。 第三條 競賽形式、規則和紀律 1.全國統一競賽題目,採取通訊競賽方式,以相對集中的形式進行。 2.競賽每年舉辦一次,一般在某個周末前後的三天內舉行。 3.大學生以隊為單位參賽,每隊3人(須屬於同一所學校),專業不限。競賽分本科、專科兩組進行,本科生參加本科組競賽,專科生參加專科組競賽(也可參加本科組競賽),研究生不得參加。每隊可設一名指導教師(或教師組),從事賽前輔導和參賽的組織工作,但在競賽期間必須迴避參賽隊員,不得進行指導或參與討論,否則按違反紀律處理。 4.競賽期間參賽隊員可以使用各種圖書資料、計算機和軟體,在國際互聯網上瀏覽,但不得與隊外任何人(包括在網上)討論。 5.競賽開始後,賽題將公布在指定的網址供參賽隊下載,參賽隊在規定時間內完成答卷,並准時交卷。 6.參賽院校應責成有關職能部門負責競賽的組織和紀律監督工作,保證本校競賽的規范性和公正性。 第四條 組織形式 1.競賽由全國大學生數學建模競賽組織委員會(以下簡稱全國組委會)主持,負責每年發動報名、擬定賽題、組織全國優秀答卷的復審和評獎、印製獲獎證書、舉辦全國頒獎儀式等。 2.競賽分賽區組織進行。原則上一個省(自治區、直轄市)為一個賽區,每個賽區應至少有6所院校的20個隊參加。鄰近的省可以合並成立一個賽區。每個賽區建立組織委員會(以下簡稱賽區組委會),負責本賽區的宣傳發動及報名、監督競賽紀律和組織評閱答卷等工作。未成立賽區的各省院校的參賽隊可直接向全國組委會報名參賽。 3.設立組織工作優秀獎,表彰在競賽組織工作中成績優異或進步突出的賽區組委會,以參賽校數和隊數、征題的數量和質量、無違紀現象、評閱工作的質量、結合本賽區具體情況創造性地開展工作以及與全國組委會的配合等為主要標准。 第五條 評獎辦法 1.各賽區組委會聘請專家組成評閱委員會,評選本賽區的一等、二等獎(也可增設三等獎),獲獎比例一般不超過三分之一,其餘凡完成合格答卷者可獲得成功參賽證書。 2.各賽區組委會按全國組委會規定的數量將本賽區的優秀答卷送全國組委會。全國組委會聘請專家組成全國評閱委員會,按統一標准從各賽區送交的優秀答卷中評選出全國一等、二等獎。 3.全國與各賽區的一、二等獎均頒發獲獎證書。 4.對違反競賽規則的參賽隊,一經發現,取消參賽資格,成績無效。對所在院校要予以警告、通報,直至取消該校下一年度參賽資格。對違反評獎工作規定的賽區,全國組委會不承認其評獎結果。 第六條 異議期制度 1.全國(或各賽區)獲獎名單公布之日起的兩個星期內,任何個人和單位可以提出異議,由全國組委會(或各賽區組委會)負責受理。 2.受理異議的重點是違反競賽章程的行為,包括競賽期間教師參與、隊員與他人討論,不公正的評閱等。對於要求將答卷復評以提高獲獎等級的申訴,原則上不予受理,特殊情況可先經各賽區組委會審核後,由各賽區組委會報全國組委會核查。 3.異議須以書面形式提出。個人提出的異議,須寫明本人的真實姓名、工作單位、通信地址(包括聯系電話或電子郵件地址等),並有本人的親筆簽名;單位提出的異議,須寫明聯系人的姓名、通信地址(包括聯系電話或電子郵件地址等),並加蓋公章。全國組委會及各賽區組委會對提出異議的個人或單位給予保密。 4.與受理異議有關的學校管理部門,有責任協助全國組委會及各賽區組委會對異議進行調查,並提出處理意見。全國組委會或各賽區組委會應在異議期結束後兩個月內向申訴人答復處理結果。 第七條 經費 1.參賽隊所在學校向所在賽區組委會交納參賽費。 2.賽區組委會向全國組委會交納一定數額的經費。 3.各級教育管理部門的資助。 4.社會各界的資助。 第八條 解釋與修改 本章程從2008年開始執行,其解釋和修改權屬於全國組委會。

