① MCU的主要區別
在20世紀最值得人們稱道的成就中,就有集成電路和電子計算機的發展。20世紀70年代出現的微型計算機,在科學技術界引起了影響深遠的變革。在70年代中期,微型計算機家族中又分裂出一個小小的派系--單片機。隨著4位單片機出現之後,又推出了8位的單片機。MCS48系列,特別是MCS51系列單片機的出現,確立了單片機作為微控制器(MCU)的地位,引起了微型計算機領域新的變革。在當今世界上,微處理器(MPU)和微控制器(MCU)形成了各具特色的兩個分支。它們互相區別,但又互相融合、互相促進。與微處理器(MPU)以運算性能和速度為特徵的飛速發展不同,微控制器(MCU)則是以其控制功能的不斷完善為發展標志的。
CPU(Central Processing Unit,中央處理器)發展出來三個分枝,一個是DSP(Digital Signal Processing/Processor,數字信號處理),另外兩個是MCU(Micro Control Unit,微控制器單元)和MPU(Micro Processor Unit,微處理器單元)。
MCU集成了片上外圍器件;MPU不帶外圍器件(例如存儲器陣列),是高度集成的通用結構的處理器,是去除了集成外設的MCU;DSP運算能力強,擅長很多的重復數據運算,而MCU則適合不同信息源的多種數據的處理診斷和運算,側重於控制,速度並不如DSP。MCU區別於DSP的最大特點在於它的通用性,反應在指令集和定址模式中。DSP與MCU的結合是DSC,它終將取代這兩種晶元。
1.對密集的乘法運算的支持
GPP不是設計來做密集乘法任務的,即使是一些現代的GPP,也要求多個指令周期來做一次乘法。而DSP處理器使用專門的硬體來實現單周期乘 法。DSP處理器還增加了累加器寄存器來處理多個乘積的和。累加器寄存器通常比其他寄存器寬,增加稱為結果bits的額外bits來避免溢出。同時,為了 充分體現專門的乘法-累加硬體的好處,幾乎所有的DSP的指令集都包含有顯式的MAC指令。
2. 存儲器結構
傳統上,GPP使用馮.諾依曼存儲器結構。這種結構中,只有一個存儲器空間通過一組匯流排(一個地址匯流排和一個數據匯流排)連接到處理器核。通常,做一次乘法會發生4次存儲器訪問,用掉至少四個指令周期。
大多數DSP採用了哈佛結構,將存儲器空間劃分成兩個,分別存儲程序和數據。它們有兩組匯流排連接到處理器核,允許同時對它們進行訪問。這種安排將處理器存儲器的帶寬加倍,更重要的是同時為處理器核提供數據與指令。在這種布局下,DSP得以實現單周期的MAC指令。
典型的高性能GPP實際上已包含兩個片內高速緩存,一個是數據,一個是指令,它們直接連接到處理器核,以加快運行時的訪問速度。從物理上說,這種片內的雙存儲器和匯流排的結構幾乎與哈佛結構的一樣了。然而從邏輯上說,兩者還是有重要的區別。
GPP使用控制邏輯來決定哪些數據和指令字存儲在片內的高速緩存里,其程序員並不加以指定(也可能根本不知道)。與此相反,DSP使用多個片內 存儲器和多組匯流排來保證每個指令周期內存儲器的多次訪問。在使用DSP時,程序員要明確地控制哪些數據和指令要存儲在片內存儲器中。程序員在寫程序時,必 須保證處理器能夠有效地使用其雙匯流排。
此外,DSP處理器幾乎都不具備數據高速緩存。這是因為DSP的典型數據是數據流。也就是說,DSP處理器對每個數據樣本做計算後,就丟棄了,幾乎不再重復使用。
3.零開銷循環
如果了解到DSP演算法的一個共同的特點,即大多數的處理時間是花在執行較小的循環上,也就容易理解,為什麼大多數的DSP都有專門的硬體,用於 零開銷循環。所謂零開銷循環是指處理器在執行循環時,不用花時間去檢查循環計數器的值、條件轉移到循環的頂部、將循環計數器減1。
與此相反,GPP的循環使用軟體來實現。某些高性能的GPP使用轉移預報硬體,幾乎達到與硬體支持的零開銷循環同樣的效果。
4.定點計算
