『壹』 導數的基本公式與運演算法則
1、基本導數公式:
(1) (c為常數);
(2) (a為任意實數);
(3) ,特例: 。
(4) 特例:
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
對導數基本公式的記憶要准確熟練,它是求導數的基礎,並由它們可推導出微分公式和積分公式,公式中帶「余」字的三角函數、反三角函數均有負號。
2、導數的四則運演算法則。若u(x)和v(x)在某區域內的導數均存在,則有:
(1) (c為常數)
(2)
(3)
(4)
3、復合函數求導法則,若函數y=f(u)及u= 均可導,則
即復合函數的導數等於復合函數對中間變數的導數乘以中間變數對自變數的導數。
法則適用於有限次復合的函數。
4、隱函數求導法則。若y=f(x)是由方程F(x.,y)=0確定的可導函數,則其導數 可由方程
求得,即隱函數求導法則是:把方程兩邊對x求導,注意y是x的函數,然後從求導後得到的等式中解出 。
5、對數求導法則。若u(x)、v(u)分別可導,則冪指函數y=u 可用對數求導法求出。對數求導法則是:先將函數兩邊取對數,然後化成隱函數求導數,它適用於冪指函數和含有多個因子等較復雜的函數。
6、高階導數。函數y=f(x)的導數一般仍是x的函數,它的導數 稱為此函數的二階導數,記為 ,或 ,即
或
一般地,函數y=f(x)的n-1階 導(函)數的導數稱為f(x)的n階導數,即
[ (n=2,3,4,…)
『貳』 到底什麼是運演算法則
一.加減法的運演算法則
1.整數:
(1)相同數位對齊
(2)從個位算起
(3)加法中滿幾十就向高一位進幾;減法中不夠減時,就從高一位退1當10和本數位相加後再減。
2.小數:
(1)小數點對齊(即相同數位對齊);
(2)按整數加、減法的法則進行計算;
(3)在得數里對齊橫線上的小數點,點上小數點;
3.分數
(1)同分母分數相加、減,分母不變,只把分子相加、減;
(2)異分母分數相加、減,先通分,再按同分母分數加、減法的法則進行計算;
(3)結果不是最簡分數的要約分成最簡分數。
二.乘法的運演算法則
1.整數
(1)從個位乘起,依次用第二個因數每位上的數去乘第一個因數;
(2)用第二個因數那一位上的數去乘,得數的末位就和第二個因數的那一位對齊;
(3)再把幾次乘得的數加起來;
2.小數
(1)按整數乘法的法則先求出積;
(2)看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點;
3.分數
(1)分數乘分數,用分子相乘的積作分子,分母相乘的積作分母;
(2)有整數的把整數看作分母是1的假分數;
(3)能約分的要先約分。
三.除法的運演算法則
1.整數
(1)從被除數的高位除起;
(2)除數是幾位數,就先看被除數的前幾位,如果不夠除,就要多看一位;
(3)除到哪一位就要把商寫在哪一位上面;
(4)每次除得的余數必須比除數小;
(5)求出商的最高位後如果被除數的哪一位上不夠商1就在哪一位上寫0;
2.小數
(1)除數是整數時,按整數除法進行計算,商的小數點要與被除數的小數點對齊;
(2)除數是小數時,先轉化成除數是整數的小數除法,再按照除數是整數的外數除法進行計算;
3.分數
甲數除以乙數(0除外),等於甲數乘乙數的倒數。
『叄』 運演算法則是什麼
運演算法則是指為達到一個問題的解決方案明確定義的規則或過程。
網路中,基本上。運演算法則一般被用於確定特定源到特定目的地的最佳運輸路由。路由器和交換機的排對演算法對確定分組的處置速度是很關鍵的
數學運算規則,完成運算,得出結果的方法、程序或途徑通常叫做「運演算法則」,實質上也就是「運算方法」。運演算法則通常將所要求的操作程序分成幾點,表述為文本。或者按化歸的思想,將當前的運算歸結為學生早先已掌握的運算。
如筆算「一位數乘多位數」的法則是:「從個位起用一位數依次去乘多位數各位上的數;乘到哪一位,積的末位就和哪一位對齊;哪一位乘得的積滿幾十,就向前一位進幾。」這個法則的實質就是將當前的「一位數乘多位數」歸結為「表內乘法」。
(3)當代領導運演算法則擴展閱讀
1、提取公因式
這個方法實際上是運用了乘法分配律,將相同因數提取出來,考試中往往剩下的項相加減,會出現一個整數。
注意相同因數的提取。
例如:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