㈤ 數學建模演算法有哪些

1. 蒙特卡羅演算法。 該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的演算法,同時可以通過模擬來檢驗自己模型的正確性,幾乎是比賽時必用的方法。
2. 數據擬合、參數估計、插值等數據處理演算法。 比賽中通常會遇到大量的數據需要處理,而處理數據的關鍵就在於這些演算法,通常使用MATLAB 作為工具。
3. 線性規劃、整數規劃、多元規劃、二次規劃等規劃類演算法。 建模競賽大多數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、Lingo 軟體求解。
4. 圖論演算法。 這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉及到圖論的問題可以用這些方法解決,需要認真准備。
5. 動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法。 這些演算法是演算法設計中比較常用的方法,競賽中很多場合會用到。
6. 最優化理論的三大非經典演算法:模擬退火演算法、神經網路演算法、遺傳演算法。 這些問題是用來解決一些較困難的最優化問題的,對於有些問題非常有幫助,但是演算法的實現比較困難,需慎重使用。
7. 網格演算法和窮舉法。 兩者都是暴力搜索最優點的演算法,在很多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好使用一些高級語言作為編程工具。
8. 一些連續數據離散化方法。 很多問題都是實際來的,數據可以是連續的,而計算機只能處理離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非常重要的。
9. 數值分析演算法。 如果在比賽中採用高級語言進行編程的話,那些數值分析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調用。
10. 圖象處理演算法。 賽題中有一類問題與圖形有關,即使問題與圖形無關,論文中也會需要圖片來說明問題,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用MATLAB 進行處理。
以下將結合歷年的競賽題,對這十類演算法進行詳細地說明。
以下將結合歷年的競賽題,對這十類演算法進行詳細地說明。
2 十類演算法的詳細說明
2.1 蒙特卡羅演算法
大多數建模賽題中都離不開計算機模擬,隨機性模擬是非常常見的演算法之一。
舉個例子就是97 年的A 題,每個零件都有自己的標定值,也都有自己的容差等級,而求解最優的組合方案將要面對著的是一個極其復雜的公式和108 種容差選取方案,根本不可能去求解析解,那如何去找到最優的方案呢?隨機性模擬搜索最優方案就是其中的一種方法,在每個零件可行的區間中按照正態分布隨機的選取一個標定值和選取一個容差值作為一種方案,然後通過蒙特卡羅演算法模擬出大量的方案,從中選取一個最佳的。另一個例子就是去年的彩票第二問,要求設計一種更好的方案,首先方案的優劣取決於很多復雜的因素,同樣不可能刻畫出一個模型進行求解,只能靠隨機模擬模擬。
2.2 數據擬合、參數估計、插值等演算法
數據擬合在很多賽題中有應用,與圖形處理有關的問題很多與擬合有關系,一個例子就是98 年美國賽A 題,生物組織切片的三維插值處理,94 年A 題逢山開路,山體海拔高度的插值計算,還有吵的沸沸揚揚可能會考的「非典」問題也要用到數據擬合演算法,觀察數據的走向進行處理。此類問題在MATLAB中有很多現成的函數可以調用,熟悉MATLAB,這些方法都能游刃有餘的用好。
2.3 規劃類問題演算法
競賽中很多問題都和數學規劃有關,可以說不少的模型都可以歸結為一組不等式作為約束條件、幾個函數表達式作為目標函數的問題,遇到這類問題,求解就是關鍵了,比如98年B 題,用很多不等式完全可以把問題刻畫清楚,因此列舉出規劃後用Lindo、Lingo 等軟體來進行解決比較方便,所以還需要熟悉這兩個軟體。
2.4 圖論問題
98 年B 題、00 年B 題、95 年鎖具裝箱等問題體現了圖論問題的重要性,這類問題演算法有很多,包括:Dijkstra、Floyd、Prim、Bellman-Ford,最大流,二分匹配等問題。每一個演算法都應該實現一遍,否則到比賽時再寫就晚了。
2.5 計算機演算法設計中的問題
計算機演算法設計包括很多內容:動態規劃、回溯搜索、分治演算法、分支定界。比如92 年B 題用分枝定界法,97 年B 題是典型的動態規劃問題,此外98 年B 題體現了分治演算法。這方面問題和ACM 程序設計競賽中的問題類似,推薦看一下《計算機演算法設計與分析》(電子工業出版社)等與計算機演算法有關的書。
2.6 最優化理論的三大非經典演算法
這十幾年來最優化理論有了飛速發展,模擬退火法、神經網路、遺傳演算法這三類演算法發展很快。近幾年的賽題越來越復雜,很多問題沒有什麼很好的模型可以借鑒,於是這三類演算法很多時候可以派上用場,比如:97 年A 題的模擬退火演算法,00 年B 題的神經網路分類演算法,象01 年B 題這種難題也可以使用神經網路,還有美國競賽89 年A 題也和BP 演算法有關系,當時是86 年剛提出BP 演算法,89 年就考了,說明賽題可能是當今前沿科技的抽象體現。03 年B 題伽馬刀問題也是目前研究的課題,目前演算法最佳的是遺傳演算法。
2.7 網格演算法和窮舉演算法
網格演算法和窮舉法一樣,只是網格法是連續問題的窮舉。比如要求在N 個變數情況下的最優化問題,那麼對這些變數可取的空間進行采點,比如在[a; b] 區間內取M +1 個點,就是a; a+(b-a)/M; a+2 (b-a)/M; …… ; b 那麼這樣循環就需要進行(M + 1)N 次運算,所以計算量很大。比如97 年A 題、99 年B 題都可以用網格法搜索,這種方法最好在運算速度較快
的計算機中進行,還有要用高級語言來做,最好不要用MATLAB 做網格,否則會算很久的。窮舉法大家都熟悉,就不說了。
2.8 一些連續數據離散化的方法
大部分物理問題的編程解決,都和這種方法有一定的聯系。物理問題是反映我們生活在一個連續的世界中,計算機只能處理離散的量,所以需要對連續量進行離散處理。這種方法應用很廣,而且和上面的很多演算法有關。事實上,網格演算法、蒙特卡羅演算法、模擬退火都用了這個思想。
2.9 數值分析演算法
這類演算法是針對高級語言而專門設的,如果你用的是MATLAB、Mathematica,大可不必准備,因為象數值分析中有很多函數一般的數學軟體是具備的。
2.10 圖象處理演算法
01 年A 題中需要你會讀BMP 圖象、美國賽98 年A 題需要你知道三維插值計算,03 年B 題要求更高,不但需要編程計算還要進行處理,而數模論文中也有很多圖片需要展示,因此圖象處理就是關鍵。做好這類問題,重要的是把MATLAB 學好,特別是圖象處理的部分。