大多數DSP使用定點計算,而不是使用浮點。雖然DSP的應用必須十分注意數字的精確,用浮點來做應該容易的多,但是對DSP來說,廉價也是非 常重要的。定點機器比起相應的浮點機器來要便宜(而且更快)。為了不使用浮點機器而又保證數字的准確,DSP處理器在指令集和硬體方面都支持飽和計算、舍 入和移位。
5.專門的定址方式
DSP處理器往往都支持專門的定址模式,它們對通常的信號處理操作和演算法是很有用的。例如,模塊(循環)定址(對實現數字濾波器延時線很有用)、位倒序定址(對FFT很有用)。這些非常專門的定址模式在GPP中是不常使用的,只有用軟體來實現。
6.執行時間的預測
大多數的DSP應用(如蜂窩電話和數據機)都是嚴格的實時應用,所有的處理必須在指定的時間內完成。這就要求程序員准確地確定每個樣本需要多少處理時間,或者,至少要知道,在最壞的情況下,需要多少時間。如果打算用低成本的GPP去完成實時信號處理的任務,執行時間的預測大概不會成為什麼問題,應為低成本GPP具有相對直接的結構,比較容易預測執行時間。然而,大多數實時DSP應用所要求的處理能力是低成本GPP所不能提供的。 這時候,DSP對高性能GPP的優勢在於,即便是使用了高速緩存的DSP,哪些指令會放進去也是由程序員(而不是處理器)來決定的,因此很容易判斷指令是從高速緩存還是從存儲器中讀取。DSP一般不使用動態特性,如轉移預測和推理執行等。因此,由一段給定的代碼來預測所要求的執行時間是完全直截了當的。從而使程序員得以確定晶元的性能限制。
7.定點DSP指令集
定點DSP指令集是按兩個目標來設計的:使處理器能夠在每個指令周期內完成多個操作,從而提高每個指令周期的計算效率。將存貯DSP程序的存儲器空間減到最小(由於存儲器對整個系統的成本影響甚大,該問題在對成本敏感的DSP應用中尤為重要)。為了實現這些目標,DSP處理器的指令集通常都允許程序員在一個指令內說明若干個並行的操作。例如,在一條指令包含了MAC操作,即同時的一個或兩個數據移動。在典型的例子里,一條指令就包含了計算FIR濾波器的一節所需要的所有操作。這種高效率付出的代價是,其指令集既不直觀,也不容易使用(與GPP的指令集相比)。 GPP的程序通常並不在意處理器的指令集是否容易使用,因為他們一般使用象C或C++等高級語言。而對於DSP的程序員來說,不幸的是主要的DSP應用程序都是用匯編語言寫的(至少部分是匯編語言優化的)。這里有兩個理由:首先,大多數廣泛使用的高級語言,例如C,並不適合於描述典型的DSP演算法。其次, DSP結構的復雜性,如多存儲器空間、多匯流排、不規則的指令集、高度專門化的硬體等,使得難於為其編寫高效率的編譯器。 即便用編譯器將C源代碼編譯成為DSP的匯編代碼,優化的任務仍然很重。典型的DSP應用都具有大量計算的要求,並有嚴格的開銷限制,使得程序的優化必不可少(至少是對程序的最關鍵部分)。因此,考慮選用DSP的一個關鍵因素是,是否存在足夠的能夠較好地適應DSP處理器指令集的程序員。
8.開發工具的要求
因為DSP應用要求高度優化的代碼,大多數DSP廠商都提供一些開發工具,以幫助程序員完成其優化工作。例如,大多數廠商都提供處理器的模擬工具,以准確地模擬每個指令周期內處理器的活動。無論對於確保實時操作還是代碼的優化,這些都是很有用的工具。 GPP廠商通常並不提供這樣的工具,主要是因為GPP程序員通常並不需要詳細到這一層的信息。GPP缺乏精確到指令周期的模擬工具,是DSP應用開發者所面臨的的大問題:由於幾乎不可能預測高性能GPP對於給定任務所需要的周期數,從而無法說明如何去改善代碼的性能。
② 請問誰有MCS96系列單片機的編譯器
我懷疑Intel不再推出這玩意了,建議你搞別的,例如DSP+MCU(Blackfin之類的),便宜,極快!當然,MCS96/196有其特有的特點,穩定、可靠、耐輻射、抗沖擊等等。一定要玩?找個破解的Tasking Software的C編譯器吧! 模擬器也不很貴。但是,晶元越來越難買喔!
