㈠ 數據挖掘。k-均值演算法
這是最基礎的一種聚類演算法,而且其思想也最容易理解
㈡ 數據挖掘題目,K—均值演算法應用
第一輪
A1(2,10)
B1(5,8),A3(8,4), B2(7,5),B3(6,4),C2(4,9)
C1(1,2),A2(2,5)
對應中心分別是(2,10),(6,6),(1.5, 3.5)
最後結果:
{A1(2,10),B1(5,8),C2(4,9)}
{A3(8,4), B2(7,5),B3(6,4)}
{C1(1,2),A2(2,5)}
㈢ K-Means聚類演算法原理是怎麼樣的
問題:
姓名 身高 體重 眼睛
A 180 X 1.2
A X 140 X
A 180 140 X
A 168 120 1.5
姓名一樣,用java演算法,判斷出是兩個人?
㈣ k_means演算法
你的文件名叫什麼
㈤ kmeans演算法是什麼
K-means演算法是一種基於距離的聚類演算法,也叫做K均值或K平均,也經常被稱為勞埃德(Lloyd)演算法。是通過迭代的方式將數據集中的各個點劃分到距離它最近的簇內,距離指的是數據點到簇中心的距離。
K-means演算法的思想很簡單,對於給定的樣本集,按照樣本之間的距離大小,將樣本劃分為K個簇。將簇內的數據盡量緊密的連在一起,而讓簇間的距離盡量的大。
演算法流程
1、選取數據空間中的K個對象作為初始中心,每個對象代表一個聚類中心。
2、對於樣本中的數據對象,根據它們與這些聚類中心的歐氏距離,按距離最近的准則將它們分到距離它們最近的聚類中心(最相似)所對應的類。
3、更新聚類中心:將每個類別中所有對象所對應的均值作為該類別的聚類中心,計算目標函數的值。
4、判斷聚類中心和目標函數的值是否發生改變,若不變,則輸出結果,若改變,則返回2)。
㈥ kmean演算法是干什麼的
聚類分析是一種靜態數據分析方法,常被用於機器學習,模式識別,數據挖掘等領域。通常認為,聚類是一種無監督式的機器學習方法,它的過程是這樣的:在未知樣本類別的情況下,通過計算樣本彼此間的距離(歐式距離,馬式距離,漢明距離,餘弦距離等)來估計樣本所屬類別。從結構性來劃分,聚類方法分為自上而下和自下而上兩種方法,前者的演算法是先把所有樣本視為一類,然後不斷從這個大類中分離出小類,直到不能再分為止;後者則相反,首先所有樣本自成一類,然後不斷兩兩合並,直到最終形成幾個大類。
常用的聚類方法主要有以下四種: //照搬的wiki,比較懶...
Connectivity based clustering(如hierarchical clustering 層次聚類法)
Centroid-based clustering(如kmeans)
Distribution-based clustering
Density-based clustering
Kmeans聚類是一種自下而上的聚類方法,它的優點是簡單、速度快;缺點是聚類結果與初始中心的選擇有關系,且必須提供聚類的數目。Kmeans的第二個缺點是致命的,因為在有些時候,我們不知道樣本集將要聚成多少個類別,這種時候kmeans是不適合的,推薦使用hierarchical 或meanshift來聚類。第一個缺點可以通過多次聚類取最佳結果來解決。
Kmeans的計算過程大概表示如下
隨機選擇k個聚類中心. 最終的類別個數<= k
計算每個樣本到各個中心的距離
每個樣本聚類到離它最近的中心
重新計算每個新類的中心
重復以上步驟直到滿足收斂要求。(通常就是中心點不再改變或滿足一定迭代次數).
㈦ isodata演算法和k均值演算法的區別
k均值聚類:---------一種硬聚類演算法,隸屬度只有兩個取值0或1,提出的基本根據是「類內誤差平方和最小化」准則; 模糊的c均值聚類演算法:-------- 一種模糊聚類演算法,是k均值聚類演算法的推廣形式,隸屬度取值為[0 1]區間內的任何一個數,提出的基本...
㈧ k均值聚類演算法聚類個數怎麼確定
演算法:
第一步:選K個初始聚類中心,z1(1),z2(1),…,zK(1),其中括弧內的序號為尋找聚類中心的迭代運算的次序號。聚類中心的向量值可任意設定,例如可選開始的K個模式樣本的向量值作為初始聚類中心。