㈥ 【數學建模演算法】(14)排隊論:基本概念

排隊是在日常生活中經常遇到的現象,如顧客到商店購買物品、病人到醫院看病常常要排隊。此時要求服務的數量超過服務機構(服務台、服務員等)的容量。也就是說,到達的顧客不能立即得到服務,因而出現了排隊現象。這種現象不僅在個人日常生活中出現,電話局的占線問題,車站、碼頭等交通樞紐的車船堵塞和疏導,故障機器的停機待修,水庫的存貯調節等都是有形或無形的排隊現象。由於顧客到達和服務時間的隨機性。可以說排隊現象幾乎是不可避免的。

排隊論 又稱**隨機服務系統理論,就是為解決上述問題而發展的一門學科,它研究的內容主要有以下三部分:

下面將對排隊論的基本知識進行介紹:

下圖是排隊論的一般模型:

圖中虛線所包含的部分為排隊系統。各個顧客從顧客源出發,隨機地來到服務機構,按一定的排隊規則等待服務,直到按一定的服務規則接受完服務後離開排隊系統。

一般的排隊過程都由 輸入過程,排隊規則,服務過程 三部分組成,現分述如下:

輸入過程 是指顧客到來時間的規律性,可能有下列不同情況:

排隊規則指到達排隊系統的顧客按怎樣的規則排隊等待,可分為 損失制,等待制和混合制 三種。

舉例:小張去銀行取錢,發現前面一個顧客身邊擺了4個麻袋的硬幣要存錢,於是悻悻地換了一個窗口。

舉例:小張去銀行取錢,發現前面有一條隊的人很少,於是趕緊擠上前去排隊。

舉例:小張發現櫃台前面有一條排隊等待線,排隊隊伍長度不能夠超過這條線,於是換到了還沒有達到排隊限度的隊伍里。

1.服務機構
單服務台 多服務台並聯 (每個服務台同時為不同顧客服務); 多服務台串聯 (多服務台依次為同一顧客服務); 混合制
2.服務規則
(1)先到先服務
(2)後到先服務
(3)隨機服務,在隊列中隨機選人進行服務
(4)特殊優先服務,對病情危急的病人優先治療。


:顧客到達流或顧客到達時間的分布。
:服務時間的分布。
:服務台數目。
:系統容量限制。
:顧客源數目。
:服務規則。(先到先服務FCFS,後到先服務LCFS)

1.平均隊長 : 正在被服務和正在等待服務 的顧客數之和的數學期望。
2.平均排隊長 :指系統內 等待服務 的顧客數的數學期望。
3.平均逗留時間 :顧客在系統內逗留時間(包括排隊等待的時間和接受服務的時間)。
4.平均等待時間 :指一個顧客在排隊系統中排隊等待時間。
5.平均忙期 :指服務機構連續繁忙時間(顧客到達空閑服務機構起,到服務機構再次空閑止的時間)長度的數學期望。

還有由於顧客被拒絕而使企業受到損失的 損失率以及以後經常遇到的 服務強度等,這些都是很重要的指標。

計算這些指標的基礎是表達系統狀態的概率。所謂 系統的狀態即指系統中顧客數,如果系統中有 n 個顧客就說系統的狀態是 n ,它的可能值是:
1.隊長沒有限制時:
2.隊長有限制,最大數為 時,
3.損失制,服務台個數是 時,
這些狀態的概率一般是隨時刻 而變化,所以在時刻 ,系統狀態為 的概率用 表示。穩態時系統狀態為 的概率用 表示。

㈦ 如何學好數學建模

一、數學模型的定義

現在數學模型還沒有一個統一的准確的定義,因為站在不同的角度可以有不同的定義。不過我們可以給出如下定義:「數學模型是關於部分現實世界和為一種特殊目的而作的一個抽象的、簡化的結構。」具體來說,數學模型就是為了某種目的,用字母、數學及其它數學符號建立起來的等式或不等式以及圖表、圖象、框圖等描述客觀事物的特徵及其內在聯系的數學結構表達式。一般來說數學建模過程可用如下框圖來表明:
數學是在實際應用的需求中產生的,要解決實際問題就必需建立數學模型,從此意義上講數學建模和數學一樣有古老歷史。例如,歐幾里德幾何就是一個古老的數學模型,牛頓萬有引力定律也是數學建模的一個光輝典範。今天,數學以空前的廣度和深度向其它科學技術領域滲透,過去很少應用數學的領域現在迅速走向定量化,數量化,需建立大量的數學模型。特別是新技術、新工藝蓬勃興起,計算機的普及和廣泛應用,數學在許多高新技術上起著十分關鍵的作用。因此數學建模被時代賦予更為重要的意義。