③ stm32cubeide設置文件編譯順序
對一個加法函數的庫項目的建立和編譯整個過程如下:
1、這里就要選擇ARMMCU的GCC編譯器了。
2、選擇和MCU型號的綁定關系了,畢竟編譯的庫是給MCU項目所用,這里選擇STM32F401CCU6的晶元。
2、添加源文件編寫加法函數,編寫加法函數進行編譯。
3、編譯成功,在工程目錄里就可以找到編譯好的庫文件了,庫文件的調用,配置一個對應MCU的基本工程,建立一個STM32F401CCU6的工程,並配置USART2作為串口輸出。
4、保存後產生基本工程代碼,重載printf函數方便列印輸出,參考STM32UART串口printf函數應用及浮點列印代碼空間節省。
5、在工程的core/inc/目錄新建一個和庫文件同名的頭文件,將庫文件libLib_C_Demo.a放置到工程的源文件目錄core/src/,則在工程目錄樹立可以看到。
6、因為編譯器默認只是識別C語言源代碼(.c文件),還需要進行庫文件的指定,這樣編譯器才會對二進制庫文件(.a)進行識別。
7、先打開屬性菜單,進行庫文件所在目錄和庫文件名的添加指定,注意庫文件名前需要加冒號,ApplyandClose後,就可以在工程文件里對庫文件進行調用,首先要引入庫文件的頭文件。
8、在while循環里進行列印輸出,列印數據為庫函數調用的加法和,編譯下載到STM32F401CCU6晶元後運行,通過串口工具觀察列印結果,輸出列印結果正確,庫函數正常調用成功。
④ STM8S003FxxxMCU用哪個編譯軟體
沒有rando函數。只有rand和randn
1.rand()
生成(0,1)區間上均勻分布的隨機變數。基本語法:
rand([M,N,P ...])
生成排列成M*N*P... 多維向量的隨機數。如果只寫M,則生成M*M矩陣;如果參數為[M,N]可以省略掉方括弧。一些例子:
rand(5,1) %生成5個隨機數排列的列向量,一般用這種格式
rand(5) %生成5行5列的隨機數矩陣
rand([5,4]) %生成一個5行4列的隨機數矩陣
生成的隨機數大致的分布。
x=rand(100000,1);
hist(x,30);
由此可以看到生成的隨機數很符合均勻分布。(視頻教程會略提及hist()函數的作用)
2.randn()
生成服從標准正態分布(均值為0,方差為1)的隨機數。基本語法和rand()類似。
randn([M,N,P ...])
生成排列成M*N*P... 多維向量的隨機數。如果只寫M,則生成M*M矩陣;如果參數為[M,N]可以省略掉方括弧。一些例子:
randn(5,1) %生成5個隨機數排列的列向量,一般用這種格式
randn(5) %生成5行5列的隨機數矩陣
randn([5,4]) %生成一個5行4列的隨機數矩陣
3、matlab中random函數——通用函數,求各分布的隨機數據,其用法:
y = random('norm',A1,A2,A3,m,n)
式中:A1,A2,A3為分布的參數,m,n用來指定隨機數的行和列,name的取值有相關的表格來參照。
例:產生一個3行4列均值為2、標准差為0.3的正態分布隨機數:
>>y =random('norm',2,0.3,3,4)
y =
2.1613 2.2587 1.8699 2.8308
2.5502 2.0956 2.1028 1.5950
1.3223 1.6077 3.0735 2.9105
⑤ 「Keil C51」下如何讓編譯器優先使用片內「RAM」
C51內存結構深度剖析x0dx0a在編寫應用程序時,定義一個變數,一個數組,或是說一個固定表格,到底存儲在什麼地方;當定義變數大小超過MCU的內存范圍時怎麼辦;如何控制變數定義不超過存儲范圍;以及如何定義變數才能使得變數訪問速度最快,寫出的程序運行效率最高。以下將一一解答。x0dx0ax0dx0a1 六類關鍵字(六類存儲類型)x0dx0adata idata xdata pdata code bdatax0dx0ax0dx0a code: code memory (程序存儲器也即只讀存儲器)用來保存常量或是程序。code memory 採用16位地址線編碼,可以是在片內,或是片外,大小被限制在64KBx0dx0a 作用:定義常量,如八段數碼表或是編程使用的常,在定義時加上code 或明確指明定義的常量保存到code memory(只讀)x0dx0a 使用方法:x0dx0a char code table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};x0dx0a 此關鍵字的使用方法等同於constx0dx0ax0dx0adata data memory (數據存儲區)只能用於聲明變數,不能用來聲明函數,該區域位於片內,採用8位地址線編碼,具有最快的存儲速度,但是數量被限制在128byte或更少。