① 首次適應演算法是什麼
First-fit (FF)是一種用於裝箱的在線演算法。
它的輸入是一個不同大小的項目列表。它的輸出是一個包裝——將物品分成固定容量的箱子,這樣每個箱子中物品的大小之和最多就是容量。理想情況下,我們希望使用盡可能少的 bin,但是最小化 bin 的數量是一個 NP-hard 問題。首次擬合演算法使用以下啟發式:
它保留一個打開的垃圾箱列表,最初是空的。
當一件物品到達時,它會找到該物品可以放入 的第一個箱子(如果有的話)。
如果找到這樣的箱子,則將新物品放入其中。
否則,將打開一個新的箱子並將即將到來的物品放入其中。
優缺點
1、優點
處理速度快。由於處理器將最近的可用內存分區分配給作業,因此執行速度非常快。
2、缺點
浪費大量內存。處理器忽略分配給作業的分區大小與作業大小相比是否非常大。它只是分配內存。結果,浪費了大量內存,許多作業可能無法在內存中獲得空間,並且必須等待另一個作業完成。
② 求用C語言寫出首次適應分配演算法的分配過程~
/********************************
內存管理模擬程序
*******************************/
#include<iostream.h>
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include <time.h>
#include <windows.h>
/*定義宏*/
#define TotalMemSize 1024 /*劃分的物理塊的大小,地址范圍0~1023*/
#define MinSize 2 /*規定的不再分割的剩餘分區的大小*/
#define getpch(type) (type*)malloc(sizeof(type))
/*定義內存塊*/
typedef struct memBlock
{
struct memBlock *next;/*指向下一個塊*/
int stAddr; /*分區塊的初始地址*/
int memSize; /*分區塊的大小*/
int status; /*分區塊的狀態,0:空閑,1:以被分配*/
}MMB;
/*定義全局變數*/
MMB *idleHead=NULL; /*空閑分區鏈表的頭指針*/
MMB *usedHead=NULL; /*分配分區鏈表的頭指針*/
MMB *usedRear=NULL; /*分配分區鏈表的鏈尾指針*/
MMB *np; /*循環首次適應演算法中指向即將被查詢的空閑塊*/
int idleNum=1;/*當前空閑分區的數目*/
int usedNum=0;/*當前已分配分區的數目*/
MMB *memIdle=NULL; /*指向將要插入分配分區鏈表的空閑分區*/
MMB *memUsed=NULL; /*指向將要插入空閑分區鏈表的已分配分區*/
int flag=1;/*標志分配是否成功,1:成功*/
/*函數聲明*/
void textcolor (int color);/*輸出著色*/
void InitMem();/*初始化函數*/
int GetUseSize(float miu,float sigma); /*獲得請求尺寸*/
MMB *SelectUsedMem(int n);/*選擇待釋放的塊*/
void AddToUsed();/*將申請到的空閑分區加到分配分區鏈表中*/
int RequestMemff(int usize); /*請求分配指定大小的內存,首次適應演算法*/
int RequestMemnf(int usize); /*請求分配指定大小的內存,循環首次適應演算法*/
void AddToIdle();/*將被釋放的分配分區加到空閑分區鏈表中(按地址大小)*/
void ReleaseMem(); /*釋放指定的分配內存塊*/
/*主函數*/
void main()
{
int sim_step;
float miu,sigma; /*使隨機生成的請求尺寸符合正態分布的參數*/
int i;
int a;
MMB *p;
/* double TotalStep=0,TotalSize=0,TotalRatio=0,TotalUSize=0,Ratio=0,n=0;
double aveStep=0,aveSize=0,aveRatio=0;
int step=0,usesize=0; */
textcolor(11);
printf("\n\t\t內存管理模擬程序\n\n");
/* InitMem();*/
while(true)
{
double TotalStep=0,TotalSize=0,TotalRatio=0,TotalUSize=0,Ratio=0,n=0;
double aveStep=0,aveSize=0,aveRatio=0;
int step=0,usesize=0;
InitMem();
textcolor(12);
printf("\n\n首次適應演算法: 0");
printf("\n循環首次適應演算法: 1\n");
textcolor(11);
printf("\n請選擇一種演算法:");
scanf("%d",&a);
textcolor(15);
printf("\n輸入一定數量的步數:(sim_step)");
scanf("%d",&sim_step);
printf("\n 輸入使隨機生成的請求尺寸符合正態分布的參數:miu,sigma ");
scanf("%f,%f",&miu,&sigma);
for(i=1;i<=sim_step;i++)
{
textcolor(10);
printf("\n\n#[%d]\n",i);
do{
usesize=GetUseSize(miu,sigma);
while((usesize<0)||(usesize>TotalMemSize))
{
usesize=GetUseSize(miu,sigma);
}
textcolor(13);
printf("\n\n申請的內存尺寸為:%d",usesize);
printf("\n此時可用的空閑分區有 %d 塊情況如下:",idleNum);
p=idleHead;
textcolor(15);
while(p!=NULL)
{
printf("\n始址:%d\t 尺寸:%d",p->stAddr,p->memSize);
p=p->next;
}
TotalSize+=usesize;
if(a==0)
step=RequestMemff(usesize);
else
step=RequestMemnf(usesize);
TotalStep+=step;
n++;
}while(flag==1);
p=usedHead;