2、借來借去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。
考試中,看到有類似998、999或者1.98等接近一個非常好計算的整數的時候,往往使用借來借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1-4
『肆』 ∑的所有運演算法則有哪些
∑的用法:其中i表示下界,n表示上界, k從i開始取數,一直取到n,全部加起來;∑ i 這樣表達也可以,表示對i求和,i是變數。
∑ 是一個求和符號,英語名稱:Sigma,漢語名稱:西格瑪,第十八個希臘字母。在希臘語中,如果一個單字的最末一個字母是小寫sigma,要把該字母寫成ς ,此字母又稱final sigma(Unicode: U+03C2)。在現代的希臘數字代表6。
名詞解釋:
數學運算規則,完成運算,得出結果的方法、程序或途徑通常叫做「運演算法則」,實質上也就是「運算方法」。運演算法則通常將所要求的操作程序分成幾點,表述為文本。或者按化歸的思想,將當前的運算歸結為學生早先已掌握的運算。
如筆算「一位數乘多位數」的法則是:「從個位起用一位數依次去乘多位數各位上的數;乘到哪一位,積的末位就和哪一位對齊;哪一位乘得的積滿幾十,就向前一位進幾。」這個法則的實質就是將當前的「一位數乘多位數」歸結為「表內乘法」。
『伍』 數學基本運演算法則
四則是指加法、減法、乘法、除法的計演算法則。
在數學中,當一級運算(加減)和二級運算(乘除)同時出現在一個式子中時,它們的運算順序是先乘除,後加減,如果有括弧就先算括弧內後算括弧外,同一級運算順序是從左到右,這樣的運算叫四則運算。
四則運算的法則:
1、整數加、減計演算法則:
1)要把相同數位對齊,再把相同計數單位上的數相加或相減;
2)哪一位滿十就向前一位進。
2、小數加、減法的計演算法則:
1)計算小數加、減法,先把各數的小數點對齊(也就是把相同數位上的數對齊),
2)再按照整數加、減法的法則進行計算,最後在得數里對齊橫線上的小數點點上小數點。
(得數的小數部分末尾有0,一般要把0去掉。)
3、分數加、減計演算法則:
1)分母相同時,只把分子相加、減,分母不變;
2)分母不相同時,要先通分成同分母分數再相加、減。
4、整數乘法法則:
1)從右起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對個因數的哪一位對齊;
2)然後把幾次乘得的數加起來。
(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0。)
5、小數乘法法則:
1)按整數乘法的法則算出積;
2)再看因數中一共有幾位小數,就從得數的右邊起數出幾位,點上小數點。
3)得數的小數部分末尾有0,一般要把0去掉。
6、分數乘法法則:把各個分數的分子乘起來作為分子,各個分數的分母相乘起來作為分母,(即乘上這個分數的倒數),然後再約分。
7、整數的除法法則
1)從被除數的商位起,先看除數有幾位,再用除數試除被除數的前幾位,如果它比除數小,再試除多一位數;
2)除到被除數的哪一位,就在那一位上面寫上商;
3)每次除後餘下的數必須比除數小。
8、除數是整數的小數除法法則:
1)按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;
2)如果除到被除數的末尾仍有餘數,就在余數後面補零,再繼續除。
9、除數是小數的小數除法法則:
1)先看除數中有幾位小數,就把被除數的小數點向右移動幾位,數位不夠的用零補足;
2)然後按照除數是整數的小數除法來除
10、分數的除法法則:
1)用被除數的分子與除數的分母相乘作為分子;
2)用被除數的分母與除數的分子相乘作為分母。
『陸』 求導公式運演算法則
運演算法則
減法法則:(f(x)-g(x))'=f'(x)-g'(x)
加法法則:(f(x)+g(x))'=f'(x)+g'(x)
乘法法則:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
除法法則:(g(x)/f(x))'=(g'(x)f(x)-f'(x)g(x))/(f(x))^2
導數公式
1.y=c(c為常數) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x