x0dx0a 使用方法:x0dx0a unsigned char data fast_variable=0;x0dx0ax0dx0a idata idata memory(數據存儲區)只能用於聲明變數,不能用來聲明函數. 該區域位於片內,採用8位地址線編碼,內存大小被限制在256byte或更少。該區域的低地址區與data memory地址一致;高地址區域是52系列在51系列基礎上擴展的並與特殊功能寄存器具有相同地址編碼的區域。即:data memory是idata memory的一個子集。x0dx0a x0dx0a xdata xdata memory 只能用於聲明變數,不能用來聲明函數,該區域位於MCUx0dx0a 外部,採用16位地址線進行編碼,存儲大小被限制在64KB以內。x0dx0a 使用方法:x0dx0a unsigned char xdata count=0;x0dx0ax0dx0apdata pdata memory 只能用於聲明變數,不能用來聲明函數,該區域位於MCU外部,採用8位地址線進行編碼。存儲大小限制在256byte. 是xdata memory的低256byte。為其子集。x0dx0a 使用方法x0dx0a unsigned char pdata count=0;x0dx0ax0dx0a bdata bdata memory 只能用於聲明變數,不能用來聲明函數。該區域位於8051內部位數據地址。定義的量保存在內部位地址空間,可用位指令直接讀寫。x0dx0a 使用方法:x0dx0a unsigned char bdata varab=0x0dx0ax0dx0a 註:有些資料講,定義字元型變數時,在預設unsigned 時,字元型變數,默認為無符號,與標准C不同,但我在Keil uVision3中測試的時候發現並非如此。在預設的情況下默認為有符號。或許在以前的編譯器是默認為無符號。所以看到有的資料上面這樣講的時候,要注意一下,不同的編譯器或許不同。所以我們在寫程序的時候,還是乖乖的把unsigned signed 加上,咱也別偷這個懶。x0dx0a 2函數的參數和局部變數的存儲模式x0dx0a C51 編譯器允許採用三種存儲器模式:SMALL,COMPACT 和LARGE。一個函數的存儲器模式確定了函數的參數的局部變數在內存中的地址空間。處於SMALL模式下的函數參數和局部變數位於8051單片機內部RAM中,處於COMPACT和LARGE模式下的函數參數和局部變數則使用單片機外部RAM。在定義一個函數時可以明確指定該函數的存儲器模式。方法是在形參表列的後面加上一存儲模式。x0dx0a x0dx0a 示例如下:x0dx0a #pragma large //此預編譯必須放在所有頭文前面x0dx0a int func0(char x,y) small;x0dx0a char func1(int x) large;x0dx0a int func2(char x);x0dx0a 註:x0dx0a 上面例子在第一行用了一個預編譯命令#pragma 它的意思是告訴c51編譯器在對程序進行編譯時,按該預編譯命令後面給出的編譯控制指令LARGE進行編譯,即本常式序編譯時的默認存儲模式為LARGE.隨後定義了三個函數,第一個定義為SMALL存儲模式,第二個函數定義為LARGE第三個函數未指定,在用C51進行編譯時,只有最後一個函數按LARGE存儲器模式處理,其它則分別按它們各自指定的存儲器模式處理。x0dx0a 本例說明,C51編譯器允許採用所謂的存儲器混合模式,即允許在一個程序中將一些函數使用一種存儲模式,而其它一些則按另一種存儲器模式,採用存儲器混合模式編程,可以充分利用8051系列單片機中有限的存儲器空間,同時還可以加快程序的執行速度。