① 淺談個性化推薦
隨著互聯網的不斷壯大,各類APP層出不窮,個性化推薦系統受到了越來越廣的應用,狹義上來說,閱讀APP上的文章推薦就是典型的應用;廣義上來說,從某種程度而言,所謂的精準化營銷本質上就是個性化推薦系統在營銷層面的應用。
個性化推薦是通過海量數據挖掘,為用戶提供個性化的信息推薦或者幫助用戶進行決策的一種推薦方式。該推薦方法在實際中的應用較為廣泛,電商平台的購物推薦,信息聚合平台的新聞推薦,音樂視頻網站的相關推薦以及個性化廣告的展示等等,都是該方法在各行業的應用。根據長尾理論,一個好的個性化推薦方法是可以挖掘到長尾的不被關注的信息。
任何系統或者演算法在使用時,都是有一定的前提。個性化推薦系統的應用有兩個前提。一,信息過載;二是用戶沒有明確的目的,在這兩個條件都滿足的情況下,推薦系統才能發揮它自己獨特的魅力。假如信息沒有過載,比如在某個新聞聚合平台上,每天只有10篇新聞,花10分鍾即可瀏覽完畢,推薦系統此時的存在並無意義;假若用戶已有了明確的目的,那麼他們需要的是搜索引擎,網路一下,即可立馬知道相關信息。因此只有當兩個條件同時滿足時,推薦系統才能真正的為人所用。
那推薦系統的價值呢?通過對個性化推薦的定義與存在前提兩個部分進行解釋,我們可以發現,個性化推薦的根本目的在於提供一個用戶與對用戶有價值感興趣的信息之間的渠道,在這個渠道中,不僅僅用戶可以獲得自己感興趣的信息,同時,有價值的信息也會出現在相應的用戶面前。
根據方式的不同,個性化推薦分為社會化推薦、基於內容的推薦、基於協同過濾的推薦三種方式,接下來我們依次解釋並舉例子
社會化推薦是比較簡單的一種推薦方法,通過用戶自己的社交網路關系進行信息推薦,物以類聚人以群分,好友中越多的人對某條信息越感興趣,則預測你可以對該條信息的興趣度越大,如微信中的游戲推薦(見下圖),大家可以看到,自己好友正在一起玩的游戲列表,在我的朋友中,有40個人都在玩王者,沒錯,我也在玩王者。當然,游戲與即時通訊平台一樣具有極高的社交性,社交關系越強烈,平台的穩固性及增長率就會越大。
基於內容的推薦通過對用戶對物品或者信息的愛好,計算其他物品與其的相似性,並推薦給用戶。以淘寶網為例,一件衣服的相似衣服則是通過內容的相似度進行匹配。
通過對用戶歷史行為數據的挖掘發現用戶的偏好,基於不同的偏好對用戶進行群組劃分並推薦品味相似的商品。基於協同過濾的推薦分為兩類,一類是基於用戶的協同過濾演算法,另一類是基於物品的協同過濾演算法。
基於用戶的協同過濾是先計算用戶間的相似度,然後將相似度較高的用戶的其他商品進行推薦,計算用戶間的相似度是通過過去兩個用戶的購買行為或者瀏覽行為,同時考慮不同行為的權重&滿意度計算而來。該方法會帶來冷啟動問題,若一個用戶第一次登錄,並無任何行為則無法使用該方法進行推薦。
基於物品的協同過濾演算法是先計算不同物品間的相似度,在利用用戶對其的評價,進行加權處理,然後給用戶推薦相關的數據。因此在做物品的協同過濾時,不同物品間的相似度應在線下進行計算並准備好。
其實在現在的系統中,推薦系統不再僅僅是一種方法的使用,而是不同方法下的結合,在不同的場景下使用不同的推薦方法。
② 個性化推薦演算法
隨著演算法的普及,大量的產品有了個性化推薦的功能,這也成為內容類產品的標配。個性化定製化逐漸成為了互聯網思維的新補充,被提升到了越來越重要的地位。演算法推薦經過了很長一段時間的發展,才逐漸達到能給用戶驚喜的階段。比如在電商領域,推薦演算法可以挖掘用戶潛在購買需求,縮短用戶選取商品的時間,提升用戶的購物體驗;在新聞或段視頻領域,推薦演算法可以推送用戶喜歡的內容,提高用戶的閱讀效率,減少用戶選擇內容的時間,也增加了用戶在產品上的停留時長。
演算法應用階段
內容類產品發展初期,推薦演算法一般為「熱度演算法」,就是系統把熱點內容優先推薦送給用戶,完成熱點內容的高閱讀率。在積累了一定的用戶數據後,會發現用戶閱讀內容過於集中於熱點信息,長尾信息中的優質資源往往被忽略,造成資源浪費。「千人一面」的狀況已不是一個優質的解決方案,所以演算法逐漸演變為「個性化推薦」,也就是協同過濾的方法論支撐下的一種演算法。協同過濾能很好的根據用戶的喜好,推薦匹配的內容,減少資源浪費,增加用戶使用的友好體驗。真正做到「千人千面」。
推薦演算法的信息來源
第三方數據
一個新系統在初期沒有數據積累的情況下,可與第三方合作,互授部分信息共享。比如,很多系統支持微信登陸,這時候可以獲取客戶的微信信息,生活地點,部分生活習慣等。同時會獲取用戶的社交信息,共同好友越多表明圈子越相似,可以推薦更多相似的內容。
用戶行為數據
記錄用戶在系統內的使用習慣,可以准確的描述單個用戶的行為特徵,愛好特徵等有效的信息,系統根據提取出的分析結果,將內容與之匹配,完成更精準的推薦。如,某用戶經常瀏覽體育信息,系統將對應推薦更多體育相關的咨詢,省去用戶搜索篩選的時間。
基於生活習慣
基於生活習慣,生活常識的推薦,往往也可以作為內置的一個信息來源途徑。比如,外賣的app推薦用戶的餐廳,一般默認是位置優先,就近推薦,如果是快中午的時間段使用,系統默認推薦午餐,其次是晚餐。靠生活常識作出的系統演算法,可以更符合人類的習慣,給用戶更好的體驗。
熱度演算法
熱度演算法簡單的說就是把最核心的內容優先推薦,用新聞舉例,每一條新聞都具有實效性,隨著時間的推移,該條新聞的關注度降低,關注點被新的熱點新聞取代。量化以上的過程,把各個影響因素設定為變數,會得出以下的公式:
新聞熱度=初始熱度分+用戶交互熱度分-衰減熱度分
初始熱度分為新聞產生時,系統對新聞主體的預判熱度值。預判的分值一般為以下兩種模式,一種情況,按照新聞類別的不同,娛樂新聞大於財經新聞,大於國際新聞,大於文化新聞等等系統的預設,依次給出不同的初始熱度分;另一種情況,系統預置熱詞詞庫,用新聞的關鍵詞和詞庫的去匹配,匹配度高的,初始熱度分高。
用戶的交互熱度分也是一個變數,先要明確用的哪些行為會影響新聞熱度,然後對這些行為量化,加權或打分等方式。例如,網易雲音樂,用戶的聽歌,重復循環,收藏,評論,分享等行為,系統為每一種行為打分,求和後得出用戶交互的熱度分:
用戶交互熱度分=聽歌X10+循環X5+收藏X10+評論X5+分享X3
此公式還可以繼續細化,每一種操作的分值也可以作為變數,在產品前期時,傳播產品為主要任務,所以分享的加權要大一些,隨著網易雲的發展,社區的概念逐漸強化,評論區互動的加權會加大,所以評論的分值會增加,系統隨時調整分數加權,得出更准確的用戶交互的影響值。
衰減熱度分是一個隨時間變化而變化的數值,往往是一個函數的表達。用新聞舉例,新聞的熱度會隨著時間的推移而衰減,並且趨勢是越來越快,人們在接受新的熱點後,迅速忘記「舊聞」,直至熱度趨近於零。根據理論數據,構建函數,准確的表達衰減分值。
還有很多其他的影響因素,比如傳播次數,傳播層數,停留時長等等,都會影響熱度值,要想更精準的表達,就需要把涉及到的因素都作為變數,不斷完善演算法,才能更精準的完成推薦。
個性化推薦演算法
隨著用戶量的增加,產品日活的增加,用戶也不能僅限於千人一面熱點閱讀的模式中,個性化推薦在此時顯得尤為重要。個性化推薦有兩種常見的解決方案,一種是基於內容的推薦演算法,推薦內容往往是根據用戶的使用習慣得來,較為精準;另一種是基於用戶的協同推薦演算法,系統會根據以往使用內容,為用戶建模,然後根據群體中個體的使用習慣,推薦更多超預期的內容,達到預測推薦的效果。
基於內容的推薦演算法-預期內
基於內容的推薦演算法,靠收集用戶的使用習慣,進而推薦相關的內容。系統使用分詞庫匹配、關鍵詞匹配等等方式,達到內容的匹配,做到內容的精確劃分。比如,用戶瀏覽了某部科幻電影,系統就會按照該電影所對應的標簽,如科幻,然後系統推薦相同標簽的影片給用戶。
這樣的推薦方案,確定性強,推薦的內容都是根據用戶的歷史來確定,不能挖掘用戶的潛在需求。
基於用戶的協同推薦-超預期
做到精準推薦後,系統會繼續挖掘更潛在的推薦需求,給用戶超預期的推薦體驗。這就到了基於用戶協同推薦的階段。簡單的說,這種演算法是增加了用戶建模的環節,將同標簽的用戶群分,對比群體中單個個體的特徵,默認這種特徵為這類人的潛在特徵,再將此特徵內容推薦給同標簽的用戶,達到超預期的推薦效果。
比如,某用戶購買了一個蘋果手機,系統會將此用戶歸類為果粉,系統識別出很多果粉除了買蘋果的商品,還會購買小米作為備用機,這個特徵會被系統識別為潛在需求,推薦給果粉,減少果粉選擇備用機的時間。
這樣的推薦演算法,不僅能完成精準的推薦,還能給用戶小驚喜,讓系統「有溫度」。但是這樣的推薦方式,往往需要積累了大量用戶資料為基礎,才可以精確的完成。
③ 猜你喜歡是如何猜的——常見推薦演算法介紹
自從頭條系的產品今日頭條和抖音火了之後,個性化推薦就進入了大眾的視野,如果我們說搜索時人找信息的話,那麼推薦就是信息找人。搜索是通過用戶主動輸入索引信息告訴機器自己想要的東西,那麼推薦的這個索引是什麼才能讓信息找到人呢?
