導航:首頁 > 源碼編譯 > 壓縮機解耦控制演算法

壓縮機解耦控制演算法

發布時間:2023-02-17 02:14:21

⑴ 大數據需要掌握哪些技能

大數據技術體系龐大,包括的知識較多

1、學習大數據首先要學習Java基礎

Java是大數據學習需要的編程語言基礎,因為大數據的開發基於常用的高級語言。而且不論是學hadoop,

2、學習大數據必須學習大數據核心知識

Hadoop生態系統;HDFS技術;HBASE技術;Sqoop使用流程;數據倉庫工具HIVE;大數據離線分析Spark、Python語言;數據實時分析Storm;消息訂閱分發系統Kafka等。

3、學習大數據需要具備的能力

數學知識,數學知識是數據分析師的基礎知識。對於數據分析師,了解一些描述統計相關的內容,需要有一定公式計算能力,了解常用統計模型演算法。而對於數據挖掘工程師來說,各類演算法也需要熟練使用,對數學的要求是最高的。

4、學習大數據可以應用的領域

大數據技術可以應用在各個領域,比如公安大數據、交通大數據、醫療大數據、就業大數據、環境大數據、圖像大數據、視頻大數據等等,應用范圍非常廣泛。

⑵ 解耦控制系統的目的是什麼如何實現解耦控制系統目的

解耦系統的目的是尋求適當的控制律,使輸入輸出相互關聯的多變數系統實現每一個輸出僅受相應的一個輸入所控制,每一個輸入也僅能控制相應的一個輸出。
實現系統的解耦,有兩種方法:
1.前饋補償器解耦:只需要在待解耦的系統前面串接一個前饋補償器,使串聯組
合系統的傳遞函數陣成為對角形的有理函數矩陣。
2.狀態反饋解耦

⑶ TLS 詳解

SSL (Secure Sockets Layer) 安全套接層,是一種安全協議,經歷了 SSL 1.0、2.0、3.0 版本後發展成了標准安全協議 - TLS (Transport Layer Security) 傳輸層安全性協議。TLS 有 1.0 (RFC 2246)、1.1(RFC 4346)、1.2(RFC 5246)、1.3(RFC 8446) 版本。

TLS 在實現上分為 記錄層 握手層 兩層,其中握手層又含四個子協議: 握手協議 (handshake protocol)、更改加密規范協議 (change cipher spec protocol)、應用數據協議 (application data protocol) 和警告協議 (alert protocol)

只需配置瀏覽器和伺服器相關設置開啟 TLS,即可實現 HTTPS,TLS 高度解耦,可裝可卸,與上層高級應用層協議相互協作又相互獨立。

TLS/SSL 的功能實現主要依賴於三類基本演算法:散列函數 Hash、對稱加密和非對稱加密,其利用非對稱加密實現身份認證和密鑰協商,對稱加密演算法採用協商的密鑰對數據加密,基於散列函數驗證信息的完整性。

TLS 的基本工作方式是,客戶端使用非對稱加密與伺服器進行通信,實現身份驗證並協商對稱加密使用的密鑰,然後對稱加密演算法採用協商密鑰對信息以及信息摘要進行加密通信,不同的節點之間採用的對稱密鑰不同,從而可以保證信息只能通信雙方獲取。

例如,在 HTTPS 協議中,客戶端發出請求,服務端會將公鑰發給客戶端,客戶端驗證過後生成一個密鑰再用公鑰加密後發送給服務端(非對稱加密),雙方會在 TLS 握手過程中生成一個協商密鑰(對稱密鑰),成功後建立加密連接。通信過程中客戶端將請求數據用協商密鑰加密後發送,服務端也用協商密鑰解密,響應也用相同的協商密鑰。後續的通信使用對稱加密是因為對稱加解密快,而握手過程中非對稱加密可以保證加密的有效性,但是過程復雜,計算量相對來說也大。

記錄協議負責在傳輸連接上交換的所有底層消息,並且可以配置加密。每一條 TLS 記錄以一個短標頭開始。標頭包含記錄內容的類型 (或子協議)、協議版本和長度。原始消息經過分段 (或者合並)、壓縮、添加認證碼、加密轉為 TLS 記錄的數據部分。