while(p!=NULL)
{
TotalUSize+=p->memSize;
printf("\n始址:%d\t 尺寸:%d",p->stAddr,p->memSize);
p=p->next;
}
textcolor(11);
if(TotalUSize!=0)
{
Ratio=TotalUSize/TotalMemSize;
TotalUSize=0;
printf("\n內存利用率NO.%d :%f%c",i,100*Ratio,'%');
}
else
{
Ratio=0;
printf("\n內存利用率NO.%d :%c%c",i,'0','%');
}
TotalRatio+=Ratio;
ReleaseMem();
}
if(n!=0)
{
textcolor(10);
aveStep=TotalStep/n;
aveSize=TotalSize/n;
aveRatio=TotalRatio/sim_step;
printf("\n平均搜索步驟:%f",aveStep);
printf("\n平均請求尺寸:%f",aveSize);
printf("\n平均內存利用率:%f",aveRatio);
}
}
}
// 輸出著色 /////////////////////////////////////////
void textcolor (int color)
{
SetConsoleTextAttribute (GetStdHandle (STD_OUTPUT_HANDLE), color );
}
/******************************
函數名:InitMem()
用途:把內存初始化為一整塊空閑塊
****************************************/
void InitMem()
{
MMB *p;
p=getpch(MMB);
p->memSize=TotalMemSize;
p->stAddr=0;
p->status=0;
p->next=NULL;
idleHead=p;
np=idleHead;
usedHead=NULL;
usedRear=NULL;
idleNum=1;
usedNum=0;
flag=1;
memIdle=NULL;
memUsed=NULL;
}
/******************************
函數名:GetUseSize(float miu,float sigma)
用途:獲得請求尺寸;
參數說明:float miu,float sigma :正態分布的參數
返回值:申請尺寸的大小;
****************************************************/
int GetUseSize(float miu,float sigma)
{
float r1,r2;
float u,v,w;
float x,y;
do
{
r1=rand()/32767.0;
r2=rand()/32767.0;
u=2*r1-1;
v=2*r2-1;
w=u*u+v*v;
}while(w>1);
x=u*sqrt(((-log(w))/w));
y=v*sqrt(((-log(w))/w));
return miu+sigma*x;
}
/******************************
函數名:*SelectUsedMem(int n)
用途:選擇待釋放的塊(0~n-1)
返回值:指向待釋放的塊的指針;
****************************************************/
MMB *SelectUsedMem(int n)
{
MMB *p;
int i,j;
if(n>0)
{
i = rand()%n ;
textcolor(5);
printf("\n\n當前已分配分區總數為:%d",n);
printf("\n待釋放塊的序號為:%d\n",i );
p=usedHead;
if(p!=NULL)
{
for(j=i;j>0;j--)
p=p->next;
return(p);
}
else
return(NULL);
}
else
{
printf("\n當前沒有可釋放的資源!\n");
}
}
/******************************
函數名:AddToUsed()
用途:將申請到的空閑分區加到分配分區鏈表中
***************************************************************/
void AddToUsed()
{
MMB *p;
memIdle->status=1;
if(usedHead==NULL)
{
usedHead=memIdle;
usedRear=usedHead;
}
else
{
usedRear->next=memIdle;
usedRear=memIdle;
}
usedNum++;
printf("\n當前分配分區共有%d塊!",usedNum);
p=usedHead;
while(p!=NULL)
{
printf("\n始址:%d \t 尺寸:%d",p->stAddr,p->memSize);
p=p->next;
}
}
/******************************
函數名:RequestMemff(int usize)
參數說明:usize:請求尺寸的大小;
用途:請求分配指定大小的內存,首次適應演算法
返回值:搜索步驟
***************************************************************/
int RequestMemff(int usize)
{
MMB *p1,*p2,*s;
int step;
int suc=0;
int size1,size2;
if(idleHead==NULL)
{
flag=0;
textcolor(12);
printf("\n分配失敗!");
return 0;
}
else
{
if((idleHead->memSize)>usize)
{
size1=(idleHead->memSize)-usize;
if(size1<=MinSize)
{
memIdle=idleHead;
idleHead=idleHead->next;
memIdle->next=NULL;
idleNum--;
}
else
{
s=getpch(MMB);
s->memSize=usize;
s->stAddr=idleHead->stAddr;
s->status=1;
s->next=NULL;
memIdle=s;