二、建立數學模型的方法和步驟

1.
模型准備
要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特徵。
2.
模型假設
根據對象的特徵和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設,是建模至關重要的一步。如果對問題的所有因素一概考慮,無疑是一種有勇氣但方法欠佳的行為,所以高超的建模者能充分發揮想像力、洞察力和判斷力,善於辨別主次,而且為了使處理方法簡單,應盡量使問題線性化、均勻化。
3.
模型構成
根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量間的等式關系或其它數學結構。這時,我們便會進入一個廣闊的應用數學天地,這里在高數、概率老人的膝下,有許多可愛的孩子們,他們是圖論、排隊論、線性規劃、對策論等許多許多,真是泱泱大國,別有洞天。不過我們應當牢記,建立數學模型是為了讓更多的人明了並能加以應用,因此工具愈簡單愈有價值。
4.
模型求解
可以採用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代的數學方法,特別是計算機技術。一道實際問題的解決往往需要紛繁的計算,許多時候還得將系統運行情況用計算機模擬出來,因此編程和熟悉數學軟體包能力便舉足輕重。
5.
模型分析
對模型解答進行數學上的分析。「橫看成嶺側成峰,遠近高低各不同」,能否對模型結果作出細致精當的分析,決定了你的模型能否達到更高的檔次。還要記住,不論那種情況都需進行誤差分析,數據穩定性分析。

三、數模競賽出題的指導思想

傳統的數學競賽一般偏重理論知識,它要考查的內容單一,數據簡單明確,不允許用計算器完成。對此而言,數模競賽題是一個「課題」,大部分都源於生產實際或者科學研究的過程中,它是一個綜合性的問題,數據龐大,需要用計算機來完成。其答案往往不是唯一的(數學模型是實際的模擬,是實際問題的近似表達,它的完成是在某種合理的假設下,因此其只能是較優的,不唯一的),呈報的成果是一編「論文」。由此可見「數模競賽」偏重於應用,它是以數學知識為引導計算機運用能力及文章的寫作能力為輔的綜合能力的競賽。

四、競賽中的常見題型

賽題題型結構形式有三個基本組成部分:
1.
實際問題背景
涉及面寬——有社會,經濟,管理,生活,環境,自然現象,工程技術,現代科學中出現的新問題等。一般都有一個比較確切的現實問題。
2.
若干假設條件
有如下幾種情況:
1)只有過程、規則等定性假設,無具體定量數據;
2)給出若干實測或統計數據;
3)給出若干參數或圖形;
4)蘊涵著某些機動、可發揮的補充假設條件,或參賽者可以根據自己收集或模擬產生數據。
3.
要求回答的問題
往往有幾個問題,而且一般不是唯一答案。一般包含以下兩部分:
1)比較確定性的答案(基本答案);
2)更細致或更高層次的討論結果(往往是討論最優方案的提法和結果)。

五、提交一篇論文,基本內容和格式是什麼?

提交一篇論文,基本內容和格式大致分三大部分:
1.
標題、摘要部分
題目——寫出較確切的題目(不能只寫a題、b題)。
摘要——200-300字,包括模型的主要特點、建模方法和主要結果。
內容較多時最好有個目錄。
2.
中心部分
1)問題提出,問題分析。
2)模型建立:

補充假設條件,明確概念,引進參數;

模型形式(可有多個形式的模型);

模型求解;

模型性質;
3)計算方法設計和計算機實現。
4)結果分析與檢驗。
5)討論——模型的優缺點,改進方向,推廣新思想。
6)參考文獻——注意格式。
3.
附錄部分
計算程序,框圖。
各種求解演算過程,計算中間結果。
各種圖形、表格。

六、參加數學建模競賽是不是需要學習很多知識?

沒有必要很系統的學很多數學知識,這是時間和精力不允許的。很多優秀的論文,其高明之處並不是用了多少數學知識,而是思維比較全面、貼合實際、能解決問題或是有所創新。有時候,在論文中可能碰見一些沒有學過的知識,怎麼辦?現學現用,在優秀論文中用過的數學知識就是最有可能在數學建模競賽中用到的,你當然有必要去翻一翻。
具體說來,大概有以下這三個方面:
第一方面:數學知識的應用能力
歸結起來大體上有以下幾類:
1)概率與數理統計
2)統籌與線軸規劃
3)微分方程;
還有與計算機知識交叉的知識:計算機模擬。
上述的內容有些同學完全沒有學過,也有些同學只學過一點概率與數理統計,微分方程的知識怎麼辦呢?一個詞「自學」,我曾聽到過數模評卷的負責教師范毅說過「能用最簡單淺易的數學方法解決了別人用高深理論才能解決的答卷是更優秀的答卷」。
第二方面:計算機的運用能力
一般來說凡參加過數模競賽的同學都能熟練地應用字處理軟體「word」,掌握電子表格「excel」的使用;「mathematica」軟體的使用,最好還具備語言能力。這些知識大部分都是學生自己利用課余時間學習的。
第三方面:論文的寫作能力
前面已經說過考卷的全文是論文式的,文章的書寫有比較嚴格的格式。要清楚地表達自己的想法並不容易,有時一個問題沒說清楚就又說另一個問題了。評卷的教師們有一個共識,一篇文章用10來分鍾閱讀仍然沒有引起興趣的話,這一遍文章就很有可能被打入冷宮了。

七、小組中應該如何分工?