x0dx0ax0dx0a3絕對地址訪問 absacc.h(相當重要)x0dx0ax0dx0a#define CBYTE ((unsigned char volatile code *) 0)x0dx0a#define DBYTE ((unsigned char volatile data *) 0)x0dx0a#define PBYTE ((unsigned char volatile pdata *) 0)x0dx0a#define XBYTE ((unsigned char volatile xdata *) 0)x0dx0a 功能:CBYTE 定址 CODE區x0dx0a DBYTE 定址 DATA區x0dx0a PBYTE 定址 XDATA(低256)區x0dx0a XBYTE 定址 XDATA區x0dx0a 例: 如下指令在對外部存儲器區域訪問地址0x1000x0dx0a xvar=XBYTE[0x1000];x0dx0a XBYTE[0x1000]=20;x0dx0ax0dx0a#define CWORD ((unsigned int volatile code *) 0)x0dx0a#define DWORD ((unsigned int volatile data *) 0)x0dx0a#define PWORD ((unsigned int volatile pdata *) 0)x0dx0a#define XWORD ((unsigned int volatile xdata *) 0)x0dx0ax0dx0a 功能:與前面的一個宏相似,只是它們指定的數據類型為unsigned int .。x0dx0a 通過靈活運用不同的數據類型,所有的8051地址空間都是可以進行訪問。x0dx0a 如x0dx0aDWORD[0x0004]=0x12F8;x0dx0a即內部數據存儲器中(0x08)=0x12; (0x09)=0xF8x0dx0ax0dx0a註:用以上八個函數,可以完成對單片機內部任意ROM和RAM進行訪問,非常方便。還有一種方法,那就是用指鍾,後面會對C51的指針有詳細的介紹。x0dx0ax0dx0a4寄存器變數(register)x0dx0a 為了提高程序的執行效率,C語言允許將一些頻率最高的那些變數,定義為能夠直接使用硬體寄存器的所謂的寄存器變數。定義一個變數時,在變數類型名前冠以「register」 即將該變數定義成為了寄存器變數。寄存器變數可以認為是一自動變數的一種。有效作用范圍也自動變數相同。由於計算機寄存器中寄存器是有限的。不能將所有變數都定義成為寄存器變數,通常在程序中定義寄存器變數時,只是給編譯器一個建議,該變數是否真正成為寄存器變數,要由編譯器根據實際情況來確定。另一方面,C51編譯器能夠識別程序中使用頻率最高的變數,在可能的情況下,即使程序中並未將該變數定義為寄存器變數,編譯器也會自動將其作為寄存器變數處理。被定義的變數是否真正能成為寄存器變數,最終是由編譯器決定的。x0dx0ax0dx0a5內存訪問雜談x0dx0a 1指鍾x0dx0a指鍾本身是一個變數,其中存放的內容是變數的地址,也即特定的數據。8051的地址是16位的,所以指針變數本身佔用兩個存儲單元。指針的說明與變數的說明類似,僅在指針名前加上「*」即可。x0dx0a 如 int *int_point; 聲明一個整型指針x0dx0a char *char_point; 聲明一個字元型指針x0dx0a 利用指針可以間接存取變數。實現這一點要用到兩個特殊運算符x0dx0a & 取變數地址x0dx0a * 取指針指向單元的數據x0dx0ax0dx0a示例一:x0dx0aint a,b;x0dx0a int *int_point; //定義一個指向整型變數的指針x0dx0a a=15;x0dx0a int_point=&a; //int_point指向 ax0dx0a *int_point=5; //給int_point指向的變數a 賦值5 等同於a=5; x0dx0a示例二:x0dx0a char i,table[6],*char_point;x0dx0a char_point=table;x0dx0a for(i=0;i<6;i++)x0dx0a {x0dx0a char_point=i;x0dx0a char_point++;x0dx0a}x0dx0a註:x0dx0a 指針可以進行運算,它可以與整數進行加減運算(移動指針)。但要注意,移動指針後,其地址的增減量是隨指針類型而異的,如,浮點指針進行自增後,其內部將在原有的基礎上加4,而字元指針當進生自增的時候,其內容將加1。原因是浮點數,佔4個內存單元,而字元佔一個位元組。x0dx0ax0dx0a宏晶科技最新一代STC12C5A360S2系列,每一個單片機出廠時都有全球唯一身份證號碼(ID號),用戶可以在單片機上電後讀取內部RAM單元F1H~F7H的數值,來獲取此單片機的唯一身份證號碼。使用MOV @Ri 指令來讀取。