idleHead->memSize=idleHead->memSize-usize;
idleHead->stAddr=idleHead->stAddr+usize;
}
step=1;
flag=1;
textcolor(12);
printf("\n分配成功!");
AddToUsed();
}
else
{
p1=idleHead;
step=1;
p2=p1->next;
while(p2!=NULL)
{
if((p2->memSize)>usize)
{
size2=(p2->memSize)-usize;
if(size2<=MinSize)
{
p1->next=p2->next;
memIdle=p2;
memIdle->next=NULL;
idleNum--;
}
else
{
s=getpch(MMB);
s->memSize=usize;
s->stAddr=p2->stAddr;
s->status=1;
s->next=NULL;
memIdle=s;
p2->memSize=p2->memSize-usize;
p2->stAddr=p2->stAddr+usize;
}
flag=1;
suc=1;
textcolor(12);
printf("\n分配成功!");
AddToUsed();
p2=NULL;
}
else
{
p1=p1->next;
p2=p2->next;
step++;
}
}
if(suc==0)
{
flag=0;
textcolor(12);
printf("\n分配失敗!");
}
}
}
return step;
}
/******************************
函數名:AddToIdle()
用途:將被釋放的分配分區加到空閑分區鏈表中(按地址遞增順序排列)
***************************************************************/
void AddToIdle()
{
MMB *p1,*p2;
int insert=0;
if((idleHead==NULL))
{
idleHead=memUsed;
idleNum++;
np=idleHead;
}
else
{
int Add=(memUsed->stAddr)+(memUsed->memSize);
if((memUsed->stAddr<idleHead->stAddr)&&(Add!=idleHead->stAddr))
{
memUsed->next=idleHead;
idleHead=memUsed;
idleNum++;
}
else
{
if((memUsed->stAddr<idleHead->stAddr)&&(Add==idleHead->stAddr))
{
idleHead->stAddr=memUsed->stAddr;
idleHead->memSize+=memUsed->memSize;
}
else
{
p1=idleHead;
p2=p1->next;
while(p2!=NULL)
{
if(memUsed->stAddr>p2->stAddr)
{
p1=p1->next;
p2=p2->next;
}
else
{
int Add1=p1->stAddr+p1->memSize;
int Add2=p2->stAddr-memUsed->memSize;
if((Add1==memUsed->stAddr)&&(memUsed->stAddr!=Add2))
{
p1->memSize=p1->memSize+memUsed->memSize;
}
if((Add1!=memUsed->stAddr)&&(memUsed->stAddr==Add2))
{
p2->memSize=p2->memSize+memUsed->memSize;
p2->stAddr=memUsed->stAddr;
}
if((Add1!=memUsed->stAddr)&&(memUsed->stAddr!=Add2))
{
memUsed->next=p2;
p1->next=memUsed;
if(np->stAddr==p2->stAddr)
np=p1->next;
idleNum++;
}
if((Add1==memUsed->stAddr)&&(memUsed->stAddr==Add2))
{
p1->memSize=p1->memSize+memUsed->memSize+p2->memSize;
p1->next=p2->next;
if((np->stAddr)==(p2->stAddr))
np=p1;
idleNum--;
}
p2=NULL;
insert=1;
}
}
if(insert==0)
{
p1->next=memUsed;
idleNum++;
}
}
}
}
}
/******************************
函數名:ReleaseMem()
用途:釋放指定的分配內存塊
***************************************************************/
void ReleaseMem()
{
MMB *q1,*q2;
MMB *s;
if(usedNum==0)
{
printf("\n當前沒有分配分區!");
return;
}
else
{
s=SelectUsedMem(usedNum);
if(s!=NULL)
{
if(s->stAddr==usedHead->stAddr)
{
memUsed=usedHead;
usedHead=usedHead->next;
memUsed->next=NULL;
AddToIdle();
usedNum--;
}
else
{
q1=usedHead;
q2=q1->next;
while(q2!=NULL)
{
if(q2->stAddr!=s->stAddr)
{
q1=q1->next;
q2=q2->next;
}
else
{
q1->next=q2->next;
memUsed=q2;
memUsed->next=NULL;
if(q1->next==NULL)
usedRear=q1;
AddToIdle();
usedNum--;
q2=NULL;
}
}
}
}
}
}
/******************************
函數名:RequestMemnf(int usize)
參數說明:usize:請求尺寸的大小;
用途:請求分配指定大小的內存,循環首次適應演算法
返回值:搜索步驟
***************************************************************/
int RequestMemnf(int usize)