記錄層將信息塊分割成攜帶 2^14 位元組 (16KB) 或更小塊的數據的 TLSPlaintext 記錄。

記錄協議傳輸由其他協議層提交給它的不透明數據緩沖區。如果緩沖區超過記錄的長度限制(2^14),記錄協議會將其切分成更小的片段。反過來也是可能的,屬於同一個子協議的小緩沖區也可以組合成一個單獨的記錄。

壓縮演算法將 TLSPlaintext 結構轉換為 TLSCompressed 結構。如果定義 CompressionMethod 為 null 表示不壓縮

流加密(BulkCipherAlgorithm)將 TLSCompressed.fragment 結構轉換為流 TLSCiphertext.fragment 結構

MAC 產生方法如下:

seq_num(記錄的序列號)、hash(SecurityParameters.mac_algorithm 指定的哈希演算法)

塊加密(如 RC2 或 DES),將 TLSCompressed.fragment 結構轉換為塊 TLSCiphertext.fragment 結構

padding: 添加的填充將明文長度強制為塊密碼塊長度的整數倍。填充可以是長達 255 位元組的任何長度,只要滿足 TLSCiphertext.length 是塊長度的整數倍。長度大於需要的值可以阻止基於分析交換信息長度的協議攻擊。填充數據向量中的每個 uint8 必須填入填充長度值 (即 padding_length)。

padding_length: 填充長度應該使得 GenericBlockCipher 結構的總大小是加密塊長度的倍數。合法值范圍從零到 255(含)。 該長度指定 padding_length 欄位本身除外的填充欄位的長度

加密塊的數據長度(TLSCiphertext.length)是 TLSCompressed.length,CipherSpec.hash_size 和 padding_length 的總和加一

加密和 MAC 功能將 TLSCompressed 結構轉換為 TLSCiphertext。記錄的 MAC 還包括序列號,以便可以檢測到丟失,額外或重復的消息。

記錄協議需要一種演算法,從握手協議提供的安全性參數生成密鑰、 IV 和 MAC secret.

主密鑰 (Master secret): 在連接中雙方共享的一個 48 位元組的密鑰
客戶隨機數 (client random): 由客戶端提供的 32 位元組值
伺服器隨機數 (server random): 由伺服器提供的 32 位元組值

握手是 TLS 協議中最精密復雜的部分。在這個過程中,通信雙方協商連接參數,並且完成身 份驗證。根據使用的功能的不同,整個過程通常需要交換 6~10 條消息。根據配置和支持的協議擴展的不同,交換過程可能有許多變種。在使用中經常可以觀察到以下三種流程:(1) 完整的握手, 對伺服器進行身份驗證;(2) 恢復之前的會話採用的簡短握手;(3) 對客戶端和伺服器都進行身份驗證的握手。

握手協議消息的標頭信息包含消息類型(1 位元組)和長度(3 位元組),餘下的信息則取決於消息類型:

每一個 TLS 連接都會以握手開始。如果客戶端此前並未與伺服器建立會話,那麼雙方會執行一次完整的握手流程來協商 TLS 會話。握手過程中,客戶端和伺服器將進行以下四個主要步驟:

下面介紹最常見的握手規則,一種不需要驗證客戶端身份但需要驗證伺服器身份的握手:

這條消息將客戶端的功能和首選項傳送給伺服器。

是將伺服器選擇的連接參數傳回客戶端。

這個消息的結構與 ClientHello 類似,只是每個欄位只包含一個選項,其中包含服務端的 random_S 參數 (用於後續的密鑰協商)。伺服器無需支持客戶端支持的最佳版本。如果伺服器不支持與客戶端相同的版本,可以提供某個其他版本以期待客戶端能夠接受

圖中的 Cipher Suite 是後續密鑰協商和身份驗證要用的加密套件,此處選擇的密鑰交換與簽名演算法是 ECDHE_RSA,對稱加密演算法是 AES-GCM,後面會講到這個