第一類索引是「你的歷史」,即基於你以前在平台上對某物品產生的行為(點贊,轉發,評論或者收藏),尋找與你產生過相似行為的用戶所喜歡的其他物品或者與你喜歡的物品相似的其他物品來為你推薦。這一基於用戶行為相似的演算法有:協同過濾演算法、基於內容的推薦演算法和基於標簽的推薦演算法。
基於用戶的協同過濾演算法是尋找與A用戶有相似行為的所有B用戶所喜歡的而A用戶還不知道的物品推薦給A用戶 。該演算法包括兩個步驟:
-根據用戶所喜歡的物品計算用戶間相似度,找到與目標用戶相似的用戶集合;
-找到該用戶集合所喜歡的而目標用戶所不知道的物品。
那麼,找出一批物品以後哪個先推薦哪個後推薦?用戶間相似程度大的先推薦,用戶對物品的感興趣程度大要先推薦。即假設A用戶與B用戶的相似程度為0.9,與C用戶的相似程度為0.7,用戶B喜歡物品a和物品b的程度分別為1和2,用戶C喜歡物品a和物品b的程度分別為0.1和0.5,那麼先推薦物品b。多個用戶多個物品,只要擬定了用戶間的相似度和用戶對物品的感興趣程度,即可對物品進行打分並且進行綜合排序。
基於物品的協同過濾演算法是根據用戶行為而不是物品本身的相似度來判斷物品的相似度 ,即如果物品A和物品B被很多的用戶同時喜歡,那麼我們就認為物品A和物品B是相似的。該演算法也是包括兩個步驟:
-根據用戶行為計算物品間的相似度;
-根據物品的相似度和用戶的歷史行為給用戶生成推薦列表。
與UserCF相似的是,同樣會遇到推薦的先後順序問題,那麼ItemCF所遵循的原則是:物品間相似程度大的先推薦,用戶對物品的感興趣程度大要先推薦。假設用戶對物品a和物品b感興趣的程度分別為1和0.5,物品a與物品c和物品d的相似度分別為0.5和0.1,物品b與物品c和物品d的相似度分別為0.3和0.4,那麼先推薦物品d。用戶喜歡多個物品,並且多個物品與其他物品都有相似的情況下,只要擬定了用物品間的相似度和用戶對物品的感興趣程度,即可對物品進行打分並且進行綜合排序。
協同過濾演算法的核心都是通過用戶行為來計算相似度,User-CF是通過用戶行為來計算用戶間的相似度,Item-CF是通過用戶行為來計算物品間的相似度。
推薦演算法很重要的一個原理是為用戶推薦與用戶喜歡的物品相似的用戶又不知道的物品。物品的協同過濾演算法是通過用戶行為來衡量物品間的相似(喜歡物品A的用戶中,同時喜歡物品B的用戶比例越高,物品A與物品B的相似程度越高),而基於內容的推薦演算法衡量則是通過物品本身的內容相似度來衡量物品間的相似。
假如,你看了東野圭吾的《解憂雜貨店》,那麼下次系統會給你推薦東野圭吾的《白夜行》。假設你看了小李子的《泰坦尼克號》,系統再給你推薦小李子的《荒野獵人》。
該演算法與前兩種不同的是,將用戶和物品之間使用「標簽」進行聯系,讓用戶對喜歡的物品做記號(標簽),將同樣具有這些記號(標簽)的其他物品認為很大程度是相似的並推薦給用戶。其基本步驟如下:
統計用戶最常用的標簽
對於每個標簽,統計最常被打過這個標簽次數最多的物品
將具有這些標簽最熱門的物品推薦給該用戶
目前,國內APP中,豆瓣就是使用基於標簽的推薦演算法做個性化的推薦。
第二類索引是「你的朋友」,基於你的社交好友來進行推薦,即基於社交網路的推薦。例如,微信看一看中的功能「朋友在看」就是最簡單的基於社交網路的推薦,只要用戶點擊公眾號文章的「在看」,就會出現在其好友的「朋友在看」的列表中。
復雜一點的演算法會考慮用戶之間的熟悉程度和興趣的相似度來進行推薦。目前,在信息流推薦領域,基於社交網路進行推薦的最流行的演算法是Facebook的EdgeRank演算法,即為用戶推薦其好友最近產生過重要行為(評論點贊轉發收藏)的信息。
第三類索引是「你所處的環境」,基於你所處的時間、地點等上下文信息進行推薦。例如,我們看到很APP中的「最近最熱門」,就是基於時間上下文的非個性化推薦;以及,美團和餓了么這些基於位置提供服務的APP中,「附近商家」這一功能就是基於用戶位置進行推薦。高德地圖在為用戶推薦駕駛路線時,會考慮不同路線的擁堵程度、紅綠燈數量等計算路線用和路程距離再進行綜合排序推薦。
很多時候,基於時間上下文的推薦會協同過濾這類個性化推薦演算法結合使用。例如,在使用協同過濾推薦策略的時候,會將時間作為其中一個因素考慮進入推薦策略中,最近的信息先推薦。
以上就是常見的推薦演算法。作為產品人,我們不需要知道如何實現,但是我們必須知道這些推薦演算法的原理,知道在什麼場景下如何去做推薦才能提升推薦的效率,這才是產品經理的價值所在。
參考資料:《推薦演算法實戰》項亮
④ 推薦演算法小結
輸入 :與用戶相關的包含眾多特徵(feature)的數據:
用戶的注冊信息(職業、年齡、性別等 顯信息),行為信息(使用功能、有效使用時長等 隱信息)。
輸出 :推薦給用戶的功能列表(根據得分高低排序)
函數 : 傳統演算法 、 機器學習演算法 (Machine Learning)、 深度學習演算法 (Deep Learning)
基於流行度的演算法非常簡單粗暴,類似於各大新聞、微博熱榜等,根據VV、UV、日均PV或分享率等數據來按某種熱度(加權)排序來推薦給用戶。
訪問次數 (VV):記錄1天內所有訪客訪問了該網站多少次,相同的訪客有可能多次訪問該網站,且訪問的次數累加。
獨立訪客 (UV):記錄1天內所有訪客訪問了該網站多少次,雖然相同訪客能多次訪問網站,但只計算為1個獨立訪客。
PV訪問量 (Page View):即頁面訪問量,每打開一次頁面或者刷新一次頁面,PV值+1。
優點:該演算法簡單,適用於剛注冊的新用戶
缺點:無法針對用戶提供個性化的推薦
改進:基於該演算法可做一些優化,例如加入用戶分群的流行度進行排序,通過把熱榜上的體育內容優先推薦給體育迷,把政要熱文推給熱愛談論政治的用戶。
基於用戶的協同過濾推薦演算法 (UserCF):針對目標用戶(A),先通過興趣、愛好或行為習慣找到與他相似的「其他用戶」(BCD...),然後把BCD...喜歡的並且A沒有瀏覽過的物品或功能推給A。
基於物品的協同過濾推薦演算法 (ItemCF):例如由於我之前看過張藝謀導演的《英雄》這部電影,會給我推薦《紅高粱》、《歸來》等同導演電影。
1)分析各個用戶對物品的評價,通過瀏覽記錄、購買記錄等得到用戶的隱性評分;
2)根據用戶對物品的隱性評分計算得到所有用戶之間的相似度;
3)選出與目標用戶最相似的K個用戶;
4)將這K個用戶隱性評分最高並且目標用戶又沒有瀏覽過的物品推薦給目標用戶。
優點:
基於用戶的協同過濾推薦演算法是給目標用戶推薦那些和他有共同興趣的用戶喜歡的物品,所以該演算法推薦較為社會化,即推薦的物品是與用戶興趣一致的那個群體中的熱門物品;
適於物品比用戶多、物品時效性較強的情形,否則計算慢;
能實現跨領域、驚喜度高的結果。
缺點:
在很多時候,很多用戶兩兩之間的共同評分僅有幾個,也即用戶之間的重合度並不高,同時僅有的共同打了分的物品,往往是一些很常見的物品,如票房大片、生活必需品;
用戶之間的距離可能變得很快,這種離線演算法難以瞬間更新推薦結果;
推薦結果的個性化較弱、較寬泛。
改進:
兩個用戶對流行物品的有相似興趣,絲毫不能說明他們有相似的興趣,此時要增加懲罰力度;
如果兩個用戶同時喜歡了相同的物品,那麼可以給這兩個用戶更高的相似度;
在描述鄰居用戶的偏好時,給其最近喜歡的物品較高權重;
把類似地域用戶的行為作為推薦的主要依據。
1)分析各個用戶對物品的瀏覽記錄;
2)依據瀏覽記錄分析得出所有物品之間的相似度;
3)對於目標用戶評價高的物品,找出與之相似度最高的K個物品;
4)將這K個物品中目標用戶沒有瀏覽過的物品推薦給目標用戶
優點:
基於物品的協同過濾推薦演算法則是為目標用戶推薦那些和他之前喜歡的物品類似的物品,所以基於物品的協同過濾推薦演算法的推薦較為個性,因為推薦的物品一般都滿足目標用戶的獨特興趣。
物品之間的距離可能是根據成百上千萬的用戶的隱性評分計算得出,往往能在一段時間內保持穩定。因此,這種演算法可以預先計算距離,其在線部分能更快地生產推薦列表。
應用最廣泛,尤其以電商行業為典型。
適於用戶多、物品少的情形,否則計算慢
推薦精度高,更具個性化
傾向於推薦同類商品
缺點:
不同領域的最熱門物品之間經常具有較高的相似度。比如,基於本演算法,我們可能會給喜歡聽許嵩歌曲的同學推薦汪峰的歌曲,也就是推薦不同領域的暢銷作品,這樣的推薦結果可能並不是我們想要的。
在物品冷啟動、數據稀疏時效果不佳
推薦的多樣性不足,形成信息閉環