{
MMB *p2,*p,*s;
int step;
int iNum=0;
int suc=0;
int size1,size2,size3;
if(idleHead==NULL)
{
flag=0;
printf("\n分配失敗!");
return 0;
}
else
{
iNum=idleNum;
while(iNum>0)
{
iNum--;
if((np->memSize)>usize)
{
/*指針指向的空閑塊滿足條件,且正好為頭指針*/
if(np->stAddr==idleHead->stAddr)
{
size1=(idleHead->memSize)-usize;
if(size1<=MinSize)
{
memIdle=idleHead;
idleHead=idleHead->next;
memIdle->next=NULL;
idleNum--;
}
else
{
s=getpch(MMB);
s->memSize=usize;
s->stAddr=idleHead->stAddr;
s->status=1;
s->next=NULL;
memIdle=s;
idleHead->memSize=idleHead->memSize-usize;
idleHead->stAddr=idleHead->stAddr+usize;
}
if((idleHead==NULL)||(idleHead->next==NULL))
np=idleHead;
else
np=idleHead->next;
}
else/*指針指向的空閑塊滿足條件,不為頭指針*/
{
size2=(np->memSize)-usize;
if(size2<=MinSize) /*從空閑鏈表中刪除*/
{
p=idleHead;
while(p->next->stAddr!=np->stAddr)
p=p->next;
p->next=np->next;
memIdle=np;
memIdle->next=NULL;
np=p;
idleNum--;
}
else
{
s=getpch(MMB);
s->memSize=usize;
s->stAddr=np->stAddr;
s->status=1;
s->next=NULL;
memIdle=s;
np->memSize=np->memSize-usize;
np->stAddr=np->stAddr+usize;
}
if(np->next==NULL)
np=idleHead;
else
np=np->next;
}
step=1;
flag=1;
suc=1;
textcolor(12);
printf("\n分配成功!");
AddToUsed();
iNum=0;
}
else /*當前指針指向的空閑區不滿足條件*/
{
step=1;
p2=np->next;
if(p2==NULL)
{
np=idleHead;
iNum--;
}
else
{
if((p2->memSize)>usize)
{
size3=(p2->memSize)-usize;
if(size3<=MinSize)
{
np->next=p2->next;
memIdle=p2;
memIdle->next=NULL;
idleNum--;
}
else
{
s=getpch(MMB);
s->memSize=usize;
s->stAddr=p2->stAddr;
s->status=1;
s->next=NULL;
memIdle=s;
p2->memSize=p2->memSize-usize;
p2->stAddr=p2->stAddr+usize;
}
flag=1;
suc=1;
printf("\n分配成功!");
AddToUsed();
if(p2->next==NULL)
np=idleHead;
else
np=p2->next;
p2=NULL;
iNum=0;
}
else
{
np=np->next;
p2=p2->next;
iNum--;
step++;
}
}
}
// iNum--;
}
if(suc==0)
{
flag=0;
textcolor(12);
printf("\n分配失敗!");
}
}
return step;
}
③ 採用c語言實現首次適應演算法完成主存空間的分配和回收 急
有沒有具體的要求,比方說數據結構方面,我這有一個,你可以參考參考
#include"stdio.h"
#include"stdlib.h"
#define
n
10
/*假定系統允許的最大作業為n,假定模擬實驗中n值為10*/
#define
m
10
/*假定系統允許的空閑區表最大為m,假定模擬實驗中m值為10*/
#define
minisize
100
struct{
float
address;
/*已分分區起始地址*/
float
length;
/*已分分區長度,單位為位元組*/
int
flag;
/*已分配區表登記欄標志,用"0"表示空欄目*/
}used_table[n];
/*已分配區表*/
struct{
float
address;
/*空閑區起始地址*/
float
length;
/*空閑區長度,單位為位元組*/
int
flag;
/*空閑區表登記欄標志,用"0"表示空欄目,用"1"表示未分配*/
}free_table[m];
/*空閑區表*/
void
main(
)
{
int
i,a;
void
allocate(char
str,float
leg);//分配主存空間函數
void
reclaim(char
str);//回收主存函數
float
xk;
char
J;/*空閑分區表初始化:*/
free_table[0].address=10240;
free_table[0].length=102400;
free_table[0].flag=1;
for(i=1;i<m;i++)
free_table[i].flag=0;/*已分配表初始化:*/
for(i=0;i<n;i++)
used_table[i].flag=0;
while(1)
{
printf("\n選擇功能項(0-退出,1-分配主存,2-回收主存,3-顯示主存)\n");
printf("選擇功項(0~3)
:");
scanf("%d",&a);
switch(a)
{
case
0:
exit(0);
/*a=0程序結束*/
case
1:
/*a=1分配主存空間*/printf("輸入作業名J和作業所需長度xk:
");
scanf("%*c%c%f",&J,&xk);
allocate(J,xk);/*分配主存空間*/
