導航:首頁 > 源碼編譯 > 數值演算法設計的基本技術

數值演算法設計的基本技術

發布時間:2023-02-17 00:35:20

Ⅰ 數據分析技術方法有哪些

1.可視化分析


大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。


2.數據挖掘演算法


大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統計學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。


3.預測性分析


大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。


4.語義引擎


非結構化數據的多元化給數據分析帶來新的挑戰,我們需要一套工具系統的去分析,提煉數據。語義引擎需要設計到有足夠的人工智慧以足以從數據中主動地提取信息。


5.數據質量和數據管理


大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。

Ⅱ 數字信號處理包含哪些技術

自己總結一下,最常用內容:
1 信號離散化技術 包括奈奎斯特采樣定理 沖擊函數 求極限 來實現模擬信號到離散的過程
2 FFT頻域離散化 包括傅里葉變換-傅里葉級數-快速傅里葉變換
3 數字濾波器 包括 FIR、 IIR 線性相位,群延遲, 雙線性變換, 拉式變化-傅里葉變換-Z變換 解釋 Z變換應用
4 自適應濾波
5 譜估計 包括周期圖、ARMA,最大熵譜估計, 以及模態分析應用, 這些屬於高端內容

Ⅲ 計算機二級數據結構與演算法知識點

一、數據結構

(1)數據結構的基本概念

1、數據:數據是客觀事物的符號表示,是能輸入到計算機中並被計算程序識別和處理的符號的總稱,如文檔,聲音,視頻等。

2、數據元素:數據元素是數據的基本單位。

3、數據對象:數據對象是性質相同的數據元素的集合。

4、數據結構:是指由某一數據對象中所有數據成員之間的關系組成的集合。

(2)邏輯結構和存儲結構

1、數據結構可分為數據的邏輯結構和存儲結構。

1)數據的邏輯結構是對數據元素之間的邏輯關系的描述,與數據的存儲無關,是面向問題的,是獨立於計算機的。它包括數據對象和數據對象之間的關系。

2)數據的存儲結構也稱為數據的物理結構,是數據在計算機中的存放的方式,是面向計算機的,它包括數據元素的存儲方式和關系的存儲方式。

2、存儲結構和邏輯結構的關系:一種數據的邏輯結構可以表示成多種存儲結構即數據的邏輯結構和存儲結構不一定一一對應。

3、常見的存儲結構有:順序,鏈接,索引等。採用不同的存儲結構其數據處理的效率是不同的。

Ⅳ 數學建模需要掌握哪些編程語言和技術

數學建模應當掌握的十類演算法及所需編程語言:
1、蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的演算法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法)。
2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab作為工具)。
3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、 Lingo軟體實現)。
4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉及到圖論的問題可以用這些方法解決,需要認真准備)。
5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計中比較常用的方法,很多場合可以用到競賽中)。
6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實現比較困難,需慎重使用)。
7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好使用一些高級語言作為編程工具)。
8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計算機只認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非常重要的)。
9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調用)。
10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab進行處理)。

Ⅳ 什麼叫數值方法數值方法的基本思想及其優劣的評價標准如何

等間隔第取一系列數值,帶入到式子中,獲得最值或者最優解,一般是由計算機完成的,評價優劣可以通過判斷求出來的解與真是解的接近程度,也就是偏差,再有就是不同的演算法所用的時間也是不同的。

