『壹』 小學數學簡便計算公式
總結了小學數學的計算公式,及其靈活運用,簡便計算技巧。
①加法
加法交換律:a+b=b+a;
加法結合律:a+b+c=a+(b+c)=(a+b)+c;
②減法
a-b=-(b-a)
a-b-c=a-(b+c)
減法有一個口訣:加括弧,變符號。
③乘法
乘法交換律:a x b=b x a;
乘法結合律:a x b x c=a x (b x c);
乘法分配律:a x (b±c)=a x b±a x c;
小學數學試題中常考的一種題型-計算復雜數式。
經常就會用到乘法分配律,來提取公因數,簡化計算。
【例1】計算:7.19x1.36+3.13x2.81+1.77x7.19
分析:這道題就是加法結合律,乘法交換律,乘法分配律的綜合運用。
7.19x1.36+3.13x2.81+1.77x7.19
=7.19x(1.36+1.77)+3.13x2.81
=7.19x3.13+3.13x2.81
=(7.19+2.81)x3.13
=10x3.13
=31.3
④除法
a÷b÷c=a÷(b x c)(b,c不等於0);
a x b÷c=a÷cxb(c不等於0);
以上公式是解四則運算題目的基本關系式。
靈活學習,靈活運用。
它們除了正著用,有時候還得會倒著用。
【例2】計算:47.9x6.6+529x0.34;
分析:6.6+3.4=10,能不能想辦法把湊出一個3.4,然後讓3.4和6.6相加?
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+52.9x3.4(3.4已經湊出來了)
=47.9x6.6+(47.9+5)x3.4
=47.9x6.6+47.9x3.4+5x3.4(6.6+3.4也湊出來了)
=47.9x(6.6+3.4)+17
=496
注意:例2題目中我們將乘法分配律倒著使用。
52.9x3.4=(47.9+5)x3.4=47.9x3.4+5x3.4
除此之外還用到了一個特別的公式。
529x0.34=529÷10x10x0.34
這個公式總結出來,即:
a x b=a÷c x c x b(c不等於0)。
『貳』 五年級簡便計算有哪些
五年級的簡便計算有:湊整法、交置法、去括弧法、運用運算定律、減法性質。注意,對於同一個計算題,用簡便方法計算,與不用簡便方法計算得到的結果相同。我們可以用兩種計算方法得到的結果對比,檢驗我們的計算是否正確。
小學數學簡便運算歸類練習
一般情況下,四則運算的計算順序是:有括弧時,先算括弧裡面的;沒有括弧時,先算二級運算,再算- -級運算,只有同一級運算時,從左往右依次計算。
一、簡便運算一般有5種方法:
1.湊整法:通過加、減一個數將其湊成整十、整百、整千的數。
2.交置法:也就是通常所說的結合律,幾個數相加、相減,將其位置交換一下,湊成整十、整百、整千的數。
3.去括弧法:有時在計算含有括弧的算式時,通過去除括弧,可使運算簡便,但要注意的是去括弧後的符號變化。
4、運用運算定律。
加法交換律: a+b=b+a;
加法結合律::a+b+c=a+ (b+c);
乘法交換律:aXb=bXa;
乘法結合律:aXbXc=aX (bXc);
乘法分配律:(a+b) Xc=aXc+bXc。
5、 減法性質:a-b-c=a-c-b=a- (b+c);
除法性質:a+b十c=a+c十b=a+ (bXc)。
運算簡便,但要注意的是去括弧後的符號變化。
『叄』 小學數學簡便運算題的公式 所有的公式
根據算式的不同特點,利用數的組成和分解、各種運算定律、性質或它們之間的特殊關系,使計算過程簡單化,或直接得出結果,這種簡便、迅速的運算叫做簡算.
這就需要在進行簡便計算之前,要求學生對所學的性質、定律、規律等有透徹的理解和正確的使用.也就是說,這些知識能使計算過程簡化,同時使用湊整、拆項、轉化、拆數等技巧以達到速算的目的.根據我的歸納,常見以下幾類題型:
(一)運用加法的交換律、結合律進行計算.要求學生善於觀察題目,同時要有湊整意識.
如:5.7+3.1+0.9+1.3,等.
(二)運用乘法的交換律、結合律進行簡算.
如:2.5×0.125×8×4等,如果遇到除法同樣適用,或將除法變為乘法來計算.如:8.3×67÷8.3÷6.7等.
(三)運用乘法分配律進行簡算,遇到除以一個數,先化為乘以一個數的倒數,再分配.
如:2.5×(100+0.4),還應注意,有些題目是運用分配律的逆運算來簡算:即提取公因數.如:0.93×67+33×0.93.
(四)運用減法的性質進行簡算.減法的性質用字母公式表示:A-B-C=A-(B+C),同時注意逆進行.
如:7691-(691+250).