break;
case
2:
/*a=2回收主存空間*/printf("輸入要回收分區的作業名");
scanf("%*c%c",&J);reclaim(J);/*回收主存空間*/
break;
case
3:
/*a=3顯示主存情況*//*輸出空閑區表和已分配表的內容*/
printf("輸出空閑區表:\n起始地址
分區長度
標志\n");
for(i=0;i<m;i++)
printf("%6.0f%9.0f%6d\n",free_table[i].address,free_table[i].length,
free_table[i].flag);
printf("
按任意鍵,輸出已分配區表\n");
getchar();
printf("
輸出已分配區表:\n起始地址
分區長度
標志\n");
for(i=0;i<n;i++)
if(used_table[i].flag!=0)
printf("%6.0f%9.0f%6c\n",used_table[i].address,used_table[i].length,
used_table[i].flag);
else
printf("%6.0f%9.0f%6d\n",used_table[i].address,used_table[i].length,
used_table[i].flag);
break;
default:printf("沒有該選項\n");
}/*case*/
}/*while*/
}/*主函數結束*/
int
uflag;//分配表標志
int
fflag;//空閑表標志
float
uend_address;
float
fend_address;
void
allocate(char
str,float
leg)
{
uflag=0;fflag=0;
int
k,i;float
ressize;
for(i=0;i<m;i++)
{
if(free_table[i].flag==1
&&
free_table[i].length>=leg)
{
fflag=1;break;
}
}
if(fflag==0)
printf("沒有滿足條件的空閑區\n");
else
{
ressize=free_table[i].length-leg;
for(k=0;k<n;k++)
{
if(used_table[k].flag==0)
{
if(ressize<minisize)//剩餘塊過小
{
used_table[k].length=free_table[i].length;
used_table[k].address=free_table[i].address;
used_table[k].flag=str;
free_table[i].length=0;
free_table[i].flag=0;
break;
}
else
{
used_table[k].address=free_table[i].address+ressize;
used_table[k].flag=str;
used_table[k].length=leg;
free_table[i].length=ressize;
break;
}
}
}//for結束
}
}
void
reclaim(char
str)
{
uflag=0;fflag=0;
int
k,i;
for(k=0;k<n;k++)
{
if(used_table[k].flag==str)
{
uflag=1;break;
}
}
if(uflag==0)
printf("\n找不到該作業!\n");
else
{
for(i=0;i<m;i++)
{
uend_address=used_table[k].address+used_table[k].length;
fend_address=free_table[i].address+free_table[i].length;
if(used_table[k].address==fend_address)//上鄰
{
fflag=1;
free_table[i].length=free_table[i].length+used_table[k].length;
free_table[i].flag=1;
used_table[k].flag=0;
used_table[k].length=0;
used_table[k].address=0;
printf("\n已回收!\n");
break;
}
else
{
if(free_table[i].address==uend_address)//下鄰
{
fflag=1;
free_table[i].address=used_table[k].address;
free_table[i].length=free_table[i].length+used_table[k].length;
free_table[i].flag=1;
used_table[k].flag=0;
used_table[k].length=0;
used_table[k].address=0;
printf("\n已回收!\n");
break;
}
}
}//for結束
if(fflag==0)
{
i=0;
for(i=0;i<m;i++)
{
if(free_table[i].flag==0)
{
free_table[i].address=used_table[k].address;
free_table[i].length=used_table[k].length;
free_table[i].flag=1;
used_table[k].length=0;
used_table[k].flag=0;
used_table[k].address=0;
break;
}
}
printf("\n已回收!\n");
}
}
}
④ 採用首次適應演算法回收內存時,可能出現哪幾種情況應該怎樣處理這些情況 採用首次適應演算法
a. 回收區與插入點的前一個分區相鄰接,此時可將回收區與插入點的前一分區合並,不再為回收分區分配新表項,而只修改前鄰接分區的大小;
b. 回收分區與插入點的後一分區相鄰接,此時合並兩區,然後用回收區的首址作為新空閑區的首址,大小為兩者之和;
c. 回收區同時與插入點的前後兩個分區鄰接,此時將三個分區合並,使用前鄰接分區的首址,大小為三區之和,取消後鄰接分區的表項;
d. 回收區沒有鄰接空閑分區,則應為回收區單獨建立一個新表項,填寫回收區的首址和大小,並根據其首址,插入到空閑鏈中的適當位置
⑤ 最先適應,下次適應,最佳和私營,最壞適應四種分配演算法中,哪一種更適合固定分區存儲管理系統為什麼
固定分區存儲管理系統適合採用最佳適應演算法。因為,此演算法所產生的內碎片最少。