改進:
如果是熱門物品,很多人都喜歡,就會接近1,就會造成很多物品都和熱門物品相似,此時要增加懲罰力度;
活躍用戶對物品相似度的貢獻小於不活躍的用戶;
同一個用戶在間隔很短的時間內喜歡的兩件商品之間,可以給予更高的相似度;
在描述目標用戶偏好時,給其最近喜歡的商品較高權重;
同一個用戶在同一個地域內喜歡的兩件商品之間,可以給予更高的相似度。
(相似度計算:餘弦相似度、Jaccard系數、皮爾森相關系數等)
常見經典 ML 分類演算法:
邏輯回歸 (Logistics Regression)
支持向量機 (SVM)
隨機森林 (Random Forest)
提升類演算法 (Boosting):Adaboost、GBDT、XGboost
一般處理流程:數據處理 -> 特徵工程 -> 模型選擇 -> 交叉驗證 -> 模型選擇與模型融合
特徵清洗 :剔除不可信樣本,預設值極多的欄位不予考慮
特徵預處理 :單個特徵(歸一化,離散化,缺失值補全,數據變換),多個特徵(PCA/LDA降維,特徵選擇)
使用工具 :pandas(python開源庫)
模型選擇與模型融合 :根據交叉驗證得分選擇前幾名模型,然後進行模型融合(Bagging、Boosting、Stacking)
DL 優勢 :ML 中特徵工程是十分重要並且要根據行業經驗確定,DL 可以自己從數據中學習特徵。DL 能自動對輸入的低階特徵進行組合、變換,得到高階特徵。對於公司產品應用領域來說,用戶的注冊信息(職業、年齡、性別等 顯信息),行為信息(使用功能、有效使用時長等 隱信息)。這些就可以作為低階特徵輸入。
RNN系列 (處理文本數據)
CNN系列 (處理圖像數據)
DNN (處理一般性分類)
⑤ 個性化推薦是怎麼做的
各種推薦演算法不能僅僅是研發涉獵領域,作為PM,也要深入到演算法內部,了解演算法的設計,以及結合內容對演算法不斷「調教」,才能讓產品的推薦演算法不斷完善,才能符合用戶的口味。
目前比較流行的個性化推薦演算法有以下幾種:
基於內容的推薦:根據內容本身的屬性(特徵向量)所作的推薦。
基於關聯規則的推薦:「啤酒與尿布」的方式,是一種動態的推薦,能夠實時對用戶的行為作出推薦。是基於物品之間的特徵關聯性所做的推薦,在某種情況下會退化為物品協同過濾推薦。
協同過濾推薦:與基於關聯規則的推薦相比是一種靜態方式的推薦,是根據用戶已有的歷史行為作分析的基礎上做的推薦。可分為物品協同過濾、用戶協同過濾、基於模型的協同過濾。其中,基於模型的協同又可以分為以下幾種類型:基於距離的協同過濾;基於矩陣分解的協同過濾,即Latent
Factor Model(SVD)或者ALS;基於圖模型協同,即Graph,也叫社會網路圖模型。
1、產品冷啟動通過熱度演算法進行內容推薦
產品發展初期,由於一方面沒有用戶行為、用戶喜好、用戶畫像,另外也沒有大量的內容樣本基礎,是很難開展個性化推薦的。所以在產品初期,一般採取「熱度演算法」,顧名思義就是把熱點的內容優先推薦給用戶。雖然無法做到基於興趣和習慣為每一個用戶做到精準化的推薦,但能覆蓋到大部分的內容需求,而且啟動成本比個性化推薦演算法低太多。
熱度演算法基本原理:
新聞熱度分 = 初始熱度分 + 用戶交互產生的熱度分 – 隨時間衰減的熱度分
Score = S0 + S(Users) – S(Time)
1)以新聞或視頻較有時效性的內容舉例,熱度隨內容陳舊而分值衰減。
2)初始熱度分不要一視同仁。
按照新聞類別給予新聞不同的初始熱度,讓用戶關注度高的類別獲得更高的初始熱度分,從而獲得更多的曝光。軍事>娛樂>體育>財經....
對於重大事件的報道,如何讓它入庫時就有更高的熱度,我們採用的是熱詞匹配的方式。
即對大型新聞站點的頭條,Twitter熱點,競品的頭條做監控和扒取,並將這批新聞的關鍵詞維護到熱詞庫並保持更新;每條新聞入庫的時候,讓新聞的關鍵詞去匹配熱詞庫,匹配度越高,就有越高的初始熱度分。這樣處理後,重大事件發生時,Twitter和門戶網站的爭相報道會導致熱詞集中化,所有匹配到這些熱詞的新聞,即報道同樣事件的新聞,會獲得很高的初始熱度分。
3)用戶交互的熱度分值比重不一。首先明確用戶的的哪些行為會提高新聞的熱度值,然後對這些行為賦予一定的得分規則。
例如對於單條新聞,用戶可以點擊閱讀(click),收藏(favor),分享(share),評論(comment)這四種行為,我們為不同的行為賦予分數,就能得到新聞的實時用戶行為分為:
S(Users) = 1*click + 5*favor + 10*comment + 20*share
這里對不同行為賦予的分數為1,5,10,20,但這個值不能是一成不變的;當用戶規模小的時候,各項事件都小,此時需要提高每個事件的行為分來提升用戶行為的影響力;當用戶規模變大時,行為分也應該慢慢降低,因此做內容運營時,應該對行為分不斷調整。
當然也有偷懶的辦法,那就是把用戶規模考慮進去,算固定用戶數的行為分,即:
S(Users) = (1*click + 5*favor + 10*comment + 20*share)/ DAU * N(固定數)
這樣就保證了在不同用戶規模下,用戶行為產生的行為分基本穩定。
2、基於內容特徵與用戶特徵進行個性化推薦
對於此種推薦,有兩個實體:內容和用戶,因此需要有一個聯系這兩者的東西,即為標簽。內容轉換為標簽即為內容特徵化,用戶則稱為用戶特徵化。對於此種推薦,主要分為以下幾個關鍵部分:
標簽庫
內容特徵化
用戶特徵化
隱語義推薦
綜合上面講述的各個部分即可實現一個基於內容和用戶畫像的個性化推薦系統。
標簽庫
標簽是聯系用戶與物品、內容以及物品、內容之間的紐帶,也是反應用戶興趣的重要數據源。標簽庫的最終用途在於對用戶進行行為、屬性標記。是將其他實體轉換為計算機可以理解的語言關鍵的一步。
標簽庫則是對標簽進行聚合的系統,包括對標簽的管理、更新等。
一般來說,標簽是以層級的形式組織的。可以有一級維度、二級維度等。
標簽的來源主要有:
已有內容的標簽
網路抓取流行標簽
對運營的內容進行關鍵詞提取
對於內容的關鍵詞提取,使用結巴分詞+TFIDF即可。此外,也可以使用TextRank來提取內容關鍵詞。
這里需要注意的一點是對於關聯標簽的處理,比如用戶的標簽是足球,而內容的標簽是德甲、英超,那麼用戶和內容是無法聯系在一起的。最簡單的方式是人工設置關聯標簽,此外也可以使用word2vec一類工具對標簽做聚類處理,構建主題模型,將德甲、英超聚類到足球下面。
內容特徵化
內容特徵化即給內容打標簽。目前有兩種方式:
人工打標簽
機器自動打標簽
針對機器自動打標簽,需要採取機器學習的相關演算法來實現,即針對一系列給定的標簽,給內容選取其中匹配度最高的幾個標簽。這不同於通常的分類和聚類演算法。可以採取使用分詞 +Word2Vec來實現,過程如下:
將文本語料進行分詞,以空格,tab隔開都可以,使用結巴分詞。
使用word2vec訓練詞的相似度模型。
使用tfidf提取內容的關鍵詞A,B,C。
遍歷每一個標簽,計算關鍵詞與此標簽的相似度之和。
取出TopN相似度最高的標簽即為此內容的標簽。
此外,可以使用文本主題挖掘相關技術,對內容進行特徵化。這也分為兩種情況:
通用情況下,只是為了效果優化的特徵提取,那麼可以使用非監督學習的主題模型演算法。如LSA、PLSI和GaP模型或者LDA模型。
在和業務強相關時,需要在業務特定的標簽體系下給內容打上適合的標簽。這時候需要使用的是監督學習的主題模型。如sLDA、HSLDA等。
用戶特徵化
用戶特徵化即為用戶打標簽。通過用戶的行為日誌和一定的模型演算法得到用戶的每個標簽的權重。
用戶對內容的行為:點贊、不感興趣、點擊、瀏覽。對用戶的反饋行為如點贊賦予權值1,不感興趣賦予-1;對於用戶的瀏覽行為,則可使用點擊/瀏覽作為權值。
對內容發生的行為可以認為對此內容所帶的標簽的行為。
用戶的興趣是時間衰減的,即離當前時間越遠的興趣比重越低。時間衰減函數使用1/[log(t)+1], t為事件發生的時間距離當前時間的大小。
要考慮到熱門內容會干預用戶的標簽,需要對熱門內容進行降權。使用click/pv作為用戶瀏覽行為權值即可達到此目的。
此外,還需要考慮雜訊的干擾,如標題黨等。
另,在非業務強相關的情況下,還可以考慮使用LSA主題模型等矩陣分解的方式對用戶進行標簽化。
隱語義推薦
有了內容特徵和用戶特徵,可以使用隱語義模型進行推薦。這里可以使用其簡化形式,以達到實時計算的目的。
