A. 什麼是編譯器
編譯器
編譯器是一種特殊的程序,它可以把以特定編程語言寫成的程序變為機器可以運行的機器碼。我們把一個程序寫好,這時我們利用的環境是文本編輯器。這時我程序把程序稱為源程序。在此以後程序員可以運行相應的編譯器,通過指定需要編譯的文件的名稱就可以把相應的源文件(通過一個復雜的過程)轉化為機器碼了。
[編輯]編譯器工作方法
首先編譯器進行語法分析,也就是要把那些字元串分離出來。然後進行語義分析,就是把各個由語法分析分析出的語法單元的意義搞清楚。最後生成的是目標文件,我們也稱為obj文件。再經過鏈接器的鏈接就可以生成最後的可執行代碼了。有些時候我們需要把多個文件產生的目標文件進行鏈接,產生最後的代碼。我們把一過程稱為交叉鏈接。
一個現代編譯器的主要工作流程如下:
* 源程序(source code)→預處理器(preprocessor)→編譯器(compiler)→匯編程序(assembler)→目標程序(object code)→連接器(鏈接器,Linker)→可執行程序(executables)
工作原理
編譯是從源代碼(通常為高級語言)到能直接被計算機或虛擬機執行的目標代碼(通常為低級語言或機器言)。然而,也存在從低級語言到高級語言的編譯器,這類編譯器中用來從由高級語言生成的低級語言代碼重新生成高級語言代碼的又被叫做反編譯器。也有從一種高級語言生成另一種高級語言的編譯器,或者生成一種需要進一步處理的的中間代碼的編譯器(又叫級聯)。
典型的編譯器輸出是由包含入口點的名字和地址以及外部調用(到不在這個目標文件中的函數調用)的機器代碼所組成的目標文件。一組目標文件,不必是同一編譯器產生,但使用的編譯器必需採用同樣的輸出格式,可以鏈接在一起並生成可以由用戶直接執行的可執行程序。
編譯器種類
編譯器可以生成用來在與編譯器本身所在的計算機和操作系統(平台)相同的環境下運行的目標代碼,這種編譯器又叫做「本地」編譯器。另外,編譯器也可以生成用來在其它平台上運行的目標代碼,這種編譯器又叫做交叉編譯器。交叉編譯器在生成新的硬體平台時非常有用。「源碼到源碼編譯器」是指用一種高級語言作為輸入,輸出也是高級語言的編譯器。例如: 自動並行化編譯器經常採用一種高級語言作為輸入,轉換其中的代碼,並用並行代碼注釋對它進行注釋(如OpenMP)或者用語言構造進行注釋(如FORTRAN的DOALL指令)。
預處理器(preprocessor)
作用是通過代入預定義等程序段將源程序補充完整。
編譯器前端(frontend)
前端主要負責解析(parse)輸入的源程序,由詞法分析器和語法分析器協同工作。詞法分析器負責把源程序中的『單詞』(Token)找出來,語法分析器把這些分散的單詞按預先定義好的語法組裝成有意義的表達式,語句 ,函數等等。 例如「a = b + c;」前端詞法分析器看到的是「a, =, b , +, c;」,語法分析器按定義的語法,先把他們組裝成表達式「b + c」,再組裝成「a = b + c」的語句。 前端還負責語義(semantic checking)的檢查,例如檢測參與運算的變數是否是同一類型的,簡單的錯誤處理。最終的結果常常是一個抽象的語法樹(abstract syntax tree,或 AST),這樣後端可以在此基礎上進一步優化,處理。
編譯器後端(backend)
編譯器後端主要負責分析,優化中間代碼(Intermediate representation)以及生成機器代碼(Code Generation)。
一般說來所有的編譯器分析,優化,變型都可以分成兩大類: 函數內(intraproceral)還是函數之間(interproceral)進行。很明顯,函數間的分析,優化更准確,但需要更長的時間來完成。
編譯器分析(compiler analysis)的對象是前端生成並傳遞過來的中間代碼,現代的優化型編譯器(optimizing compiler)常常用好幾種層次的中間代碼來表示程序,高層的中間代碼(high level IR)接近輸入的源程序的格式,與輸入語言相關(language dependent),包含更多的全局性的信息,和源程序的結構;中層的中間代碼(middle level IR)與輸入語言無關,低層的中間代碼(Low level IR)與機器語言類似。 不同的分析,優化發生在最適合的那一層中間代碼上。
常見的編譯分析有函數調用樹(call tree),控制流程圖(Control flow graph),以及在此基礎上的變數定義-使用,使用-定義鏈(define-use/use-define or u-d/d-u chain),變數別名分析(alias analysis),指針分析(pointer analysis),數據依賴分析(data dependence analysis)等等。