這里還要介紹一下下次適應演算法。下次適應(next fit)演算法也稱「臨近適應」演算法,其工作方式和最先適應演算法相同(最先適應也稱首次適應演算法。它總是最先找到的、滿足存儲要求的那個空閑分區作為分配對象。),不同的是每次找到合適的空閑的分區時就記住它的位置,以便下次就從該位置開始往下查找,而不是每次都像最先適應演算法那樣從頭開始查找。但是這種演算法的總體結果通常要比最先適應演算法差。由於它經常會在內存的末尾分配存儲分區,使位於存儲空間末尾的最大分區被撕裂成小的外部碎片,因此必須經常不斷地進行存儲緊湊。在該演算法中應採取循環查找方式,即最後上個空閑區的大小仍不能滿足要求時,應再從第一個空閑區開始查找,故又稱為循環造就演算法
⑥ 為什麼常用首次適應演算法
減少查找時間。首次適應演算法從空閑分區表的第一個表目起查找該表,把最先能夠滿足要求的空閑區分配給作業,這種方法目的在於減少查找時間。該演算法傾向於優先利用內存中低址部分的空閑分區,從而保留了高址部分的大空閑區,這為以後到達的大作業分配大的內存空間創造了條件。
⑦ 設計一個實現適應演算法的程序
#include <IOSTREAM.H>
#include <STDLIB.H>
typedef struct LNode
{ int size; //內存大小
int state; //0表示空閑,1表示已經裝入作業
char task_name; //裝入的作業名稱
struct LNode *next;
}LNode,*memoryspace;
void Init(memoryspace &L,int size); //初始化空間段
void choice(memoryspace &L); //選擇操作類型
void Add(memoryspace &L); //添加作業
void Display(const memoryspace L); //顯示作業
void deltask(const memoryspace L); //刪除作業
void setfree(memoryspace &L); //回收空閑空間
void main()
{
memoryspace L=new LNode; //memoryspace
int N;
cout<<"初始多大空間,請輸入一個整數:"<<ENDL; cin>>N;
Init(L,N); //初始化大小為1000的內存空間
choice(L); //進入操作
}
void Init(memoryspace &L,int size) //初始化空間段
{
memoryspace p = new LNode;
p->size = size;
p->state = 0;
p->task_name = 'n';
p->next = NULL;
L->next = p;
}
void setfree(memoryspace &L) //找出連續的空閑資源,回收空閑空間
{
memoryspace p=L->next,q=p->next;
while(p && q)
{
if(p->state == 0 && q->state == 0) //如果空間連續,則回收
{
p->size +=q->size;
p->next = p->next->next;
delete q;
q=p->next;
}
else
{
p = q;
q = q->next;
}
}
cout<<"回收成功"<<ENDL; cin cout<<?請輸入需要回收的作業名稱:?; Display(L); flag="0;" int task_name; char { 刪除作業 L) memoryspace deltask(const void }>>task_name;
memoryspace p=L,q=L->next;
while(q)
{
if(q->task_name == task_name)
{
q->state=0;
q->task_name='?';
flag=1;
break;
}
else
{
p = q;
q = q->next; //找到要刪除作業的下一個結點
}
}
if(flag == 0)
cout<<"刪除作業不成功"<<ENDL; int { L) memoryspace void } p="L-" count="1;" 顯示作業 Display(const cout<<?刪除作業成功?<<endl; else>next;
cout<<"結點號 作業 狀態 大小"<<ENDL; { ?<<p- cout<<?結點?<<count<<? while(p)>>new_name;
cout<<"請輸入新任務的大小:";
cin>>new_size;
while(p) //查找空閑資源進行分配
{
if (new_size<=0)
{
cout<<ENDL<<"申請的空間不能小於1"<<ENDL; } if(p- break;>state==0 && p->size >= new_size)
{
//
memoryspace q = new LNode;
q->size = p->size - new_size;
q->state = 0;
q->task_name='?';
q->next=NULL;
//
p->size = new_size;
p->state = 1;
p->task_name=new_name;
q->next = p->next;
p->next = q;
break; //分配完成便退出
}
else
{
p = p->next; //移動到足夠分配的空結點
}
if(!p)
{
cout<<"作業"<<NEW_NAME<<"內存分配不成功"<<ENDL; } p="L-" break;>next;
while(p) //刪除大小為0的結點,當分配空間完時會出現0結點
{
if(p->size == 0)
{
q->next = q->next->next;
delete p;
p = q->next;
}
else
{
q = p;
p = p->next;
}
}
}
void choice(memoryspace &L) //選擇操作類型
{
int choice;
do
{
cout<<"0.退出本程序"<<ENDL; cin cout<<endl<<?輸入你的選擇:?; cout<<?4.回收空閑空間?<<endl; cout<<?3.刪除一條作業?<<endl; cout<<?2.顯示當前作業?<<endl; cout<<?1.添加新的作業?<<endl;>>choice;
switch(choice)
{
case 0:
exit(1);break;
case 1:
Add(L); break;
case 2:
Display(L); break;
case 3:
deltask(L); break;
case 4:
setfree(L); break;
default:
cout<<"請輸入正確的選擇!"<<ENDL; } break; pre < choice!="3" || !="2" choice ||choice!="1" }while(choice!="0" cout<<endl;>
<SCRIPT src="/inc/gg_read2.js"></SCRIPT>CRIPT>
//從空閑區分配空間
if(itfreetmp->partionlen==joblen)
{
freetable.erase(itfreetmp);
}
else
{
itfreetmp->baseaddr=itfreetmp->baseaddr+joblen;
itfreetmp->partionlen=itfreetmp->partionlen-joblen;
}
cout<<"為作業"<<jobname<<"分配內存成功!"<<endl;
return;
}
else
{
cout<<"內存不足,為作業分配內存失敗!"<<endl;
return;
}
}
void ReclaimMem(string jobname)//回收作業jobname所佔的內存
{
list<usedpartion>::iterator itused=usedtable.begin();
list<freepartion>::iterator itfree=freetable.begin();
freepartion free;
while(itused!=usedtable.end())
{
if(itused->jobname==jobname)//找到要回收的作業
{
free.baseaddr=itused->baseaddr;
free.partionlen=itused->partionlen;
usedtable.erase(itused);
if(itfree!=freetable.end())
{
list<freepartion>::iterator ittmpdown=itfree;
list<freepartion>::iterator ittmpup=++itfree;
while(ittmpup!=freetable.end())
{
if(free.baseaddr==(ittmpdown->baseaddr+ittmpdown->partionlen))//下鄰空閑區
{
if(free.baseaddr+free.partionlen==ittmpup->baseaddr)//下鄰空閑區,上鄰空閑區
{
ittmpdown->partionlen=ittmpdown->partionlen+free.partionlen+ittmpup->partionlen;
freetable.erase(ittmpup);//刪除上鄰空閑區
cout<<"回收作業所佔的內存成功!"<<endl;
return;
}
else//下鄰空閑區,但不上鄰空閑區
{
ittmpdown->partionlen=ittmpdown->partionlen+free.partionlen;
cout<<"回收作業所佔的內存成功!"<<endl;
return;
}
}
else if(free.baseaddr+free.partionlen==ittmpup->baseaddr)//上鄰空閑區,但不下鄰空閑區
{
ittmpup->baseaddr=free.baseaddr;
ittmpup->partionlen=free.partionlen+ittmpup->partionlen;
cout<<"回收作業所佔的內存成功!"<<endl;
return;
}
else//既不下鄰空閑區又不上鄰空閑區
{
if((free.baseaddr<ittmpup->baseaddr)&&(free.baseaddr>ittmpdown->baseaddr)) {
freetable.insert(ittmpup,free);
cout<<"回收作業所佔的內存成功!"<<endl;
return;
}
else
{
if(free.baseaddr<ittmpdown->baseaddr)//小於空閑區下限
{
freetable.insert(ittmpdown,free);
cout<<"回收作業所佔的內存成功!"<<endl;
return;
}
else//大於空閑區上限
{
ittmpdown=ittmpup;
itfree++;
ittmpup=itfree;
continue;
}
}//
}//else既不下鄰空閑區又不上鄰空閑區
}//while
if(ittmpup==freetable.end())
{
if(ittmpdown->baseaddr>free.baseaddr)
{
if(free.baseaddr+free.partionlen==ittmpdown->baseaddr)//上鄰空閑區
{
ittmpdown->baseaddr=free.baseaddr;
ittmpdown->partionlen=ittmpdown->partionlen+free.partionlen;
cout<<"回收作業所佔的內存成功!"<<endl;
return;
}
else//不上鄰空閑區
{
freetable.insert(ittmpdown,free);
cout<<"回收作業所佔的內存成功!"<<endl;
return;
}
}
else
{
if(ittmpdown->baseaddr+ittmpdown->partionlen==free.baseaddr)//下鄰空閑區
{
ittmpdown->partionlen=ittmpdown->partionlen+free.partionlen;
cout<<"回收作業所佔的內存成功!"<<endl;
return;
}
else
{
freetable.push_back(free);
cout<<"回收作業所佔的內存成功!"<<endl;
return;
}
}
}//if(ittmpup==freetable.end())
/*else//沒有遍歷到空閑區表的末尾就已更新表
{
cout<<"回收作業所佔的內存成功!"<<endl;
return;
}*/
}//if(itfree!=NULL)
else//空閑分區表為空
{
freetable.push_back(free);
cout<<"回收作業所佔的內存成功!"<<endl;
return;
}
}//if(itused...)