傳統的標准答案是——數學,編程,寫作。其實分工不用那麼明確,但有個前提是大家關系很好。不然的話,很容易產生矛盾。分工太明確了,會讓人產生依賴思想,不願去動腦子。
理想的分工是這樣的:數學建模競賽小組中的每一個人,都能勝任其它人的工作,就算小組只剩下她(他)一個人,也照樣能夠搞定數學建模競賽。
在競賽中的分工,只是為了提高工作的效率,做出更好的結果。
具體的建議如下:一定要有一個人腦子比較活,善於思考問題,這個人勉強歸於數學方面吧;一定要有一個人會編程序,能夠實現一些演算法。另外需要有一個論文寫的比較好,不過寫不好也沒關系,多看一看別人的優秀論文,多用幾次word,visio就成了。
一、寫好數模答卷的重要性

1.
評定參賽隊的成績好壞、高低,獲獎級別,數模答卷,是唯一依據。
2.
答卷是競賽活動的成績結晶的書面形式。
3.
寫好答卷的訓練,是科技寫作的一種基本訓練。

二、答卷的基本內容,需要重視的問題

1
.評閱原則
假設的合理性,建模的創造性,結果的合理性,表述的清晰程度。
2
.答卷的文章結構
1)摘要。
2)問題的敘述,問題的分析,背景的分析等。
3)模型的假設,符號說明(表)。
4)模型的建立(問題分析,公式推導,基本模型,最終或簡化模型等)。
5)模型的求解計算方法設計或選擇;演算法設計或選擇,演算法思想依據,步驟及實現,計算框圖;所採用的軟體名稱;引用或建立必要的數學命題和定理;求解方案及流程。
6)結果表示、分析與檢驗,誤差分析,模型檢驗。
7)模型評價,特點,優缺點,改進方法,推廣。
8)參考文獻。
9)附錄、計算框圖、詳細圖表。
3.
要重視的問題
1)摘要。包括:
a.
模型的數學歸類(在數學上屬於什麼類型);
b.
建模的思想(思路);
c.
演算法思想(求解思路);
d.
建模特點(模型優點,建模思想或方法,演算法特點,結果檢驗,靈敏度分析,模型檢驗……);
e.
主要結果(數值結果,結論;回答題目所問的全部「問題」)。

注意表述:准確、簡明、條理清晰、合乎語法、字體工整漂亮;列印最好,但要求符合文章格式。務必認真校對。
2)問題重述。
3)模型假設。
根據全國組委會確定的評閱原則,基本假設的合理性很重要。
a.
根據題目中條件作出假設
b.
根據題目中要求作出假設
關鍵性假設不能缺;假設要切合題意。
4)
模型的建立。
a.
基本模型:
ⅰ)首先要有數學模型:數學公式、方案等;
ⅱ)基本模型,要求
完整,正確,簡明;
b.
簡化模型:
ⅰ)要明確說明簡化思想,依據等;
ⅱ)簡化後模型,盡可能完整給出;
c.
模型要實用,有效,以解決問題有效為原則。
數學建模面臨的、要解決的是實際問題,不追求數學上的高(級)、深(刻)、難(度大)。
ⅰ)能用初等方法解決的、就不用高級方法;
ⅱ)能用簡單方法解決的,就不用復雜方法;
ⅲ)能用被更多人看懂、理解的方法,就不用只能少數人看懂、理解的方法。
d.鼓勵創新,但要切實,不要離題搞標新立異。數模創新可出現在:

建模中,模型本身,簡化的好方法、好策略等;

模型求解中;

結果表示、分析、檢驗,模型檢驗;

推廣部分。
e.在問題分析推導過程中,需要注意的問題:
ⅰ)分析:中肯、確切;
ⅱ)術語:專業、內行;
ⅲ)原理、依據:正確、明確;
ⅳ)表述:簡明,關鍵步驟要列出;
ⅴ)忌:外行話,專業術語不明確,表述混亂,冗長。
5)模型求解。
a.
需要建立數學命題時:
命題敘述要符合數學命題的表述規范,盡可能論證嚴密。
b.
需要說明計算方法或演算法的原理、思想、依據、步驟。
若採用現有軟體,說明採用此軟體的理由,軟體名稱。
c.
計算過程,中間結果可要可不要的,不要列出。
d.
設法算出合理的數值結果。
6)
結果分析、檢驗;模型檢驗及模型修正;結果表示。
a.
最終數值結果的正確性或合理性是第一位的;
b.
對數值結果或模擬結果進行必要的檢驗;
結果不正確、不合理、或誤差大時,分析原因,
對演算法、計算方法、或模型進行修正、改進。
c.
題目中要求回答的問題,數值結果,結論,須一一列出;
d.
列數據問題:考慮是否需要列出多組數據,或額外數據對數據進行比較、分析,為各種方案的提出提供依據;
e.
結果表示:要集中,一目瞭然,直觀,便於比較分析。