演算法代表著用系統的方法描述解決問題的策略機制。也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。

如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。

定義

加法:把兩個數合並成一個數的運算。

減法:在已知兩個加數的和與其中的一個加數,求另一個加數的運算。

乘法:求兩個數乘積的運算。

(1)一個數乘整數,是求幾個相同加數和的簡便運算。

(2)一個數乘小數,是求這個數的十分之幾、百分之幾、千分之幾……是多少。

(3)一個數乘分數,是求這個數的幾分之幾是多少。

除法:已知兩個因數的積與其中的一個因數,求另一個因數的運算。

Ⅵ 計算機專業學演算法的都學些什麼演算法,有什麼書可以看的學的話需要些什麼基礎的

計算機演算法非常多的
A*搜尋演算法
俗稱A星演算法。這是一種在圖形平面上,有多個節點的路徑,求出最低通過成本的演算法。常用於游戲中的NPC的移動計算,或線上游戲的BOT的移動計算上。該演算法像Dijkstra演算法一樣,可以找到一條最短路徑;也像BFS一樣,進行啟發式的搜索。
Beam Search
束搜索(beam search)方法是解決優化問題的一種啟發式方法,它是在分枝定界方法基礎上發展起來的,它使用啟發式方法估計k個最好的路徑,僅從這k個路徑出發向下搜索,即每一層只有滿意的結點會被保留,其它的結點則被永久拋棄,從而比分枝定界法能大大節省運行時間。束搜索於20 世紀70年代中期首先被應用於人工智慧領域,1976 年Lowerre在其稱為HARPY的語音識別系統中第一次使用了束搜索方法。他的目標是並行地搜索幾個潛在的最優決策路徑以減少回溯,並快速地獲得一個解。
二分取中查找演算法
一種在有序數組中查找某一特定元素的搜索演算法。搜索過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜索過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。這種搜索演算法每一次比較都使搜索范圍縮小一半。
Branch and bound
分支定界(branch and bound)演算法是一種在問題的解空間樹上搜索問題的解的方法。但與回溯演算法不同,分支定界演算法採用廣度優先或最小耗費優先的方法搜索解空間樹,並且,在分支定界演算法中,每一個活結點只有一次機會成為擴展結點。
數據壓縮
數據壓縮是通過減少計算機中所存儲數據或者通信傳播中數據的冗餘度,達到增大數據密度,最終使數據的存儲空間減少的技術。數據壓縮在文件存儲和分布式系統領域有著十分廣泛的應用。數據壓縮也代表著尺寸媒介容量的增大和網路帶寬的擴展。
Diffie–Hellman密鑰協商
Diffie–Hellman key exchange,簡稱「D–H」,是一種安全協議。它可以讓雙方在完全沒有對方任何預先信息的條件下通過不安全信道建立起一個密鑰。這個密鑰可以在後續的通訊中作為對稱密鑰來加密通訊內容。
Dijkstra』s 演算法
迪科斯徹演算法(Dijkstra)是由荷蘭計算機科學家艾茲格·迪科斯徹(Edsger Wybe Dijkstra)發明的。演算法解決的是有向圖中單個源點到其他頂點的最短路徑問題。舉例來說,如果圖中的頂點表示城市,而邊上的權重表示著城市間開車行經的距離,迪科斯徹演算法可以用來找到兩個城市之間的最短路徑。
動態規劃
動態規劃是一種在數學和計算機科學中使用的,用於求解包含重疊子問題的最優化問題的方法。其基本思想是,將原問題分解為相似的子問題,在求解的過程中通過子問題的解求出原問題的解。動態規劃的思想是多種演算法的基礎,被廣泛應用於計算機科學和工程領域。比較著名的應用實例有:求解最短路徑問題,背包問題,項目管理,網路流優化等。這里也有一篇文章說得比較詳細。
歐幾里得演算法
在數學中,輾轉相除法,又稱歐幾里得演算法,是求最大公約數的演算法。輾轉相除法首次出現於歐幾里得的《幾何原本》(第VII卷,命題i和ii)中,而在中國則可以追溯至東漢出現的《九章算術》。
最大期望(EM)演算法
在統計計算中,最大期望(EM)演算法是在概率(probabilistic)模型中尋找參數最大似然估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variable)。最大期望經常用在機器學習和計算機視覺的數據聚類(Data Clustering)領域。最大期望演算法經過兩個步驟交替進行計算,第一步是計算期望(E),利用對隱藏變數的現有估計值,計算其最大似然估計值;第二步是最大化(M),最大化在 E 步上求得的最大似然值來計算參數的值。M 步上找到的參數估計值被用於下一個 E 步計算中,這個過程不斷交替進行。
快速傅里葉變換(FFT)
快速傅里葉變換(Fast Fourier Transform,FFT),是離散傅里葉變換的快速演算法,也可用於計算離散傅里葉變換的逆變換。快速傅里葉變換有廣泛的應用,如數字信號處理、計算大整數乘法、求解偏微分方程等等。
哈希函數
HashFunction是一種從任何一種數據中創建小的數字「指紋」的方法。該函數將數據打亂混合,重新創建一個叫做散列值的指紋。散列值通常用來代表一個短的隨機字母和數字組成的字元串。好的散列函數在輸入域中很少出現散列沖突。在散列表和數據處理中,不抑制沖突來區別數據,會使得資料庫記錄更難找到。
堆排序
Heapsort是指利用堆積樹(堆)這種數據結構所設計的一種排序演算法。堆積樹是一個近似完全二叉樹的結構,並同時滿足堆積屬性:即子結點的鍵值或索引總是小於(或者大於)它的父結點。
歸並排序
Merge sort是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
RANSAC 演算法
RANSAC 是」RANdom SAmpleConsensus」的縮寫。該演算法是用於從一組觀測數據中估計數學模型參數的迭代方法,由Fischler and Bolles在1981提出,它是一種非確定性演算法,因為它只能以一定的概率得到合理的結果,隨著迭代次數的增加,這種概率是增加的。該演算法的基本假設是觀測數據集中存在」inliers」(那些對模型參數估計起到支持作用的點)和」outliers」(不符合模型的點),並且這組觀測數據受到雜訊影響。RANSAC 假設給定一組」inliers」數據就能夠得到最優的符合這組點的模型。
RSA加密演演算法
這是一個公鑰加密演算法,也是世界上第一個適合用來做簽名的演算法。今天的RSA已經專利失效,其被廣泛地用於電子商務加密,大家都相信,只要密鑰足夠長,這個演算法就會是安全的。
並查集Union-find
並查集是一種樹型的數據結構,用於處理一些不相交集合(Disjoint Sets)的合並及查詢問題。常常在使用中以森林來表示。
Viterbi algorithm
尋找最可能的隱藏狀態序列(Finding most probable sequence of hidden states)。