用戶對於某一個內容的興趣度(可以認為是CTR):
其中i=1…N是內容c具有的標簽,m(ci)指的內容c和標簽i的關聯度(可以簡單認為是1),n(ui)指的是用戶u的標簽i的權重值,當用戶不具有此標簽時n(ui)=0,q©指的是內容c的質量,可以使用點擊率(click/pv)表示。
3、其他運用
除了個性化推薦,基於內容的相關性演算法能精準地給出一篇新聞的相關推薦列表,對相關閱讀的實現非常有意義。此外,標簽系統對新聞分類的實現和提升准確性,也有重要的意義。
4、優缺點
基於內容的推薦演算法有幾個明顯優點:
對用戶數量沒有要求,無論日活幾千或是幾百萬,均可以採用;因此個性化推薦早期一般採用這種方式。
每個用戶的特徵都是由自己的行為來決定的,是獨立存在的,不會有互相干擾,因此惡意刷閱讀等新聞不會影響到推薦演算法。
而最主要的缺點就是確定性太強了,所有推薦的內容都是由用戶的閱讀歷史決定,所以沒辦法挖掘用戶的潛在興趣;也就是由於這一點,基於內容的推薦一般與其他推薦演算法同時存在。
基於用戶的協同推薦
終於,經過團隊的努力,你的產品已經有了大量活躍用戶了,這時候你開始不滿足於現有的演算法。雖然基於內容的推薦已經很精準了,但總是少了那麼一點性感。因為你所有給用戶的內容都是基於他們的閱讀習慣推薦的,沒能給用戶「不期而遇」的感覺。
於是,你就開始做基於用戶的協同過濾了。
基於用戶的協同過濾推薦演算法,簡單來講就是依據用戶A的閱讀喜好,為A找到與他興趣最接近的群體,所謂「人以群分」,然後把這個群體里其他人喜歡的,但是A沒有閱讀過的內容推薦給A。
舉例我是一個足球迷,系統找到與我類似的用戶都是足球的重度閱讀者,但與此同時,這些「足球群體」中有一部分人有看NBA新聞的習慣,系統就可能會給我推薦NBA內容,很可能我也對NBA也感興趣,這樣我在後台的興趣圖譜就更完善了。
1、用戶群體劃分
做基於用戶的協同過濾,首先就要做用戶的劃分,可以從三方面著手:
(1)外部數據的借用
這里使用社交平台數據的居多,現在產品的登錄體系一般都借用第三方社媒的登錄體系,如國外的Facebook、Twitter,國內的微信、微博,借用第三方賬戶的好處多多,例如降低門檻,方便傳播等,還能對個性化推薦起到重要作用。
因為第三方賬戶都是授權獲取部分用戶信息的,往往包括性別,年齡,工作甚至社交關系等,這些信息對用戶群劃分很有意義。
此外還有其他的一些數據也能借用,例如IP地址,手機語種等。
使用這些數據,你很容易就能得到一個用戶是北京的還是上海的,是大學生還是創業者,並依據這些屬性做准確的大類劃分。
比如一篇行業投資分析出來後,「上海創業圈」這個群體80%的用戶都看過,那就可以推薦給剩下的20%。
(2)產品內主動詢問
常見在產品首次啟動的時候,彈框詢問用戶是男是女,職業等,這樣能對內容推薦的冷啟動提供一些幫助。但總體來說,性價比偏低,只能詢問兩三個問題並對用戶的推薦內容做非常粗略的劃分,同時要避免打擾到用戶;這種做法算是基於用戶個性化的雛形。
(3)對比用戶特徵
新聞的特徵加用戶的閱讀數據能得到用戶的特徵,那就可以通過用戶特徵的相似性來劃分群體。
最後總結,沒有一款完美的個性化推薦演算法,畢竟用戶的心裡你別猜別猜別猜,但是產品經理還是要結合自身產品不斷打磨演算法。
⑥ 3分鍾輕鬆了解個性化推薦演算法
推薦這種體驗除了電商網站,還有新聞推薦、電台音樂推薦、搜索相關內容及廣告推薦,基於數據的個性化推薦也越來越普遍了。今天就針對場景來說說這些不同的個性化推薦演算法吧。
說個性化之前,先提一下非個性化。 非個性化的推薦也是很常見的,畢竟人嘛都有從眾心理,總想知道大家都在看什麼。非個性化推薦的方式主要就是以比較單一的維度加上半衰期去看全局排名,比如,30天內點擊排名,一周熱門排名。
但是只靠非個性化推薦有個弊端,就是馬太效應,點的人越多的,經過推薦點得人有更多。。。強者越強,弱者機會越少就越弱,可能導致兩級分化嚴重,一些比較優質素材就被埋沒了。
所以,為了解決一部分馬太效應的問題,也主要是順應數據化和自動化的模式,就需要增加個性化的推薦(可算說到正題了。。。)個性化的優點是不僅體驗好,而且也大大增加了效率,讓你更快找到你感興趣的東西。YouTube也曾做過實驗測試個性化和非個性化的效果,最終結果顯示個性化推薦的點擊率是同期熱門視頻的兩倍。
1.新聞、視頻、資訊和電台(基於內容推薦)
一般來說,如果是推薦資訊類的都會採用基於內容的推薦,甚至早期的郵件過濾也採用這種方式。
基於內容的推薦方法就是根據用戶過去的行為記錄來向用戶推薦相似額推薦品。簡單來說就是你常常瀏覽科技新聞,那就更多的給你推薦科技類的新聞。
復雜來說,根據行為設計權重,根據不同維度屬性區分推薦品都是麻煩的事,常用的判斷用戶可能會喜歡推薦品程度的餘弦向量公式長這樣,我就不解釋了(已經勾起了我關於高數不好的回憶)。。。
但是,這種演算法缺點是由於內容高度匹配,導致推薦結果的驚喜度較差,而且有冷啟動的問題,對新用戶不能提供可靠的推薦結果。並且,只有維度增加才能增加推薦的精度,但是維度一旦增加計算量也成指數型增長。如果是非實體的推薦品,定義風格也不是一件容易的事,同一個作者的文風和曲風也會發生改變。
2.電商零售類(協同過濾推薦和關聯規則推薦)
說電商推薦那不可能不講到亞馬遜,傳言亞馬遜有三成的銷售額都來自個性化的商品推薦系統。實際上,我自己也常常在這里找到喜歡的書,也願意主動的去看他到底給我推薦了什麼。
一般,電商主流推薦演算法是基於一個這樣的假設,「跟你喜好相似的人喜歡的東西你也很有可能喜歡。」即協同過濾過濾演算法。主要的任務就是找出和你品味最相近的用戶,從而根據最近他的喜好預測你也可能喜歡什麼。
這種方法可以推薦一些內容上差異較大但是又是用戶感興趣的物品,很好的支持用戶發現潛在的興趣偏好。也不需要領域知識,並且隨著時間推移性能提高。但是也存在無法向新用戶推薦的問題,系統剛剛開始時推薦質可能較量差。
電商行業也常常會使用到基於關聯規則的推薦。即以關聯規則為基礎,把已購商品作為規則頭,規則體為推薦對象。比如,你購買了羽毛球拍,那我相應的會向你推薦羽毛球周邊用品。關聯規則挖掘可以發現不同商品在銷售過程中的相關性,在零售業中已經得到了成功的應用。
3.廣告行業(基於知識推薦)
自從可以瀏覽器讀取cookies,甚至獲得年齡屬性等信息,廣告的個性化投放就也可以根據不同場景使用了。
當用戶的行為數據較少時,基於知識的推薦可以幫助我們解決這類問題。用戶必須指定需求,然後系統設法給出解決方式。假設,你的廣告需要指定某地區某年齡段的投放,系統就根據這條規則進行計算。基於知識的推薦在某種程度是可以看成是一種推理技術。這種方法不需要用戶行為數據就能推薦,所以不存在冷啟動問題。推薦結果主要依賴兩種形式,基於約束推薦和基於實例推薦。
4.組合推薦
由於各種推薦方法都有優缺點,所以在實際中,並不像上文講的那樣採用單一的方法進行建模和推薦(我真的只是為了解釋清楚演算法)。。。
在組合方式上,也有多種思路:加權、變換、混合、特徵組合、層疊、特徵擴充、元級別。 並且,為了解決冷啟動的問題,還會相應的增加補足策略,比如根據用戶模型的數據,結合挖掘的各種榜單進行補足,如全局熱門、分類熱門等。 還有一些開放性的問題,比如,需不需要幫助用戶有品味的提升,引導人去更好的生活。
最後,我總想,最好的推薦效果是像一個了解你的朋友一樣跟你推薦,因為他知道你喜歡什麼,最近對什麼感興趣,也總能發現一些有趣的新東西。這讓我想到有一些朋友總會興致勃勃的過來說,嘿,給你推薦個東西,你肯定喜歡,光是聽到這句話我好像就開心起來,也許這就是我喜歡這個功能的原因。
⑦ 個性化推薦系統的基本框架
個性化推薦是一種功能,它會通過用戶的個性化需求給他推薦符合其需求的內容, 如果選配助聽器可以去專業的助聽器驗配中心,結合自己的聽力和聽力需求來驗配,找到合適自己聽力參數的助聽器。
⑧ 推薦演算法綜述
推薦系統的目的是通過推薦計算幫助用戶從海量的數據對象中選擇出用戶最有可能感興趣的對象。涉及三個基本內容:目標用戶、待推薦項目以及推薦演算法,基本流程為:描述為用戶模型構建、項目模型建立以及推薦演算法處理三個基本流程;
為了能夠為用戶提供准確的推薦服務,推薦系統需要為用戶構建用戶模型,該模型能夠反映用戶動態變化的多層次興趣偏好,有助於推薦系統更好的理解用戶的特徵和需求。構建用戶模型通常需要經歷三個流程:用戶數據收集,用戶模型表示以及用戶模型更新。