數值結果表示:精心設計表格;可能的話,用圖形圖表形式。

求解方案,用圖示更好。
7)必要時對問題解答,作定性或規律性的討論。最後結論要明確。
8)模型評價
優點突出,缺點不迴避。
改變原題要求,重新建模可在此做。
推廣或改進方向時,不要玩弄新數學術語。
9)參考文獻
10)附錄
詳細的結果,詳細的數據表格,可在此列出,但不要錯,錯的寧可不列。主要結果數據,應在正文中列出,不怕重復。
檢查答卷的主要三點,把三關:
a.
模型的正確性、合理性、創新性
b.
結果的正確性、合理性
c.
文字表述清晰,分析精闢,摘要精彩

三、關於寫答卷前的思考和工作規劃

答卷需要回答哪幾個問題――建模需要解決哪幾個問題;
問題以怎樣的方式回答――結果以怎樣的形式表示;
每個問題要列出哪些關鍵數據――建模要計算哪些關鍵數據;
每個量,列出一組還是多組數――要計算一組還是多組數。

四、答卷要求的原理

1.
准確
――科學性;
2.
條理
――邏輯性;
3.
簡潔
――數學美;
4.
創新
――研究、應用目標之一,人才培養需要;
5.
實用
――建模、實際問題要求。

五、建模理念

1.
應用意識
要解決實際問題,結果、結論要符合實際;
模型、方法、結果要易於理解,便於實際應用;站在應用者的立場上想問題,處理問題。
2.
數學建模
用數學方法解決問題,要有數學模型;
問題模型的數學抽象,方法有普適性、科學性,不局限於本具體問題的解決。
3.
創新意識
建模有特點,更加合理、科學、有效、符合實際;更有普遍應用意義;不單純為創新而創新。

1
.時間和體力的問題
競賽中時間分配也很重要,分配不好可能完不成論文,所以開始時要大致做一下安排,
不必分的太細,比如第一天做第一小題,第二天做第二小題,這樣反而會有壓力。開始階段不忙寫作,可以將一些小組討論的要點記錄下來,不要太工整,隨便一下,到第三天再開始寫論文也不遲的。另外要說的就是體力要跟上,三天一般睡眠只有不到10個小時。建議是賽前熬夜編程幾次,但比賽前一天可不許熬呀,呵呵。
2
.團隊合作是能否獲獎的關鍵
三天的比賽中,團隊交流所佔用的時間可能會超過一半。當出現分歧的時候應當如何解決是很關鍵的,甚至直接決定你是否可以獲獎,我的建議是「妥協」,不要總認為自己的觀點是正確的,多聽聽別人的觀點,在兩者之間謀求共同點。合作在競賽前就應當培養,比如一塊兒做一道題什麼的,充分利用每個人的優點,也可以張三準備圖論,李四准備最優化方法,然後幾天後大家一塊交流,這些都是可以磨合團隊之間的關系的。
3
.重視摘要
摘要首先不要寫廢話,也不要照抄題目的一些話,直奔主題,要寫明自己怎樣分析問題,
用什麼方法解決問題,最重要的是結論是什麼要說清楚,在中國的競賽中不寫結論的話是一定不會得獎的。摘要至少需要琢磨兩個小時,不要輕視了它的重要性。多看看優秀論文的摘要是如何去寫的很有必要的,並要作為賽前准備的課題之一。
4
.論文寫作要正規
論文一定要大致按照摘要、問題重述、模型假設、符號說明、問題分析、(建立、分析
、求解模型)、……、參考文獻、附錄等等的方式來寫。一般初評會先淘汰一些結構失敗的文章,如果沒有論文的結構,內容再好也沒有用。論文前面的結構一般都不會變的,後面可以按照實際情況來安排自己的結構,省略的部分可以有結果說明、靈敏度分析、其他模型、模型擴展、優缺點分析等等的東西,多看些優秀論文就知道還有哪些形式的了,附錄可以貼一些演算法流程圖或比較大的結果或圖表等等。
5
.模型的假設與模型的建立
評委看完摘要後緊接著就是看模型假設了,有一個萬能的方法就是可以抄題目中可以作為假設的幾句話,這樣會給人留下好的印象,畢竟說明你審題了。但不能全抄,要加上自己論文中的一些假設,最好不要太具體了,一些重要參數不要被定死只能取某些值,這樣會讓人感覺到論文的局限性較強。模型的建立是根據你對問題分析而來的,提出的數學符號和建立模型最好要比較接近,在同一頁最好,以便評委可以對照符號來看,數學公式要嚴謹,推導要嚴密,這些都反映了一個人的數學素質和能力,即使你推導不對,別人看到你的陣勢也首先會誤以為你是對的。
6
.圖文表並茂可以增色
我聽說一個不確切的信息是評委老師喜歡用matlab編程的論文,不知道有沒有這回事,但這說明了老師需要看一個具有圖或表在其中的論文,一篇如果像政治書那樣寫的論文估計沒有人會對它感興趣的,尤其是科技論文。matlab編程之所以受到青睞是因為matlab提供的圖形處理能力很強大,圖表的說明性特別強,如果結論有很多數據的話,最好做成圖表的形式加以說明,會令你的論文更有說服力,也更加會受到評委的好評。