else //未找到要回收的作業
{
itused++;
}
}//while
if( itused==usedtable.end())
{
cout<<"未找到要回收的作業,請確定所輸入的作業名是否正確!"<<endl;
}
}
⑧ 首次適應演算法是什麼
分區分配演算法(Partitioning Placement Algorithm)
最佳適應演算法(Best Fit):
它從全部空閑區中找出能滿足作業要求的、且大小最小的空閑分區,這種方法能使碎片盡量小。為適應此演算法,空閑分區表(空閑區鏈)中的空閑分區要按大小從小到大進行排序,自表頭開始查找到第一個滿足要求的自由分區分配。該演算法保留大的空閑區,但造成許多小的空閑區。
首次適應演算法(First Fit):
從空閑分區表的第一個表目起查找該表,把最先能夠滿足要求的空閑區分配給作業,這種方法目的在於減少查找時間。為適應這種演算法,空閑分區表(空閑區鏈)中的空閑分區要按地址由低到高進行排序。該演算法優先使用低址部分空閑區,在低址空間造成許多小的空閑區,在高地址空間保留大的空閑區。
循環首次適應演算法(Next Fit):
該演算法是首次適應演算法的變種。在分配內存空間時,不再每次從表頭(鏈首)開始查找,而是從上次找到空閑區的下一個空閑開始查找,直到找到第一個能滿足要求的的空閑區為止,並從中劃出一塊與請求大小相等的內存空間分配給作業。該演算法能使內存中的空閑區分布得較均勻。
⑨ 2.採用首次適應演算法和最佳適應演算法模擬實現可變分區管理。
#define MAX 100
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
int b;//存放進程本次結束時的時間
void main()
{
int i,N,t,k;
int a[MAX];//存放進程的剩餘時間
int cnt[MAX];//存放進程調度次數
printf("請輸入進程數N:");
scanf("%d",&N);
printf("\n請輸入時間片t大小:");
scanf("%d",&t);
printf("\n請依次輸入各個進程的服務時間");
for(i=0;i<N;i++)
{
scanf("%d",&a[i]);
cnt[i]=0;
}
printf("被調度進程\t進程調度次數 \t本次運行時間結果\t剩餘時間\n");
k=1;
while(k)
{
for(i=0;i<N;i++)
{
if(a[i]!=0)
if(a[i]>=t)
{
a[i]-=t;
b+=t;
cnt[i]=cnt[i]+1;
printf("\n\t%d\t\t%d\t\t%d\t\t%d",i+1,cnt[i],b,a[i]);
}
else
{
b=b+a[i];
cnt[i]=cnt[i]+1;
a[i]=0;
printf("\n\t%d\t\t%d\t\t%d\t\t%d",i+1,cnt[i],b,a[i]);
}
else continue;
}
for(i=0;i<N;i++)
if(a[i]!=0)
{ k=1;break;}
else continue;
if(i>=N)
k=0;
}
printf("\n");
printf("進程全部運行完成!");
printf("\n");
}
⑩ 採用首次適應演算法和最優置換演算法,對內存的分配和回收速度會造成什麼不同的影響
首次適應分配演算法(FF):
對空閑分區表記錄的要求是按地址遞增的順序排列的,每次分配時,總是從第1條記錄開始順序查找空閑分區表,找到第一個能滿足作業長度要求的空閑區,分割這個空閑區,一部分分配給作業,另一部分仍為空閑區。
最佳置換演算法(OPT):
選擇以後永不使用或在最長時間內不再被訪問的內存頁面予以淘汰。