還有一點默認情況下 TLS 壓縮都是關閉的,因為 CRIME 攻擊會利用 TLS 壓縮恢復加密認證 cookie,實現會話劫持,而且一般配置 gzip 等內容壓縮後再壓縮 TLS 分片效益不大又額外佔用資源,所以一般都關閉 TLS 壓縮

典型的 Certificate 消息用於攜帶伺服器 X.509 證書鏈 。
伺服器必須保證它發送的證書與選擇的演算法套件一致。比方說,公鑰演算法與套件中使用的必須匹配。除此以外,一些密鑰交換演算法依賴嵌入證書的特定數據,而且要求證書必須以客戶端支持的演算法簽名。所有這些都表明伺服器需要配置多個證書(每個證書可能會配備不同的證書鏈)。

Certificate 消息是可選的,因為並非所有套件都使用身份驗證,也並非所有身份驗證方法都需要證書。更進一步說,雖然消息默認使用 X.509 證書,但是也可以攜帶其他形式的標志;一些套件就依賴 PGP 密鑰

攜帶密鑰交換需要的額外數據。ServerKeyExchange 是可選的,消息內容對於不同的協商演算法套件會存在差異。部分場景下,比如使用 RSA 演算法時,伺服器不需要發送此消息。

ServerKeyExchange 僅在伺服器證書消息(也就是上述 Certificate 消息)不包含足夠的數據以允許客戶端交換預主密鑰(premaster secret)時才由伺服器發送。

比如基於 DH 演算法的握手過程中,需要單獨發送一條 ServerKeyExchange 消息帶上 DH 參數:

表明伺服器已經將所有預計的握手消息發送完畢。在此之後,伺服器會等待客戶端發送消息。

客戶端驗證證書的合法性,如果驗證通過才會進行後續通信,否則根據錯誤情況不同做出提示和操作,合法性驗證內容包括如下:

由 PKI 體系 的內容可知,對端發來的證書簽名是 CA 私鑰加密的,接收到證書後,先讀取證書中的相關的明文信息,採用相同的散列函數計算得到信息摘要,然後利用對應 CA 的公鑰解密簽名數據,對比證書的信息摘要,如果一致,則可以確認證書的合法性;然後去查詢證書的吊銷情況等

合法性驗證通過之後,客戶端計算產生隨機數字的預主密鑰(Pre-master),並用證書公鑰加密,發送給伺服器並攜帶客戶端為密鑰交換提供的所有信息。這個消息受協商的密碼套件的影響,內容隨著不同的協商密碼套件而不同。

此時客戶端已經獲取全部的計算協商密鑰需要的信息: 兩個明文隨機數 random_C 和 random_S 與自己計算產生的 Pre-master,然後得到協商密鑰(用於之後的消息加密)

圖中使用的是 ECDHE 演算法,ClientKeyExchange 傳遞的是 DH 演算法的客戶端參數,如果使用的是 RSA 演算法則此處應該傳遞加密的預主密鑰

通知伺服器後續的通信都採用協商的通信密鑰和加密演算法進行加密通信

Finished 消息意味著握手已經完成。消息內容將加密,以便雙方可以安全地交換驗證整個握手完整性所需的數據。

這個消息包含 verify_data 欄位,它的值是握手過程中所有消息的散列值。這些消息在連接兩端都按照各自所見的順序排列,並以協商得到的主密鑰 (enc_key) 計算散列。這個過程是通過一個偽隨機函數(pseudorandom function,PRF)來完成的,這個函數可以生成任意數量的偽隨機數據。
兩端的計算方法一致,但會使用不同的標簽(finished_label):客戶端使用 client finished,而伺服器則使用 server finished。

因為 Finished 消息是加密的,並且它們的完整性由協商 MAC 演算法保證,所以主動網路攻擊者不能改變握手消息並對 vertify_data 的值造假。在 TLS 1.2 版本中,Finished 消息的長度默認是 12 位元組(96 位),並且允許密碼套件使用更長的長度。在此之前的版本,除了 SSL 3 使用 36 位元組的定長消息,其他版本都使用 12 位元組的定長消息。

伺服器用私鑰解密加密的 Pre-master 數據,基於之前交換的兩個明文隨機數 random_C 和 random_S,同樣計算得到協商密鑰: enc_key = PRF(Pre_master, "master secret", random_C + random_S) ;