一、數學建模競賽中應當掌握的十類演算法

1
.蒙特卡羅演算法
該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的演算法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法。
2
.數據擬合、參數估計、插值等數據處理演算法
比賽中通常會遇到大量的數據需要處理,而處理數據的關鍵就在於這些演算法,通常使用matlab作為工具。
3
.線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題
建模競賽大多數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用lindo、lingo軟體實現。
4
.圖論演算法
這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉及到圖論的問題可以用這些方法解決,需要認真准備。
5
.動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法
這些演算法是演算法設計中比較常用的方法,很多場合可以用到競賽中。
6
.最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法
這些問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實現比較困難,需慎重使用。
7
.網格演算法和窮舉法
網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好使用一些高級語言作為編程工具。
8
.一些連續離散化方法
很多問題都是實際來的,數據可以是連續的,而計算機只認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非常重要的。
9
.數值分析演算法
如果在比賽中採用高級語言進行編程的話,那一些數值分析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調用。
10
.圖象處理演算法
賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用matlab進行處理。

二、數學軟體的主要分類有哪些?各有什麼特點?

數學軟體從功能上分類可以分為通用數學軟體包和專業數學軟體包,通用數學包功能比較完備,包括各種數學、數值計算、豐富的數學函數、特殊函數、繪圖函數、用戶圖形屆面交互功能,與其他軟體和語言的介面及龐大的外掛函數庫機制(工具箱)。
常見的通用數學軟體包包括matlab和mathematica和maple,其中matlab是一個高性能的科技計算軟體,廣泛應用於數學計算、建模、模擬和數據分析處理及工程作圖,mathematica
是數值和符號計算的代表性軟體,maple以符號運算、公式推導見長。
專用數學包包括繪圖軟體類mathcad,tecplot,idl,surfer,origin,
smartdraw,dsp2000),數值計算類:(matcom,
idl,
datafit,s-spline,lindo,lingo,o-matrix,scilab,octave),
數值計算庫(linpack/lapack/blas/germs/imsl/cxml),
有限元計算類(ansys,marc,parstran,fluent,femlab,flexpde,algor,cosmos,
abaqus,adina),計算化學類(gaussian98,spartan,adf2000,chemoffice),數理統計類(gauss,spss,sas,
splus,statistica,minitab),
數學公式排版類(mathtype,miktex,scientific
workplace,scientific
nootbook)。

三、關於數模競賽的幾本好書


姜啟源,《數學模型(第二版)》,高等教育出版社

姜啟源、謝金星、葉俊《數學建模(第三版)》,高等教育出版社

蕭樹鐵等,《數學實驗》,高等教育出版社

朱道元,《數學建模案例精選》,科學出版社

雷功炎,《數學模型講義》,北京大學出版社

葉其孝等,《大學生數學建模競賽輔導教材(一)~(四)》,湖南教育出版社

江裕釗、辛培清,《數學模型與計算機模擬》,電子科技大學出版社

楊啟帆、邊馥萍,《數學模型》,浙江大學出版社

趙靜等,《數學建模與數學實驗》,高等教育出版社,施普林格出版社

四、基礎學科

1.數學分析
2.高等代數
3.概率與數理統計
4.最優化理論
5.圖論
6.組合數學
7.微分方程穩定性分析
8.排隊論

㈧ 參加數學建模有哪些必學的演算法

1. 蒙特卡洛方法:
又稱計算機隨機性模擬方法,也稱統計實驗方法。可以通過模擬來檢驗自己模型的正確性。

2. 數據擬合、參數估計、插值等數據處理
比賽中常遇到大量的數據需要處理,而處理的數據的關鍵就在於這些方法,通常使用matlab輔助,與圖形結合時還可處理很多有關擬合的問題。

3. 規劃類問題演算法:
包括線性規劃、整數規劃、多元規劃、二次規劃等;競賽中又很多問題都和規劃有關,可以說不少的模型都可以歸結為一組不等式作為約束條件,幾個函數表達式作為目標函數的問題,這類問題,求解是關鍵。
這類問題一般用lingo軟體就能求解。

4. 圖論問題:
主要是考察這類問題的演算法,包括:Dijkstra、Floyd、Prime、Bellman-Ford,最大流、二分匹配等。熟悉ACM的人來說,應該都不難。

5. 計算機演算法設計中的問題:
演算法設計包括:動態規劃、回溯搜索、分治、分支定界法(求解整數解)等。

6. 最優化理論的三大非經典演算法:
a) 模擬退火法(SA)
b) 神經網路(NN)
c) 遺傳演算法(GA)