下面介紹C51 獲取方法:x0dx0a char id[7]={0};x0dx0a char i;x0dx0a char idata *point;x0dx0a for(i=0;i<7;i++)x0dx0a {x0dx0a id[i]=*point;x0dx0a point++;x0dx0a}x0dx0a x0dx0a(此處只是對指針做一個小的介紹,達到訪問內部任何空間的方式,後述有對指針使用的詳細介紹)x0dx0a2對SFR,RAM ,ROM的直接存取x0dx0aC51提供了一組可以直接對其操作的擴展函數x0dx0a若源程序中,用#include包含頭文件,io51.h 後,就可以在擴展函數中使用特殊功能寄存器的地址名,以增強程序的可讀性:x0dx0ax0dx0a 注 此方法對SFR,RAM,ROM的直接存取不建議使用.因為,淡io51.h這個頭文件在KEIL中無法打開,可用指針,或是採用absacc.h頭文件,
⑥ 「Keil C51」下如何讓編譯器優先使用片內「RAM」
C51內存結構深度剖析
在編寫應用程序時,定義一個變數,一個數組,或是說一個固定表格,到底存儲在什麼地方;當定義變數大小超過MCU的內存范圍時怎麼辦;如何控制變數定義不超過存儲范圍;以及如何定義變數才能使得變數訪問速度最快,寫出的程序運行效率最高。以下將一一解答。
1 六類關鍵字(六類存儲類型)
data idata xdata pdata code bdata
code: code memory (程序存儲器也即只讀存儲器)用來保存常量或是程序。code memory 採用16位地址線編碼,可以是在片內,或是片外,大小被限制在64KB
作用:定義常量,如八段數碼表或是編程使用的常,在定義時加上code 或明確指明定義的常量保存到code memory(只讀)
使用方法:
char code table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};
此關鍵字的使用方法等同於const
data data memory (數據存儲區)只能用於聲明變數,不能用來聲明函數,該區域位於片內,採用8位地址線編碼,具有最快的存儲速度,但是數量被限制在128byte或更少。
使用方法:
unsigned char data fast_variable=0;
idata idata memory(數據存儲區)只能用於聲明變數,不能用來聲明函數. 該區域位於片內,採用8位地址線編碼,內存大小被限制在256byte或更少。該區域的低地址區與data memory地址一致;高地址區域是52系列在51系列基礎上擴展的並與特殊功能寄存器具有相同地址編碼的區域。即:data memory是idata memory的一個子集。
xdata xdata memory 只能用於聲明變數,不能用來聲明函數,該區域位於MCU
外部,採用16位地址線進行編碼,存儲大小被限制在64KB以內。
使用方法:
unsigned char xdata count=0;
pdata pdata memory 只能用於聲明變數,不能用來聲明函數,該區域位於MCU外部,採用8位地址線進行編碼。存儲大小限制在256byte. 是xdata memory的低256byte。為其子集。
使用方法
unsigned char pdata count=0;
bdata bdata memory 只能用於聲明變數,不能用來聲明函數。該區域位於8051內部位數據地址。定義的量保存在內部位地址空間,可用位指令直接讀寫。
使用方法:
unsigned char bdata varab=0
註:有些資料講,定義字元型變數時,在預設unsigned 時,字元型變數,默認為無符號,與標准C不同,但我在Keil uVision3中測試的時候發現並非如此。在預設的情況下默認為有符號。或許在以前的編譯器是默認為無符號。所以看到有的資料上面這樣講的時候,要注意一下,不同的編譯器或許不同。所以我們在寫程序的時候,還是乖乖的把unsigned signed 加上,咱也別偷這個懶。
2函數的參數和局部變數的存儲模式
C51 編譯器允許採用三種存儲器模式:SMALL,COMPACT 和LARGE。一個函數的存儲器模式確定了函數的參數的局部變數在內存中的地址空間。處於SMALL模式下的函數參數和局部變數位於8051單片機內部RAM中,處於COMPACT和LARGE模式下的函數參數和局部變數則使用單片機外部RAM。在定義一個函數時可以明確指定該函數的存儲器模式。方法是在形參表列的後面加上一存儲模式。
示例如下:
#pragma large //此預編譯必須放在所有頭文前面
int func0(char x,y) small;