(1)用戶數據收集:用戶數據是用戶模型構建的基礎,用戶數據收集的方式一般有顯示方式獲取和隱式方式獲取兩種。
顯示方式獲取的數據是用戶特徵屬性和興趣偏好的直接反映,所獲得的信息數據是較為客觀全面的,比如用戶在注冊時包含的性別、年齡等信息可以直接表示出用戶的基本人口學信息和興趣信息,用戶對項目的評分可以反映出用戶的偏好。但顯示獲取的方式最大的缺陷是其實時性較差,並且具有很強的侵襲性。
隱式方式獲取用戶數據是在不幹擾用戶的前提下,採集用戶的操作行為數據,並從中挖掘出用戶的興趣偏好。用戶的很多操作行為都能反映出用戶的喜好,比如用戶瀏覽網頁的速度、用戶查詢的關鍵字等,推薦系統在不影響用戶使用系統的情況下,通過行為日誌挖掘出用戶的偏好。隱式獲取方式由於具有較好的實時性和靈活性和較弱的侵襲性,己經成為推薦系統中主要的用戶數據採集方式。
(2)用戶模型表示:用戶模型是從用戶數據中歸納出的推薦系統所理解的用戶興趣偏好的結構化形式。
a 基於內容關鍵詞表示;
b 基於評分矩陣表示;
(3)用戶模型更新:推薦系統面臨的問題之一是興趣漂移,興趣漂移的根本原因在於用戶的興趣會隨時間發生改變。為了使用戶模型夠准確的代表用戶的興趣,推薦系統需要根據最新的用戶數據對用戶模型進行更新。
目前項目模型主要通過基於內容和基於分類這兩類方式來建立。基於內容的方式是以項目本身內容為基礎,向量空間模型表示是目前御用最為廣泛的基於內容的方式。
基於分類的方式是根據項目的內容或者屬性,將項目劃分到一個或者幾個類別中,利用類別信息來表示項目,這種方法可以很方便地將項目推薦給對某一類別感興趣的用戶。常見的分類演算法有樸素貝葉斯演算法和KNN分類演算法等。
推薦系統實現的核心是其使用的推薦演算法。針對不同的使用環境及其系統的數據特徵,選取不同的推薦演算法,可以在本質上提高推薦系統的推薦效果。根據不同的分類標准,推薦演算法出現了有很多不同的分類方法,本文採用了比較普遍的分類方法。
推薦系統通常被分為基於內容的推薦演算法、協同過濾推薦演算法以及混合模型推薦演算法三大類。
基於內容的推薦演算法,其本質是對物品或用戶的內容進行分析建立屬性特徵。系統根據其屬性特徵,為用戶推薦與其感興趣的屬性特徵相似的信息。演算法的主要思想是將與用戶之前感興趣的項目的內容相似的其他項目推薦給用戶。
CBF(Content-based Filter Recommendations)演算法的主要思想是將與用戶之前感興趣的項目的內容相似的其他項目推薦給用戶,比如用戶喜歡Java開發的書籍,則基於內容過濾演算法將用戶尚未看過的其他Java開發方面的書籍推薦給用戶。因此,該推薦演算法的關鍵部分是計算用戶模型和項目模型之間的內容相似度,相似度的計算通常採用餘弦相似性度量。
基於內容的推薦過程一般分為以下三個模塊:
(1)特徵提取模塊:由於大多數物品信息是非結構化的,需要為每個物品(如產品、網頁、新聞、文檔等)抽取出一些特徵屬性,用某一恰當的格式表示,以便下一階段的處理。如將新聞信息表示成關鍵詞向量,此種表示形式將作為下一模塊(屬性特徵學習模塊)的輸入。
(2)特徵學習模塊:通過用戶的歷史行為數據特徵,機器學習出用戶的興趣特徵模型。本模塊負責收集代表用戶喜好的數據信息,並泛化這些數據,用於構建用戶特徵模型。通常使用機器學習的泛化策略,來將用戶喜好表示為興趣模型。
(3)推薦模塊:該模塊利用上一階段得到的用戶特徵模型,通過對比用戶興趣模型與帶推薦物品的特徵相似度,為用戶推薦與其興趣相似度較高的物品,從而達到個性化推薦的目的。該模塊一般採用計算用戶興趣向量與待推薦物品特徵向量的相似度來進行排序,將相似度較高的物品推薦給相應用戶。計算相似度有多種方法,如皮爾遜相關系數法、夾角餘弦法、Jaccard相關系數法等。
協同過濾演算法(Collaborative Filtering)是於內容無關的,即不需要額外獲取分析用戶或物品的內容屬性特徵。是基於用戶歷史行為數據進行推薦的演算法。其通過分析用戶與物品間的聯系來尋找新的用戶與物品間的相關性。
該演算法演算法通常有兩個過程,一個過程是預測,另一個過程是推薦。主流的協同過濾演算法包括三種:基於用戶的協同過濾(User-Based Collaborative Filtering,UBCF)、基於項目的協同過濾(Item-Based Collaborative Filtering, IBCF)和基於模型的協同過濾(Model-Based Collaborative Filtering, MBCF)
(1)基於用戶的協同過濾演算法
基於用戶的協同過濾推薦演算法,先通過用戶歷史行為數據找到和用戶u相似的用戶,將這些用戶感興趣的且u沒有點擊過的物品推薦給用戶。
演算法主要包括以下兩個步驟:
(1)找到與目標用戶喜好相似的鄰居用戶集合。
(2)在鄰居用戶集合中,為用戶推薦其感興趣的物品。
UBCF的基本思想是將與當前用戶有相同偏好的其他用戶所喜歡的項目推薦給當前用戶。一個最典型的例子就是電影推薦,當我們不知道哪一部電影是我們比較喜歡的時候,通常會詢問身邊的朋友是否有好的電影推薦,詢問的時候我們習慣於尋找和我們品味相同或相似的朋友。
(2)基於物品的協同過濾演算法
基於物品的協同過濾演算法(Item-based Collaborative Filtering)其主要思想是,為用戶推薦那些與他們之前喜歡或點擊過的物品相似的物品。不過基於物品的協同過濾演算法並不是利用物品的內容屬性特徵來計算物品之間的相似度的。該類演算法是利用用戶的歷史行為數據計算待推薦物品之間的相似度。在該類演算法中,如果喜歡物品A的用戶大都也喜歡物品B,那麼就可以認為物品A和物品B之間的相似度很高。
演算法分為以下兩個步驟:
(1)根據用戶歷史行為數據,計算物品間的相似度。
(2)利用用戶行為和物品間的相似度為用戶生成推薦列表。
IBCF演算法是亞馬遜在2003年發表的論文中首次提出,該演算法的基本思想是根據所有用戶的歷史偏好數據計算項目之間的相似性,然後把和用戶喜歡的項目相類似的並且用戶還未選擇的其他項目推薦給用戶,例如,假設用戶喜歡項目a,則用戶喜歡與項目a高度相似且還未被用戶選擇的項目b的可能性非常大,因此將項目b推薦給用戶。
UBCF和IBCF都屬於基於內存的協同過濾演算法,這類演算法由於充分發揮了用戶的評分數據,形成全局推薦,因此具有較高的推薦質量。但隨著用戶和項目的規模增長,這類演算法的計算時間大幅上升,使得系統的性能下降。針對該問題,研究人員提出將數據挖掘中的模型和CF演算法結合,提出了基於模型的協同過濾演算法(MBCF) 。
MBCF演算法利用用戶歷史評分數據建立模型,模型建立的演算法通常有奇異值分解、聚類演算法、貝葉斯網路、關聯規則挖掘等,且通常是離線完成。由於MBCF通常會對原始評分值做近似計算,通過犧牲一定的准確性來換取系統性能,因此MBCF的推薦質量略差於UBCF和IBCF。
由於基於內容的推薦演算法和協同過濾推薦演算法都有其各自的局限性,混合推薦演算法應運而生。混合推薦演算法根據不同的應用場景,有多
種不同的結合方式,如加權、分層和分區等。
目前使用的混合推薦演算法的思想主要可以分成以下幾類:
(1)多個推薦演算法獨立運行,獲取的多個推薦結果以一定的策略進行混合,例如為每一個推薦結果都賦予一個權值的加權型混合推薦演算法和將各個推薦結果取TOP-N的交叉混合推薦演算法。
(2)將前一個推薦方法產出的中間結果或者最終結果輸出給後一個推薦方法,層層遞進,推薦結果在此過程中會被逐步優選,最終得到一個精確度比較高的結果。
(3)使用多種推薦演算法,將每種推薦演算法計算過程中產生的相似度值通過權重相加,調整每個推薦演算法相似度值的權重,以該混合相似度值為基礎,選擇出鄰域集合,並結合鄰域集合中的評估信息,得出最優的推薦結果。
BP (Back Propagation)神經網路是目前應用最廣泛的神經網路模型之一,是一種按誤差逆傳播演算法訓練的多層前饋網路。
BP神經網路模型包括輸入層、隱藏層和輸出層,每一層由一個或多個神經元組成,其結構圖如圖2-3所示。BP神經網路擁有很強的非線性映射能力和自學習、自適應能力,網路本身結構的可變性,也使其十分靈活,一個三層的BP神經網路能夠實現對任意非線性函數進行逼近。