上述的程序分析結果是編譯器優化(compiler optimization)和程序變形(compiler transformation)的前提條件。常見的優化和變新有:函數內嵌(inlining),無用代碼刪除(Dead code elimination),標准化循環結構(loop normalization),循環體展開(loop unrolling),循環體合並,分裂(loop fusion,loop fission),數組填充(array padding),等等。優化和變形的目的是減少代碼的長度,提高內存(memory),緩存(cache)的使用率,減少讀寫磁碟,訪問網路數據的頻率。更高級的優化甚至可以把序列化的代碼(serial code)變成並行運算,多線程的代碼(parallelized,multi-threaded code)。
機器代碼的生成是優化變型後的中間代碼轉換成機器指令的過程。現代編譯器主要採用生成匯編代碼(assembly code)的策略,而不直接生成二進制的目標代碼(binary object code)。即使在代碼生成階段,高級編譯器仍然要做很多分析,優化,變形的工作。例如如何分配寄存器(register allocatioin),如何選擇合適的機器指令(instruction selection),如何合並幾句代碼成一句等等。
B. 交叉編譯器是能夠編譯兩種不同語言的編譯器,比如C和c 加加
交叉編譯器是指可以在一種平台上直接編譯出能在另一種平台下運行的程序的編譯器,例如VS的linux C++開發使用的VC++ Linux編譯器,它可以在Windows平台下編譯出Linux C++程序。
C. 請問什麼是交叉編譯跟本地編譯有什麼區別求大神幫助
你那個代碼很可能是在pc平台上交叉編譯到arm設備上的。這樣你可以在pc上修改程序,然後pc上編譯,最後把編譯的結果下載到arm中就可以運行了。不知道你說的本地編譯是什麼意思,通常所說的那種本地編譯就是編譯的結果還是在pc上運行,如果你期望的是這個的話,可以考慮修改一下編譯器的參數,查一下gcc的說明就知道哪個參數是指定交叉編譯平台的,把那個參數去掉就是本地編譯了。但是,需要注意的是,這樣多半不能成功運行,因為交叉編譯到arm上的一般是基於某種特殊的linux平台的,即使你使用了linux平台,其中可能有一些函數也會不同的。。。
希望採納
D. 開發工具,模擬器,燒錄器,編譯器,交叉編譯器到底是什麼關系
房東太多的此長啊,不拉。
開發工具,模擬器,燃燒器,編譯器:開發工具模擬器,燃燒器和編譯器。模擬器只能燒一些簡單的IC,少數還行。燃燒器的程序員更強大的通配符量單一類型的刻錄機其實很簡單,就是你編譯程序寫入片內Flash內的介質燃燒器改造,我從事燒傷,我為自己代言
E. 交叉編譯器的交叉編譯
在一種計算機環境中運行的編譯程序,能編譯出在另外一種環境下運行的代碼,我們就稱這種編譯器支持交叉編譯。這個編譯過程就叫交叉編譯。簡單地說,就是在一個平台上生成另一個平台上的可執行代碼。這里需要注意的是所謂平台,實際上包含兩個概念:體系結構(Architecture)、操作系統(Operating System)。同一個體系結構可以運行不同的操作系統;同樣,同一個操作系統也可以在不同的體系結構上運行。舉例來說,我們常說的x86 Linux平台實際上是Intel x86體系結構和Linux for x86操作系統的統稱;而x86 WinNT平台實際上是Intel x86體系結構和Windows NT for x86操作系統的簡稱。
有時是因為目的平台上不允許或不能夠安裝我們所需要的編譯器,而我們又需要這個編譯器的某些特徵;有時是因為目的平台上的資源貧乏,無法運行我們所需要編譯器;有時又是因為目的平台還沒有建立,連操作系統都沒有,根本談不上運行什麼編譯器。
交叉編譯這個概念的出現和流行是和嵌入式系統的廣泛發展同步的。我們常用的計算機軟體,都需要通過編譯的方式,把使用高級計算機語言編寫的代碼(比如C代碼)編譯(compile)成計算機可以識別和執行的二進制代碼。比如,我們在Windows平台上,可使用Visual C++開發環境,編寫程序並編譯成可執行程序。這種方式下,我們使用PC平台上的Windows工具開發針對Windows本身的可執行程序,這種編譯過程稱為native compilation,中文可理解為本機編譯。然而,在進行嵌入式系統的開發時,運行程序的目標平台通常具有有限的存儲空間和運算能力,比如常見的 ARM 平台,其一般的靜態存儲空間大概是16到32MB,而CPU的主頻大概在100MHz到500MHz之間。這種情況下,在ARM平台上進行本機編譯就不太可能了,這是因為一般的編譯工具鏈(compilation tool chain)需要很大的存儲空間,並需要很強的CPU運算能力。為了解決這個問題,交叉編譯工具就應運而生了。通過交叉編譯工具,我們就可以在CPU能力很強、存儲空間足夠的主機平台上(比如PC上)編譯出針對其他平台的可執行程序。