char func1(int x) large;
int func2(char x);
註:
上面例子在第一行用了一個預編譯命令#pragma 它的意思是告訴c51編譯器在對程序進行編譯時,按該預編譯命令後面給出的編譯控制指令LARGE進行編譯,即本常式序編譯時的默認存儲模式為LARGE.隨後定義了三個函數,第一個定義為SMALL存儲模式,第二個函數定義為LARGE第三個函數未指定,在用C51進行編譯時,只有最後一個函數按LARGE存儲器模式處理,其它則分別按它們各自指定的存儲器模式處理。
本例說明,C51編譯器允許採用所謂的存儲器混合模式,即允許在一個程序中將一些函數使用一種存儲模式,而其它一些則按另一種存儲器模式,採用存儲器混合模式編程,可以充分利用8051系列單片機中有限的存儲器空間,同時還可以加快程序的執行速度。
3絕對地址訪問 absacc.h(相當重要)
#define CBYTE ((unsigned char volatile code *) 0)
#define DBYTE ((unsigned char volatile data *) 0)
#define PBYTE ((unsigned char volatile pdata *) 0)
#define XBYTE ((unsigned char volatile xdata *) 0)
功能:CBYTE 定址 CODE區
DBYTE 定址 DATA區
PBYTE 定址 XDATA(低256)區
XBYTE 定址 XDATA區
例: 如下指令在對外部存儲器區域訪問地址0x1000
xvar=XBYTE[0x1000];
XBYTE[0x1000]=20;
#define CWORD ((unsigned int volatile code *) 0)
#define DWORD ((unsigned int volatile data *) 0)
#define PWORD ((unsigned int volatile pdata *) 0)
#define XWORD ((unsigned int volatile xdata *) 0)
功能:與前面的一個宏相似,只是它們指定的數據類型為unsigned int .。
通過靈活運用不同的數據類型,所有的8051地址空間都是可以進行訪問。
如
DWORD[0x0004]=0x12F8;
即內部數據存儲器中(0x08)=0x12; (0x09)=0xF8
註:用以上八個函數,可以完成對單片機內部任意ROM和RAM進行訪問,非常方便。還有一種方法,那就是用指鍾,後面會對C51的指針有詳細的介紹。
4寄存器變數(register)
為了提高程序的執行效率,C語言允許將一些頻率最高的那些變數,定義為能夠直接使用硬體寄存器的所謂的寄存器變數。定義一個變數時,在變數類型名前冠以「register」 即將該變數定義成為了寄存器變數。寄存器變數可以認為是一自動變數的一種。有效作用范圍也自動變數相同。由於計算機寄存器中寄存器是有限的。不能將所有變數都定義成為寄存器變數,通常在程序中定義寄存器變數時,只是給編譯器一個建議,該變數是否真正成為寄存器變數,要由編譯器根據實際情況來確定。另一方面,C51編譯器能夠識別程序中使用頻率最高的變數,在可能的情況下,即使程序中並未將該變數定義為寄存器變數,編譯器也會自動將其作為寄存器變數處理。被定義的變數是否真正能成為寄存器變數,最終是由編譯器決定的。
5內存訪問雜談
1指鍾
指鍾本身是一個變數,其中存放的內容是變數的地址,也即特定的數據。8051的地址是16位的,所以指針變數本身佔用兩個存儲單元。指針的說明與變數的說明類似,僅在指針名前加上「*」即可。
如 int *int_point; 聲明一個整型指針
char *char_point; 聲明一個字元型指針
利用指針可以間接存取變數。實現這一點要用到兩個特殊運算符
& 取變數地址
* 取指針指向單元的數據
示例一:
int a,b;
int *int_point; //定義一個指向整型變數的指針
a=15;
int_point=&a; //int_point指向 a
*int_point=5; //給int_point指向的變數a 賦值5 等同於a=5;
示例二:
char i,table[6],*char_point;
char_point=table;
for(i=0;i<6;i++)
{
char_point=i;
char_point++;
}
註:
指針可以進行運算,它可以與整數進行加減運算(移動指針)。但要注意,移動指針後,其地址的增減量是隨指針類型而異的,如,浮點指針進行自增後,其內部將在原有的基礎上加4,而字元指針當進生自增的時候,其內容將加1。原因是浮點數,佔4個內存單元,而字元佔一個位元組。
宏晶科技最新一代STC12C5A360S2系列,每一個單片機出廠時都有全球唯一身份證號碼(ID號),用戶可以在單片機上電後讀取內部RAM單元F1H~F7H的數值,來獲取此單片機的唯一身份證號碼。使用MOV @Ri 指令來讀取。下面介紹C51 獲取方法:
char id[7]={0};
char i;
char idata *point;
for(i=0;i<7;i++)
{
id[i]=*point;
point++;
}
(此處只是對指針做一個小的介紹,達到訪問內部任何空間的方式,後述有對指針使用的詳細介紹)
2對SFR,RAM ,ROM的直接存取
C51提供了一組可以直接對其操作的擴展函數
若源程序中,用#include包含頭文件,io51.h 後,就可以在擴展函數中使用特殊功能寄存器的地址名,以增強程序的可讀性:
注 此方法對SFR,RAM,ROM的直接存取不建議使用.因為,淡io51.h這個頭文件在KEIL中無法打開,可用指針,或是採用absacc.h頭文件,
⑦ 適合win10系統的c語言編譯器
桌面操作系統
對於當前主流桌面操作系統而言,可使用 VisualC++、GCC以及 LLVM Clang 這三大編譯器。
Visual C++(簡稱 MSVC)只能用於 Windows 操作系統;GCC 和 LLVM Clang除了可用於Windows操作系統之外,主要用於 Unix/Linux操作系統。
像現在很多版本的 Linux 都默認使用 GCC 作為C語言編譯器,而像 FreeBSD、macOS 等系統默認使用 LLVM Clang 編譯器。由於當前 LLVM 項目主要在 Apple 的主推下發展的,所以在 macOS中,Clang 編譯器又被稱為 Apple LLVM 編譯器。
MSVC 編譯器主要用於 Windows 操作系統平台下的應用程序開發,它不開源。用戶可以使用 Visual Studio Community 版本來免費使用它,但是如果要把通過 Visual Studio Community 工具生成出來的應用進行商用,那麼就得好好閱讀一下微軟的許可證和說明書了。
而使用 GCC 與 Clang 編譯器構建出來的應用一般沒有任何限制,程序員可以將應用程序隨意發布和進行商用。
MSVC 編譯器對 C99 標準的支持就十分有限,加之它壓根不支持任何 C11 標准,所以本教程中設計 C11 的代碼例子不會針對 MSVC 進行描述。所幸的是,Visual Studio Community 2017 加入了對 Clang 編譯器的支持,官方稱之為——Clang with Microsoft CodeGen,當前版本基於的是 Clang 3.8。
也就是說,應用於 Visual Studio 集成開發環境中的 Clang 編譯器前端可支持 Clang 編譯器的所有語法特性,而後端生成的代碼則與 MSVC 效果一樣,包括像 long 整數類型在 64 位編譯模式下長度仍然為 4 個位元組,所以各位使用的時候也需要注意。
為了方便描述,本教程後面涉及 Visual Studio 集成開發環境下的 Clang 編譯器簡稱為 VS-Clang 編譯器。
嵌入式系統
而在嵌入式系統方面,可用的C語言編譯器就非常豐富了,比如:
用於 Keil 公司 51 系列單片機的 Keil C51 編譯器;
當前大紅大紫的 Arino 板搭載的開發套件,可用針對 AVR 微控制器的 AVRGCC 編譯器;
ARM 自己出的 ADS(ARM Development Suite)、RVDS(RealView Development Suite)和當前最新的 DS-5 Studio;
DSP 設計商 TI(Texas Instruments)的 CCS(Code Composer Studio);
DSP 設計商 ADI(Analog Devices,Inc.)的 Visual DSP++ 編譯器,等等。
⑧ MCU的編譯器有哪些
編譯器與晶元要對應,不存在各晶元通用的編譯器。
51,IDE是keil或tkstudio,編譯器都是keil內置的
pic,IDE是mplab,編譯器是picc
avr,不了解
freescale,IDE用codewarrior,不同系列版本不同,編譯器內置
ARM,IDE是ADS(codewarrior改的),編譯器內置
等等