BP神經網路的訓練過程通常分為3個過程,依次分別為數據初始化過程、正向推演計算過程以及反向權重調整過程。數據初始化是BP神經網路能夠進行有效訓練的前提,該過程通常包括輸入數據進行歸一化處理和初始權重的設置;正向推演計算是數據沿著網路方向進行推演計算;反向權重調整則是將期望輸出和網路的實際輸出進行對比,從輸出層開始,向著輸入層的方向逐層計算各層中各神經元的校正差值,調整神經元的權重。正向推演計算和反向權重調整為對單個訓練樣本一次完整的網路訓練過程,經過不斷的訓練調整,網路的實際輸出越來越趨近於期望輸出,當網路輸出到達預期目標,整個訓練過程結束。
TF-IDF(Term Frequency-Inverse Document Frequency,詞頻一逆文檔)是文本處理中常用的加權技術,廣泛應用於信息檢索、搜索引擎等領域。
TF-IDF的主要思想是:如果一個關鍵詞在文檔中出現的頻率很高,而在其他文檔中出現次數較少,則該關鍵詞被認為具有較強的代表性,即該關鍵詞通過TF-IDF計算後有較高的權重。
TextRank演算法,是一種用於文本關鍵詞排序的演算法,頁排序演算法PageRank。
PageRank基本思想是將每個網頁看成一個節點,網頁中的鏈接指向看成一條有向邊,一個網頁節點的重要程度取決於鏈接指向該網頁節點的其他節點的數量和重要權值,該過程描述如下:讓每一個網頁對其所包含的鏈接指向的網頁進行迭代投票,每次迭代投票過程中票的權重取決於網頁當前擁有的票數,當投票結果收斂或者達到指定的迭代次數時,每個網頁所獲得票數即為網頁重要程度權值。
TextRank演算法相比於TF-IDF最大的優點是TextRank是一種無監督的學習,因此不會受限於文本的主題,並且無需大規模的訓練集,可以針對單一文本進行快速的關鍵詞的權重計算。
⑨ 常見的推薦演算法
根據用戶興趣和行為,向用戶推薦所需要的信息,幫助用戶在海量的信息中快速發現自己真正需要的東西。 所以推薦系統要解決的問題用戶沒用明確的需求以及信息存在過載 。推薦系統一般要基於以下來搭建:
1、根據業務來定義自身產品的熱門標准
2、用戶信息:比如性別、年齡、職業、收入等
3、用戶行為
4、社會化關系
1、非個性化推薦
在冷啟動方面我們精彩用非個性化推薦來解決問題。常見的有:熱門推薦,編輯推薦,最新推薦等。下面是3個場景下的排序介紹:
熱門推薦:根據業務類型確定排名核心指標,比如閱讀數,其次要考慮避免馬太效應,所以增加1個維度:時間。一般情況一個內容的熱度是隨著時間不斷下降的,所以需要設定重力因子G,它決定熱度隨著時間流逝下降的速度。熱度初始值由閱讀數決定,我們假設R為閱讀書,距離發帖時間的時間為T,重力因子為G,熱度為rank。 根據熱度隨著時間而不斷下降,且是非線性的,所以我們用指數函數來表達時間和熱度的關系:rank=R/(T)^G,下圖為熱度的基本曲線:
通過該函數,我們可以隨意調整參數來控制曲線的平坦和陡峭,如果G越大,曲線越陡峭說明熱度下降越快。如果我們要調整熱度初始值,可對R進行調整,比如R1=R^0.8,來縮短每篇文章的初始熱度值
編輯推薦:一般由編輯在後台進行設置
最新推薦:如果無其他規則,一般按內容更新時間/創建時間來倒序
2、基於用戶基本信息推薦(人口統計學)
根據系統用戶的基本信息如:領域、職位、工作年齡、性別和所在地等。根據這些信息給用戶推薦感興趣或者相關的內容。
常見的用戶基本信息有:性別,年齡,工作、收入、領域、職位、所在地,手機型號、網路條件、安裝渠道、操作系統等等。根據這些信息來關聯我們數據源,比如年齡-關聯電影表、收入-關聯商品類型表,性別-文章關聯表等等。然後設定權重,給予個性化的推薦。
步驟1:用戶建模,收集用戶基本信息,建立興趣圖譜,標簽體系樹狀結構然後配上權重
步驟2:內容建模,細分內容的元數據,將步驟1的用戶標簽和元數據連接,然後進行推薦
2、基於內容基本的推薦
根據推薦物品或者信息的元數據,發現物品或者信息的相關性, 然後基於用戶以往的喜好記錄 ,推薦給用戶相似的物品。
內容的一些基本屬性:tag、領域、主題、類型、關鍵字、來源等
3、基於協同過濾的推薦
這種演算法基於一種物以類聚人以群分的假設, 喜歡相同物品的用戶更有可能具有相同的興趣 。基於協同過濾推薦系統一般應用於有用戶評分的系統中,通過分數去刻畫用戶對於物品的喜好。根據維度可分為2種:
1、基於用戶:找到和你相似的人推薦他們看過而你沒有看過的內容
比如下面,系統判斷甲乙2個用戶是相似的,那麼會給甲推薦短視頻相關內容,會給乙推薦數據分析相關內容
甲:產品經理、運營、數據分析
乙:產品經理、運營、短視頻
丙:比特幣、創業、矽谷
步驟1:找到和目標用戶興趣相似的用戶集合
步驟2:找到集合中用戶喜歡的且目標用戶沒有被推薦過的內容
2、基於物品:以物為本建立各商品之間相似度關系矩陣,用戶看了x也會看y
比如下面,甲和乙分別不約而同看了產品經理和數據分析,說明喜歡產品經理和數據分析的用戶重合度高,說明兩個內容相似。所以給喜歡產品經理的人推薦數據分析,給喜歡數據分析的人推薦產品經理。
這么理解:喜歡產品經理的人有m人,喜歡數據分析有n人,其中m中有80%用戶與n中80%的用戶是一樣的,就意味著喜歡產品經理的用戶也會喜歡數據分析。
產品經理:甲、乙,丁
數據分析:甲、乙,戊
增長黑客:甲、丙
喜歡物品A的用戶,可能也會喜歡與物品A相似的物品B,通過歷史行為計算出2個物品的相似度(比如m人喜歡A,n人喜歡B,有k人喜歡A又喜歡B,那麼A和B的相似度可計算為k/m或者n,因為k屬於m和n),這個推薦和內容推薦演算法區別是內容推薦演算法是根據內容的屬性來關聯, 而基於物品的協同過濾則是根據用戶的行為對內容進行關聯
4、基於用戶社交關系推薦
用戶與誰交朋友或者關系好,在一定程度上朋友的需求和自身的需求是相似的。所以向用戶推薦好友喜歡的東西。本質上是好友關系鏈版的基於用戶的協調過濾
5、推薦思路的拓展
根據不同使用場景進行不同的推薦,可細分的場景包括用戶使用的:時間、地點、心情、網路環境、興趣、上下文信息以及使用場景。每個場景的推薦內容都不一樣,所以往往一個系統都是由多種推薦方式組成,比如加權混合。
加權混合:用線性公式將幾種不同的推薦按照一定權重組合起來,具體權重值需要反復測試調整。例子:加權混合=推薦1結果*a+推薦2結果*b+...+推薦n結果*n,其中abn為權重,和為1
下面分享一張來自知乎的圖,供學習,侵刪:
基於用戶信息的推薦 與 基於用戶的協同過濾:
兩者都是計算用戶的相似度, 但基於用戶信息的推薦只考慮用戶本身信息來計算相似度,而基於用戶的協同過濾是基於用戶歷史偏好來計算相似度
基於內容的信息推薦 與 基於物品的協同過濾:
兩者都是計算物品的相似度, 但是基於內容的信息推薦只考慮物品本身的屬性特徵來計算相似度,而基於物品的協同過濾是基於用戶歷史偏好來計算相似度
基於用戶信息的推薦特點:
1、不需要歷史數據,對用戶基本信息建模
2、不依賴於物品,所以其他領域可無縫接入
3、因為用戶基本信息一般變化不大,所以推薦效果一般
基於內容信息的推薦特點:
1、物品屬性有限,很難獲得有效又全的數據
2、需要獲取用戶喜歡的歷史內容,再來推薦與內容相似的東西,所以有冷啟動問題
基於用戶/基於物品的協同過濾推薦特點:
1、需要獲取用戶的歷史偏好,所以有冷啟動問題
2、推薦效果依賴於大數據,數據越多,推薦效果就越好
⑩ 推薦演算法簡介
寫在最前面:本文內容主要來自於書籍《推薦系統實踐》和《推薦系統與深度學習》。
推薦系統是目前互聯網世界最常見的智能產品形式。從電子商務、音樂視頻網站,到作為互聯網經濟支柱的在線廣告和新穎的在線應用推薦,到處都有推薦系統的身影。推薦演算法是推薦系統的核心,其本質是通過一定的方式將用戶和物品聯系起來,而不同的推薦系統利用了不同的方式。
推薦系統的主要功能是以個性化的方式幫助用戶從極大的搜索空間中快速找到感興趣的對象。因此,目前所用的推薦系統多為個性化推薦系統。個性化推薦的成功應用需要兩個條件:
在推薦系統的眾多演算法中,基於協同的推薦和基於內容的推薦在實踐中得到了最廣泛的應用。本文也將從這兩種演算法開始,結合時間、地點上下文環境以及社交環境,對常見的推薦演算法做一個簡單的介紹。
基於內容的演算法的本質是對物品內容進行分析,從中提取特徵,然後基於用戶對何種特徵感興趣來推薦含有用戶感興趣特徵的物品。因此,基於內容的推薦演算法有兩個最基本的要求:
下面我們以一個簡單的電影推薦來介紹基於內容的推薦演算法。
現在有兩個用戶A、B和他們看過的電影以及打分情況如下:
其中問好(?)表示用戶未看過。用戶A對《銀河護衛隊 》《變形金剛》《星際迷航》三部科幻電影都有評分,平均分為 4 .7 分 ( (5+4+5 ) / 3=4.7 );對《三生三世》《美人魚》《北京遇上西雅圖》三部愛情電影評分平均分為 2.3 分 ( ( 3十2+2 ) /3=2.3 )。現在需要給A推薦電影,很明顯A更傾向於科幻電影,因此推薦系統會給A推薦獨立日。而對於用戶B,通過簡單的計算我們可以知道更喜歡愛情電影,因此給其推薦《三生三世》。當然,在實際推薦系統中,預測打分比這更加復雜些,但是其原理是一樣的。
現在,我們可以將基於內容的推薦歸納為以下四個步驟:
通過上面四步就能快速構建一個簡單的推薦系統。基於內容的推薦系統通常簡單有效,可解釋性好,沒有物品冷啟動問題。但他也有兩個明顯的缺點:
最後,順便提一下特徵提取方法:對於某些特徵較為明確的物品,一般可以直接對其打標簽,如電影類別。而對於文本類別的特徵,則主要是其主題情感等,則些可以通過tf-idf或LDA等方法得到。
基於協同的演算法在很多地方也叫基於鄰域的演算法,主要可分為兩種:基於用戶的協同演算法和基於物品的協同演算法。
啤酒和尿布的故事在數據挖掘領域十分有名,該故事講述了美國沃爾瑪超市統計發現啤酒和尿布一起被購買的次數非常多,因此將啤酒和尿布擺在了一起,最後啤酒和尿布的銷量雙雙增加了。這便是一個典型的物品協同過濾的例子。
基於物品的協同過濾指基於物品的行為相似度(如啤酒尿布被同時購買)來進行物品推薦。該演算法認為,物品A和物品B具有很大相似度是因為喜歡物品A的用戶大都也喜歡物品B。
基於物品的協同過濾演算法主要分為兩步:
基於物品的協同過濾演算法中計算物品相似度的方法有以下幾種:
(1)基於共同喜歡物品的用戶列表計算。
此外,John S. Breese再其論文中還提及了IUF(Inverse User Frequence,逆用戶活躍度)的參數,其認為活躍用戶對物品相似度的貢獻應該小於不活躍的用戶,應該增加IUF參數來修正物品相似度的公式:
上面的公式只是對活躍用戶做了一種軟性的懲罰, 但對於很多過於活躍的用戶, 比如某位買了當當網80%圖書的用戶, 為了避免相似度矩陣過於稠密, 我們在實際計算中一般直接忽略他的興趣列表, 而不將其納入到相似度計算的數據集中。
(2)基於餘弦相似度計算。
(3)熱門物品的懲罰。
從上面(1)的相似度計算公式中,我們可以發現當物品 i 被更多人購買時,分子中的 N(i) ∩ N(j) 和分母中的 N(i) 都會增長。對於熱門物品,分子 N(i) ∩ N(j) 的增長速度往往高於 N(i),這就會使得物品 i 和很多其他的物品相似度都偏高,這就是 ItemCF 中的物品熱門問題。推薦結果過於熱門,會使得個性化感知下降。以歌曲相似度為例,大部分用戶都會收藏《小蘋果》這些熱門歌曲,從而導致《小蘋果》出現在很多的相似歌曲中。為了解決這個問題,我們對於物品 i 進行懲罰,例如下式, 當α∈(0, 0.5) 時,N(i) 越小,懲罰得越厲害,從而使熱門物品相關性分數下降( 博主註:這部分未充分理解 ):
此外,Kary pis在研究中發現如果將ItemCF的相似度矩陣按最大值歸一化, 可以提高推薦的准確率。 其研究表明, 如果已經得到了物品相似度矩陣w, 那麼可以用如下公式得到歸一化之後的相似度矩陣w':
歸一化的好處不僅僅在於增加推薦的准確度,它還可以提高推薦的覆蓋率和多樣性。一般來說,物品總是屬於很多不同的類,每一類中的物品聯系比較緊密。假設物品分為兩類——A和B, A類物品之間的相似度為0.5, B類物品之間的相似度為0.6, 而A類物品和B類物品之間的相似度是0.2。 在這種情況下, 如果一個用戶喜歡了5個A類物品和5個B類物品, 用ItemCF給他進行推薦, 推薦的就都是B類物品, 因為B類物品之間的相似度大。 但如果歸一化之後, A類物品之間的相似度變成了1, B類物品之間的相似度也是1, 那麼這種情況下, 用戶如果喜歡5個A類物品和5個B類物品, 那麼他的推薦列表中A類物品和B類物品的數目也應該是大致相等的。 從這個例子可以看出, 相似度的歸一化可以提高推薦的多樣性。
那麼,對於兩個不同的類,什麼樣的類其類內物品之間的相似度高,什麼樣的類其類內物品相似度低呢?一般來說,熱門的類其類內物品相似度一般比較大。如果不進行歸一化,就會推薦比較熱門的類裡面的物品,而這些物品也是比較熱門的。因此,推薦的覆蓋率就比較低。相反,如果進行相似度的歸一化,則可以提高推薦系統的覆蓋率。
最後,利用物品相似度矩陣和用戶打過分的物品記錄就可以對一個用戶進行推薦評分:
基於用戶的協同演算法與基於物品的協同演算法原理類似,只不過基於物品的協同是用戶U購買了A物品,會計算經常有哪些物品與A一起購買(也即相似度),然後推薦給用戶U這些與A相似的物品。而基於用戶的協同則是先計算用戶的相似性(通過計算這些用戶購買過的相同的物品),然後將這些相似用戶購買過的物品推薦給用戶U。
基於用戶的協同過濾演算法主要包括兩個步驟:
步驟(1)的關鍵是計算用戶的興趣相似度,主要是利用用戶的行為相似度計算用戶相似度。給定用戶 u 和 v,N(u) 表示用戶u曾經有過正反饋(譬如購買)的物品集合,N(v) 表示用戶 v 曾經有過正反饋的物品集合。那麼我們可以通過如下的 Jaccard 公式簡單的計算 u 和 v 的相似度:
或通過餘弦相似度:
得到用戶之間的相似度之後,UserCF演算法會給用戶推薦和他興趣最相似的K個用戶喜歡的物品。如下的公式度量了UserCF演算法中用戶 u 對物品 i 的感興趣程度:
首先回顧一下UserCF演算法和ItemCF演算法的推薦原理:UserCF給用戶推薦那些和他有共同興趣愛好的用戶喜歡的物品, 而ItemCF給用戶推薦那些和他之前喜歡的物品具有類似行為的物品。
(1)從推薦場景考慮
首先從場景來看,如果用戶數量遠遠超過物品數量,如購物網站淘寶,那麼可以考慮ItemCF,因為維護一個非常大的用戶關系網是不容易的。其次,物品數據一般較為穩定,因此物品相似度矩陣不必頻繁更新,維護代價較小。
UserCF的推薦結果著重於反應和用戶興趣相似的小群體的熱點,而ItemCF的推薦結果著重於維系用戶的歷史興趣。換句話說,UserCF的推薦更社會化,反應了用戶所在小型興趣群體中物品的熱門程度,而ItemCF的推薦更加個性化,反應了用戶自己的個性傳承。因此UserCF更適合新聞、微博或微內容的推薦,而且新聞內容更新頻率非常高,想要維護這樣一個非常大而且更新頻繁的表無疑是非常難的。
在新聞類網站中,用戶的興趣愛好往往比較粗粒度,很少會有用戶說只看某個話題的新聞,而且往往某個話題也不是每天都會有新聞。 個性化新聞推薦更強調新聞熱點,熱門程度和時效性是個性化新聞推薦的重點,個性化是補充,所以 UserCF 給用戶推薦和他有相同興趣愛好的人關注的新聞,這樣在保證了熱點和時效性的同時,兼顧了個性化。
(2)從系統多樣性(也稱覆蓋率,指一個推薦系統能否給用戶提供多種選擇)方面來看,ItemCF的多樣性要遠遠好於UserCF,因為UserCF更傾向於推薦熱門物品。而ItemCF具有較好的新穎性,能夠發現長尾物品。所以大多數情況下,ItemCF在精度上較小於UserCF,但其在覆蓋率和新穎性上面卻比UserCF要好很多。
在介紹本節基於矩陣分解的隱語義模型之前,讓我們先來回顧一下傳統的矩陣分解方法SVD在推薦系統的應用吧。
基於SVD矩陣分解在推薦中的應用可分為如下幾步:
SVD在計算前會先把評分矩陣 A 缺失值補全,補全之後稀疏矩陣 A 表示成稠密矩陣,然後將分解成 A' = U∑V T 。但是這種方法有兩個缺點:(1)補成稠密矩陣後需要耗費巨大的儲存空間,對這樣巨大的稠密矩陣進行儲存是不現實的;(2)SVD的計算復雜度很高,對這樣大的稠密矩陣中進行計算式不現實的。因此,隱語義模型就被發明了出來。
更詳細的SVD在推薦系統的應用可參考 奇異值分解SVD簡介及其在推薦系統中的簡單應用 。
隱語義模型(Latent Factor Model)最早在文本挖掘領域被提出,用於找到文本的隱含語義。相關的演算法有LSI,pLSA,LDA和Topic Model。本節將對隱語義模型在Top-N推薦中的應用進行詳細介紹,並通過實際的數據評測該模型。
隱語義模型的核心思想是通過隱含特徵聯系用戶興趣和物品。讓我們通過一個例子來理解一下這個模型。
現有兩個用戶,用戶A的興趣涉及偵探小說、科普圖書以及一些計算機技術書,而用戶B的興趣比較集中在數學和機器學習方面。那麼如何給A和B推薦圖書呢?