7. 網格演算法和窮舉演算法

8. 連續問題離散化的方法
因為計算機只能處理離散化的問題,但是實際中數據大多是連續的,因此需要將連續問題離散化之後再用計算機求解。
如:差分代替微分、求和代替積分等思想都是把連續問題離散化的常用方法。

9. 數值分析方法
主要研究各種求解數學問題的數值計算方法,特別是適用於計算機實現的方法與演算法。
包括:函數的數值逼近、數值微分與數值積分、非線性返程的數值解法、數值代數、常微分方程數值解等。
主要應用matlab進行求解。

10. 圖像處理演算法
這部分主要是使用matlab進行圖像處理。
包括展示圖片,進行問題解決說明等。

㈨ 【數學建模演算法】(16)排隊論:常用的幾種概率分布及產生

區間 內的 均勻分布 記做 。服從 分布的隨機變數又稱為隨機數,它是產生其他隨機變數的基礎。如若 為 分布,則 服從 。

以 為期望, 為方差的 正態分布 記做 。正態分布的應用十分廣泛。正態分布還可以作為二項分布一定條件下的近似。

指數分布 是單參數 的非對稱分布,記做 ,概率密度函數為:

數學期望為 ,方差為 。指數分布是唯一具有無記憶性的連續型隨機變數,既有 ,在排隊論,可靠性分析中有廣泛應用。

Gamma分布是雙參數 的非對稱分布,記做 ,期望是 。 時退化為指數分布。 個相互獨立,同分布(參數 )的指數分布之和是Gamma分布 。Gamma分布可用於服務時間,零件壽命等。
Gamma分布又稱為埃爾朗分布。

Weibull分布是雙參數 的非對稱分布,記做 。 時退化為指數分布。作為設備,零件的壽命分布在可靠性分析中有非常廣泛的應用。

Beta分布是區間 內的雙參數,非均勻分布,記做 。

伯努利分布是 處取值的概率分別是 和 的兩點分布,記做 。用於基本的離散模型。

泊松分布與指數分布有密切的關系。當顧客平均到達率為常數 的到達間隔服從指數分布時,單位時間內到達的顧客數 服從泊松分布,即單位時間內到達 位顧客的概率為:

記做 。泊松分布在排隊服務,產品檢驗,生物與醫學統計,天文,物理等領域都有廣泛應用。

在獨立進行的每次試驗中,某事件發生的概率為 ,則 次實驗中該事件發生的次數 服從二項分布,即發生 次的概率為:

記做 。二項分布是 個獨立的伯努利分布之和。它在產品檢驗,保險,生物和醫學統計等領域有著廣泛的應用。
當 很大時, 近似於正態分布 ;當 很大, 很小,且 約為常數 時, 近似於

㈩ 數學建模有幾種分類方法

數學模型有以下幾種分類方法

1. 按模型的數學方法分:

幾何模型、圖論模型、微分方程模型、概率模型、最優控制模型、規劃論模

型、馬氏鏈模型等。

2. 按模型的特徵分:

靜態模型和動態模型,確定性模型和隨機模型,離散模型和連續性模型,線

性模型和非線性模型等。

3. 按模型的應用領域分:

人口模型、交通模型、經濟模型、生態模型、資源模型、環境模型等。

4. 按建模的目的分: :

預測模型、優化模型、決策模型、控制模型等。

一般研究數學建模論文的時候,是按照建模的目的去分類的,並且是演算法往

往也和建模的目的對應

5. 按對模型結構的了解程度分: :

有白箱模型、灰箱模型、黑箱模型等。

比賽盡量避免使用,黑箱模型、灰箱模型,以及一些主觀性模型。

6. 按比賽命題方向分:

國賽一般是離散模型和連續模型各一個,2016 美賽六個題目(離散、連續、

運籌學/復雜網路、大數據、環境科學、政策)

當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。

閱讀全文

與研究生數學建模演算法總結相關的資料

熱點內容
北京通app怎麼注冊登錄 瀏覽:820
iphone上的數據怎麼轉移到安卓 瀏覽:743
python求每個時段平均值 瀏覽:244
安卓手機右上出現Hg什麼意思 瀏覽:69
程序員神經 瀏覽:753
dns伺服器在電腦上有什麼用 瀏覽:915
杭州大媽喜歡程序員 瀏覽:686
python評論樹講解 瀏覽:679
juniper防火牆常用命令 瀏覽:426
vapp怎麼下載地址 瀏覽:11
pdf裡面內容怎麼修改 瀏覽:807
收藏網址加密的瀏覽器 瀏覽:1000
phpurl問號 瀏覽:898
什麼筆記本電腦可以用python 瀏覽:135
加密相冊如何翻找 瀏覽:992
泰州地區DNS伺服器地址 瀏覽:849
一種app可以買菜用英語怎麼說 瀏覽:196
中國聯通app裡面通話詳單怎麼刪除 瀏覽:505
計算機網路編譯軟體 瀏覽:100
程序員說不能說的秘密 瀏覽:700