(五)運用除法的性質進行簡算.除法的性質用字母公式表示如下:A÷B÷C=A÷(B×C),同時注意逆進行,
如:736÷25÷4.
(六)接近整百的數的運算.這種題型需要拆數、轉化等技巧配合.
如;302+76=300+76+2,298-188=300-188-2,等.
(七)認真觀察某項為0或1的運算.
如:7.93+2.07×(4.5-4.5)等.
總的說來,簡便運算的思路是:(1)運用運算的性質、定律等.(2)可能打亂常規的計算順序.(3)拆數或轉化時,數的大小不能改變.(4)正確處理好每一步的銜接.(5)速算也是計算,是將硬算化為巧算.(6)能提高計算的速度及能力,並能培養嚴謹細致、靈活巧妙的工作習慣.
『肆』 簡便演算法有哪些呢
簡便演算法有如下:
一、乘法分配律:簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。
二、乘法結合律:乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。
三、乘法交換律:乘法交換律用於調換各個數的位置:a×b=b×a。
四、加法交換律:加法交換律用於調換各個數的位置:a+b=b+a。
五、加法結合律:運用了運算定律與數字的基本性質,從而使計算簡便,(a+b)+c=a+(b+c)。
『伍』 簡便運算的16種運算方法是什麼
一、運用乘法分配律簡便計算
乘法分配律指的是:
例:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
(5)簡便演算法應記住的算式擴展閱讀:
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。
乘法結合律
乘法結合律也是做簡便運算的一種方法,它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。
『陸』 小學數學簡便算式有哪幾種
一、整體簡便計算。整個一道算式可以用簡便方法計算,這種形式最為常見。例如:
=1.14×10
=11.4
二、局部簡便計算。一道算式中局部可以進行簡便計算,這種形式也不少見。
三、中途簡便計算。開始計算並不能簡便計算,而經過一兩步後卻能進行簡便計算,這種情況最容易忽視。例如:
=1.2×(1+5+4)
=1.2×10
=12
四、重復簡便計算。在一道題里不止一次地進行簡便計算,這種情況往往不注意後一次簡便計算。例如:
=8×55×0.125
=8×0.125×55 第二次
=1×55
=55
一簡算的根據 a、乘法運算定律 b、加法運算定律 c、減法、除法的運算性質
二簡算的類型 a、直接簡算 b、部分簡算 c、轉化簡算 d、過程簡算
三簡算的幾種公式:
加法:a+b+c=a+(b+c)(加法結合律)
乘法:a×b×c=a×c×b(乘法交換律) a×b×c=a×(b×c)(乘法結合律) (a+b)×c=ac+bc或(a-b)×c=ac-bc(乘法分配律)
減法:a-b-c=a-c-b(減法交換律) a-b-c=a-(b+c)(減法結合律)
除法:a÷b÷c=a÷c÷b(除法交換律) a÷b÷c=a÷(b×c)(除法結合律) (a+b)÷c=a÷c+b÷c或(a-b)÷c=a÷c-b÷c(除法分配律)
注意除法分配率只有在被除數是兩個數的差或和的情況下才能進行分配
『柒』 小學簡便運算要背的特殊乘積
小學里簡便運算要背的特殊乘積是:5×2=10,25×4=100,25×8=200,125×4=500,125×8=1000,625×16=10000,75×4=300,375×8=3000。
所謂的簡便就是運用所學的運算律將混合算式進行湊整計算,從而加快算題的速度。能用到特殊乘積的運算律有:乘法分配律,乘法結合律,乘法交換律。
2、乘法結合律乘法結合律也是做簡便運算的一種方法,用字母表示為(axb)xc=ax(bxc),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。
3、乘法交換律乘法交換律用於調換各個數的位置:a×b=b×a。
『捌』 數學計算簡便方法
簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算出得數。
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。如將上式中的+變為x,運用乘法結合律也可簡便計算
乘法結合律
乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。
乘法交換律
乘法交換律用於調換各個數的位置:a×b=b×a
加法交換律
加法交換律用於調換各個數的位置:a+b=b+a
加法結合律
(a+b)+c=a+(b+c)
『玖』 簡便計算(算式 全部)
(1)101×99
=(100+1)×99
=100×99+99
=9999
(2)14×35
=7×2×35
=7×70
=490
(3)25×28
=25×4×7
=100×7
=700
(4)4×9×25
=4×25×9
=100×9
=900
(5)43×5×4
=43×20
=860
(6)15×12
=15×2×6
=30×6
=180
(7)12×(40-5)
=12×40-12×5
=480-60
=420
(8)64×9-14×9
=(64-14)×9
=50×9
=450
(9)35×98
=35×(100-2)
=35×100-35×2
=3500-70
=3430
(10)23×134-34×23
=23×(134-34)
=23×100
=2300
(11) 957+(128-157)
=957-157+128
=800+128
=928
(12) 706-399
=706-400+1
=307