Ⅶ 演算法的三種基本結構是

演算法有順序結構、條件分支結構、循環結構三種基本邏輯結構。

1、順序結構:順序結構是最簡單的演算法結構,語句與語句之間,框與框之間是按從上到下的順序進行的,它是由若干個依次執行的處理步驟組成的。

它是任何一個演算法都離不開的一種基本演算法結構。順序結構在程序框圖中的體現就是用流程線將程序框自上而下地連接起來,按順序執行演算法步驟。

2、條件結構:

條件結構是指在演算法中通過對條件的判斷,根據條件是否成立而選擇不同流向的演算法結構。

條件P是否成立而選擇執行A框或B框。無論P條件是否成立,只能執行A框或B框之一,不可能同時執行A框和B框,也不可能A框、B框都不執行。一個判斷結構可以有多個判斷框。

3、循環結構

在一些演算法中,經常會出現從某處開始,按照一定條件,反復執行某一處理步驟的情況,這就是循環結構,反復執行的處理步驟為循環體,顯然,循環結構中一定包含條件結構。循環結構又稱重復結構,循環結構可細分為兩類:

一類是當型循環結構,如下左圖所示,它的功能是當給定的條件P成立時,執行A框,A框執行完畢後,再判斷條件P是否成立,如果仍然成立,再執行A框,如此反復執行A框,直到某一次條件P不成立為止,此時不再執行A框,離開循環結構。

另一類是直到型循環結構,如下右圖所示,它的功能是先執行,然後判斷給定的條件P是否成立,如果P仍然不成立,則繼續執行A框,直到某一次給定的條件P成立為止,此時不再執行A框,離開循環結構。

(7)數值演算法設計的基本技術擴展閱讀

共同特點

(1)只有一個入口和出口

(2)結構內的每一部分都有機會被執行到,也就是說對每一個框來說都應當有一條從入口到出口的路徑通過它,如圖中的A,沒有一條從入口到出口的路徑通過它,就是不符合要求的演算法結構。

(3)結構內不存在死循環,即無終止的循環。

Ⅷ 數值計算方法的主要研究對象有哪些其常用基本演算法主要包括哪三個方面

數值計算方法的主要研究對象:研究各種數學問題的數值方法設計、分析、有關的數學理論和具體實現。其常用基本演算法在數值分析中用到迭代法的情形會比直接法要多。例如像牛頓法、二分法、雅可比法、廣義最小殘量方法及共軛梯度法等等。在計算矩陣代數中,大型的問題一般會需要用迭代法來求解。

許多時候需要將連續模型的問題轉換為一個離散形式的問題,而離散形式的解可以近似原來的連續模型的解,此轉換過程稱為離散化。

例如求一個函數的積分是一個連續模型的問題,也就是求一曲線以下的面積若將其離散化變成數值積分,就變成將上述面積用許多較簡單的形狀(如長方形、梯形)近似,因此只要求出這些形狀的面積再相加即可。

(8)數值演算法設計的基本技術擴展閱讀

數值分析也會用近似的方式計算微分方程的解,包括常微分方程及偏微分方程。

常微分方程往往會使用迭代法,已知曲線的一點,設法算出其斜率,找到下一點,再推出下一點的資料。歐拉方法是其中最簡單的方式,較常使用的是龍格-庫塔法。

偏微分方程的數值分析解法一般都會先將問題離散化,轉換成有限元素的次空間。可以透過有限元素法、有限差分法及有限體積法,這些方法可將偏微分方程轉換為代數方程,但其理論論證往往和泛函分析的定理有關。另一種偏微分方程的數值分析解法則是利用離散傅立葉變換或快速傅立葉變換。

閱讀全文

與數值演算法設計的基本技術相關的資料

熱點內容
阿里雲伺服器沒有實例 瀏覽:601
綿陽有沒有什麼app 瀏覽:844
怎麼用游俠映射伺服器 瀏覽:913
為什麼無意下載的app無法刪除 瀏覽:302
word2007打開pdf 瀏覽:113
php正則class 瀏覽:736
怎麼在文件夾查找一堆文件 瀏覽:543
核酸報告用什麼app 瀏覽:791
u8怎麼ping通伺服器地址 瀏覽:994
安卓什麼手機支持背部輕敲調出健康碼 瀏覽:870
程序員抽獎排行 瀏覽:744
扭蛋人生安卓如何下載 瀏覽:724
什麼app文檔資源多好 瀏覽:924
黑馬程序員APP 瀏覽:148
掌閱小說是哪個app 瀏覽:47
如何把u盤的軟體安裝到安卓機 瀏覽:1000
php跑在什麼伺服器 瀏覽:126
編譯器怎麼跳轉到下一行 瀏覽:452
嵌入式py編譯器 瀏覽:327
rplayer下載安卓哪個文件夾 瀏覽:302