要進行交叉編譯,我們需要在主機平台上安裝對應的交叉編譯工具鏈(cross compilation tool chain),然後用這個交叉編譯工具鏈編譯我們的源代碼,最終生成可在目標平台上運行的代碼。
F. 交叉編譯器 arm-linux-gnueabi 和 arm-linux-gnueabihf 的區別
gnueabi相關的兩個交叉編譯器: gnueabi和gnueabihf
在debian源里這兩個交叉編譯器的定義如下:
gcc-arm-linux-gnueabi – The GNU C compiler for armel architecture
gcc-arm-linux-gnueabihf – The GNU C compiler for armhf architecture
可見這兩個交叉編譯器適用於armel和armhf兩個不同的架構, armel和armhf這兩種架構在對待浮點運算採取了不同的策略(有fpu的arm才能支持這兩種浮點運算策略)
其實這兩個交叉編譯器只不過是gcc的選項-mfloat-abi的默認值不同. gcc的選項-mfloat-abi有三種值soft,softfp,hard(其中後兩者都要求arm里有fpu浮點運算單元,soft與後兩者是兼容的,但softfp和hard兩種模式互不兼容):
soft : 不用fpu進行浮點計算,即使有fpu浮點運算單元也不用,而是使用軟體模式。
softfp : armel架構(對應的編譯器為gcc-arm-linux-gnueabi)採用的默認值,用fpu計算,但是傳參數用普通寄存器傳,這樣中斷的時候,只需要保存普通寄存器,中斷負荷小,但是參數需要轉換成浮點的再計算。
hard : armhf架構(對應的編譯器gcc-arm-linux-gnueabihf)採用的默認值,用fpu計算,傳參數也用fpu中的浮點寄存器傳,省去了轉換, 性能最好,但是中斷負荷高。
----關於Linux命令的介紹,看看《linux就該這么學》,具體關於這一章地址3w(dot)linuxprobe/chapter-02(dot)html
BBB裡面默認是hard,我想轉為soft,沒有想到辦法。
怎樣能該啊,gcc -v,變為soft。。
G. 什麼是交叉編譯器
交叉編譯器:在一種計算機環境中運行的編譯程序,能編譯出在另外一種環境下運行的代碼
H. 交叉編譯器的分類
編譯器可以生成用來在與編譯器本身所在的計算機和操作系統(平台)相同的環境下運行的目標代碼,這種編譯器又叫做「本地」編譯器。另外,編譯器也可以生成用來在其它平台上運行的目標代碼,這種編譯器又叫做交叉編譯器。交叉編譯器在生成新的硬體平台時非常有用。「源碼到源碼編譯器」是指用一種高階語言作為輸入,輸出也是高階語言的編譯器。例如: 自動並行化編譯器經常採用一種高階語言作為輸入,轉換其中的代碼,並用並行代碼注釋對它進行注釋(如OpenMP)或者用語言構造進行注釋(如FORTRAN的DOALL指令)。
預處理器(preprocessor)
作用是通過代入預定義等程序段將源程序補充完整。
編譯器前端(frontend)
前端主要負責解析(parse)輸入的源代碼,由語法分析器和語意分析器協同工作。語法分析器負責把源代碼中的『單詞』(Token)找出來,語意分析器把這些分散的單詞按預先定義好的語法組裝成有意義的表達式,語句 ,函數等等。 例如「a = b + c;」前端語法分析器看到的是「a, =, b , +, c;」,語意分析器按定義的語法,先把他們組裝成表達式「b + c」,再組裝成「a = b + c」的語句。 前端還負責語義(semantic checking)的檢查,例如檢測參與運算的變數是否是同一類型的,簡單的錯誤處理。最終的結果常常是一個抽象的語法樹(abstract syntax tree,或 AST),這樣後端可以在此基礎上進一步優化和處理。
編譯器後端(backend)
編譯器後端主要負責分析,優化中間代碼(Intermediate representation)以及生成機器代碼(Code Generation)。
一般說來所有的編譯器分析,優化,變型都可以分成兩大類:函數內(intraproceral)還是函數之間(interproceral)進行。很明顯,函數間的分析,優化更准確,但需要更長的時間來完成。