我們可以對書和物品的興趣進行分類。對於某個用戶,首先得到他的興趣分類,然後從分類中挑選他可能喜歡的物品。簡言之,這個基於興趣分類的方法大概需要解決3個問題:
對於第一個問題的簡單解決方案是找相關專業人員給物品分類。以圖書為例,每本書出版時,編輯都會給出一個分類。但是,即使有很系統的分類體系,編輯給出的分類仍然具有以下缺點:(1)編輯的意見不能代表各種用戶的意見;(2)編輯很難控制分類的細粒度;(3)編輯很難給一個物品多個分類;(4)編輯很難給一個物品多個分類;(5)編輯很難給出多個維度的分類;(6)編輯很難決定一個物品在某一個類別中的權重。
為了解決上述問題,研究員提出可以從數據出發,自動找到那些分類,然後進行個性化推薦。隱語義模型由於採用基於用戶行為統計的自動聚類,較好地解決了上面提出的5個問題。
LFM將矩陣分解成2個而不是3個:
推薦系統中用戶和物品的交互數據分為顯性反饋和隱性反饋數據。隱式模型中多了一個置信參數,具體涉及到ALS(交替最小二乘法,Alternating Least Squares)中對於隱式反饋模型的處理方式——有的文章稱為「加權的正則化矩陣分解」:
一個小細節:在隱性反饋數據集中,只有正樣本(正反饋)沒有負反饋(負樣本),因此如何給用戶生成負樣本來進行訓練是一個重要的問題。Rong Pan在其文章中對此進行了探討,對比了如下幾種方法:
用戶行為很容易用二分圖表示,因此很多圖演算法都可以應用到推薦系統中。基於圖的模型(graph-based model)是推薦系統中的重要內容。很多研究人員把基於領域的模型也稱為基於圖的模型,因為可以把基於領域的模型看作基於圖的模型的簡單形式。
在研究基於圖的模型之前,需要將用戶行為數據表示成圖的形式。本節的數據是由一系列用戶物品二元組 (u, i) 組成的,其中 u 表示用戶對物品 i 產生過行為。
令 G(V, E) 表示用戶物品二分圖,其中 V=V U UV I 由用戶頂點 V U 和物品節點 V I 組成。對於數據集中每一個二元組 (u, i) ,圖中都有一套對應的邊 e(v u , v i ),其中 v u ∈V U 是用戶對應的頂點,v i ∈V I 是物品i對應的頂點。如下圖是一個簡單的物品二分圖,其中圓形節點代表用戶,方形節點代表物品,用戶物品的直接連線代表用戶對物品產生過行為。比如下圖中的用戶A對物品a、b、d產生過行為。
度量圖中兩個頂點之間相關性的方法很多,但一般來說圖中頂點的相關性主要取決於下面3個因素:
而相關性高的一對頂點一般具有如下特徵:
舉個例子,如下圖,用戶A和物品c、e沒有邊直連,但A可通過一條長度為3的路徑到達c,而Ae之間有兩條長度為3的路徑。那麼A和e的相關性要高於頂點A和c,因而物品e在用戶A的推薦列表中應該排在物品c之前,因為Ae之間有兩條路徑。其中,(A,b,C,e)路徑經過的頂點的出度為(3,2,2,2),而 (A,d,D,e) 路徑經過了一個出度比較大的頂點D,所以 (A,d,D,e) 對頂點A與e之間相關性的貢獻要小於(A,b,C,e)。
基於上面3個主要因素,研究人員設計了很多計算圖中頂點相關性的方法,本節將介紹一種基於隨機遊走的PersonalRank演算法。
假設要給用戶u進行個性化推薦,可以從用戶u對應的節點 v u 開始在用戶物品二分圖上進行隨機遊走。遊走到任一節點時,首先按照概率α決定是繼續遊走還是停止這次遊走並從 v u 節點重新開始遊走。若決定繼續遊走,則從當前節點指向的節點中按照均勻分布隨機選擇一個節點作為遊走下次經過的節點。這樣,經過很多次隨機遊走後,每個物品被訪問到的概率會收斂到一個數。最終的推薦列表中物品的權重就是物品節點的訪問概率。
上述演算法可以表示成下面的公式:
雖然通過隨機遊走可以很好地在理論上解釋PersonalRank演算法,但是該演算法在時間復雜度上有明顯的缺點。因為在為每個用戶進行推薦時,都需要在整個用戶物品二分圖上進行迭代,知道所有頂點的PR值都收斂。這一過程的時間復雜度非常高,不僅無法在線進行實時推薦,離線計算也是非常耗時的。
有兩種方法可以解決上面PersonalRank時間復雜度高的問題:
(1)減少迭代次數,在收斂之前停止迭代。但是這樣會影響最終的精度。
(2)從矩陣論出發,重新涉及演算法。另M為用戶物品二分圖的轉移概率矩陣,即:
網路社交是當今社會非常重要甚至可以說是必不可少的社交方式,用戶在互聯網上的時間有相當大的一部分都用在了社交網路上。
當前國外最著名的社交網站是Facebook和Twitter,國內的代表則是微信/QQ和微博。這些社交網站可以分為兩類:
需要指出的是,任何一個社交網站都不是單純的社交圖譜或興趣圖譜。如QQ上有些興趣愛好群可以認識不同的陌生人,而微博中的好友也可以是現實中認識的。
社交網路定義了用戶之間的聯系,因此可以用圖定義社交網路。我們用圖 G(V,E,w) 定義一個社交網路,其中V是頂點集合,每個頂點代表一個用戶,E是邊集合,如果用戶va和vb有社交網路關系,那麼就有一條邊 e(v a , v b ) 連接這兩個用戶,而 w(v a , v b )定義了邊的權重。一般來說,有三種不同的社交網路數據:
和一般購物網站中的用戶活躍度分布和物品流行度分布類似,社交網路中用戶的入度(in degree,表示有多少人關注)和出度(out degree,表示關注多少人)的分布也是滿足長尾分布的。即大部分人關注的人都很少,被關注很多的人也很少。
給定一個社交網路和一份用戶行為數據集。其中社交網路定義了用戶之間的好友關系,而用戶行為數據集定義了不同用戶的歷史行為和興趣數據。那麼最簡單的演算法就是給用戶推薦好友喜歡的物品集合。即用戶u對物品i的興趣 p ui 可以通過如下公式計算。
用戶u和用戶v的熟悉程度描述了用戶u和用戶在現實社會中的熟悉程度。一般來說,用戶更加相信自己熟悉的好友的推薦,因此我們需要考慮用戶之間的熟悉度。下面介紹3中衡量用戶熟悉程度的方法。
(1)對於用戶u和用戶v,可以使用共同好友比例來計算他們的相似度:
上式中 out(u) 可以理解為用戶u關注的用戶合集,因此 out(u) ∩ out(v) 定義了用戶u、v共同關注的用戶集合。
(2)使用被關注的用戶數量來計算用戶之間的相似度,只要將公式中的 out(u) 修改為 in(u):
in(u) 是指關注用戶u的集合。在無向社交網路中,in(u)和out(u)是相同的,而在微博這種有向社交網路中,這兩個集合的含義就不痛了。一般來說,本方法適合用來計算微博大V之間的相似度,因為大v往往被關注的人數比較多;而方法(1)適用於計算普通用戶之間的相似度,因為普通用戶往往關注行為比較豐富。
(3)除此之外,還可以定義第三種有向的相似度:這個相似度的含義是用戶u關注的用戶中,有多大比例也關注了用戶v:
這個相似度有一個缺點,就是在該相似度下所有人都和大v有很大的相似度,這是因為公式中的分母並沒有考慮 in(v) 的大小,所以可以把 in(v) 加入到上面公式的分母,來降低大v與其他用戶的相似度:
上面介紹了3種計算用戶之間相似度(或稱熟悉度)的計算方法。除了熟悉程度,還需要考慮用戶之間的興趣相似度。我們和父母很熟悉,但很多時候我們和父母的興趣確不相似,因此也不會喜歡他們喜歡的物品。因此,在度量用戶相似度時,還需要考慮興趣相似度,而興趣相似度可以通過和UserCF類似的方法度量,即如果兩個用戶喜歡的物品集合重合度很高,兩個用戶的興趣相似度很高。
最後,我們可以通過加權的形式將兩種權重合並起來,便得到了各個好有用戶的權重了。
有了權重,我們便可以針對用戶u挑選k個最相似的用戶,把他們購買過的物品中,u未購買過的物品推薦給用戶u即可。打分公式如下:
其中 w' 是合並後的權重,score是用戶v對物品的打分。
node2vec的整體思路分為兩個步驟:第一個步驟是隨機遊走(random walk),即通過一定規則隨機抽取一些點的序列;第二個步驟是將點的序列輸入至word2vec模型從而得到每個點的embedding向量。
隨機遊走在前面基於圖的模型中已經介紹過,其主要分為兩步:(1)選擇起始節點;(2)選擇下一節點。起始節點選擇有兩種方法:按一定規則抽取一定量的節點或者以圖中所有節點作為起始節點。一般來說會選擇後一種方法以保證所有節點都會被選取到。
在選擇下一節點方法上,最簡單的是按邊的權重來選擇,但在實際應用中需要通過廣度優先還是深度優先的方法來控制遊走范圍。一般來說,深度優先發現能力更強,廣度優先更能使社區內(較相似)的節點出現在一個路徑里。
斯坦福大學Jure Leskovec教授給出了一種可以控制廣度優先或者深度優先的方法。
以上圖為例,假設第一步是從t隨機遊走到v,這時候我們要確定下一步的鄰接節點。本例中,作者定義了p和q兩個參數變數來調節遊走,首先計算其鄰居節點與上一節點t的距離d,根據下面的公式得到α:
一般從每個節點開始遊走5~10次,步長則根據點的數量N遊走根號N步。如此便可通過random walk生成點的序列樣本。
得到序列之後,便可以通過word2vec的方式訓練得到各個用戶的特徵向量,通過餘弦相似度便可以計算各個用戶的相似度了。有了相似度,便可以使用基於用戶的推薦演算法了。
推薦系統需要根據用戶的歷史行為和興趣預測用戶未來的行為和興趣,因此大量的用戶行為數據就成為推薦系統的重要組成部分和先決條件。如何在沒有大量用戶數據的情況下設計個性化推薦系統並且讓用戶對推薦結果滿意從而願意使用推薦系統,就是冷啟動問題。
冷啟動問題主要分為三類:
針對用戶冷啟動,下面給出一些簡要的方案:
(1)有效利用賬戶信息。利用用戶注冊時提供的年齡、性別等數據做粗粒度的個性化;
(2)利用用戶的社交網路賬號登錄(需要用戶授權),導入用戶在社交網站上的好友信息,然後給用戶推薦其好友喜歡的物品;
(3)要求用戶在登錄時對一些物品進行反饋,手機用戶對這些物品的興趣信息,然後給用推薦那些和這些物品相似的物品;
(4)提供非個性化推薦。非個性化推薦的最簡單例子就是熱門排行榜,我們可以給用戶推薦熱門排行榜,然後等到用戶數據收集到一定的時候,在切換為個性化推薦。
對於物品冷啟動,可以利用新加入物品的內容信息,將它們推薦給喜歡過和他們相似的物品的用戶。
對於系統冷啟動,可以引入專家知識,通過一定高效的方式快速建立起物品的相關度表。
在上面介紹了一些推薦系統的基礎演算法知識,這些演算法大都是比較經典且現在還在使用的。但是需要注意的是,在實踐中,任何一種推薦演算法都不是單獨使用的,而是將多種推薦演算法結合起來,也就是混合推薦系統,但是在這里並不準備介紹,感興趣的可以查閱《推薦系統》或《推薦系統與深度學習》等書籍。此外,在推薦中非常重要的點擊率模型以及基於矩陣的一些排序演算法在這里並沒有提及,感興趣的也可自行學習。
雖然現在用的很多演算法都是基於深度學習的,但是這些經典演算法能夠讓我們對推薦系統的發展有一個比較好的理解,同時,更重要的一點——「推陳出新」,只有掌握了這些經典的演算法,才能提出或理解現在的一些更好地演算法。