同樣計算之前所有收發信息的 hash 值,然後用協商密鑰解密客戶端發送的 verify_data_C,驗證消息正確性;

服務端驗證通過之後,伺服器同樣發送 change_cipher_spec 以告知客戶端後續的通信都採用協商的密鑰與演算法進行加密通信(圖中多了一步 New Session Ticket,此為會話票證,會在會話恢復中解釋);

伺服器也結合所有當前的通信參數信息生成一段數據 (verify_data_S) 並採用協商密鑰 session secret (enc_key) 與演算法加密並發送到客戶端;

客戶端計算所有接收信息的 hash 值,並採用協商密鑰解密 verify_data_S,驗證伺服器發送的數據和密鑰,驗證通過則握手完成;

開始使用協商密鑰與演算法進行加密通信。

HTTPS 通過 TLS 層和證書機制提供了內容加密、身份認證和數據完整性三大功能。加密過程中,需要用到非對稱密鑰交換和對稱內容加密兩大演算法。

對稱內容加密強度非常高,加解密速度也很快,只是無法安全地生成和保管密鑰。在 TLS 協議中,最後的應用數據都是經過對稱加密後傳輸的,傳輸中所使用的對稱協商密鑰(上文中的 enc_key),則是在握手階段通過非對稱密鑰交換而來。常見的 AES-GCM、ChaCha20-Poly1305,都是對稱加密演算法。

非對稱密鑰交換能在不安全的數據通道中,產生只有通信雙方才知道的對稱加密密鑰。目前最常用的密鑰交換演算法有 RSA 和 ECDHE。

RSA 歷史悠久,支持度好,但不支持 完美前向安全 - PFS(Perfect Forward Secrecy) ;而 ECDHE 是使用了 ECC(橢圓曲線)的 DH(Diffie-Hellman)演算法,計算速度快,且支持 PFS。

在 PKI 體系 一節中說明了僅有非對稱密鑰交換還是無法抵禦 MITM 攻擊的,所以需要引入了 PKI 體系的證書來進行身份驗證,其中服務端非對稱加密產生的公鑰會放在證書中傳給客戶端。

在 RSA 密鑰交換中,瀏覽器使用證書提供的 RSA 公鑰加密相關信息,如果服務端能解密,意味著服務端擁有與公鑰對應的私鑰,同時也能算出對稱加密所需密鑰。密鑰交換和服務端認證合並在一起。

在 ECDH 密鑰交換中,服務端使用私鑰 (RSA 或 ECDSA) 對相關信息進行簽名,如果瀏覽器能用證書公鑰驗證簽名,就說明服務端確實擁有對應私鑰,從而完成了服務端認證。密鑰交換則是各自發送 DH 參數完成的,密鑰交換和服務端認證是完全分開的。

可用於 ECDHE 數字簽名的演算法主要有 RSA 和 ECDSA - 橢圓曲線數字簽名演算法 ,也就是目前密鑰交換 + 簽名有三種主流選擇:

比如我的網站使用的加密套件是 ECDHE_RSA,可以看到數字簽名演算法是 sha256 哈希加 RSA 加密,在 PKI 體系 一節中講了簽名是伺服器信息摘要的哈希值加密生成的

內置 ECDSA 公鑰的證書一般被稱之為 ECC 證書,內置 RSA 公鑰的證書就是 RSA 證書。因為 256 位 ECC Key 在安全性上等同於 3072 位 RSA Key,所以 ECC 證書體積比 RSA 證書小,而且 ECC 運算速度更快,ECDHE 密鑰交換 + ECDSA 數字簽名是目前最好的加密套件

以上內容來自本文: 開始使用 ECC 證書

關於 ECC 證書的更多細節可見文檔: ECC Cipher Suites for TLS - RFC4492

使用 RSA 進行密鑰交換的握手過程與前面說明的基本一致,只是沒有 ServerKeyExchange 消息,其中協商密鑰涉及到三個參數 (客戶端隨機數 random_C、服務端隨機數 random_S、預主密鑰 Premaster secret),
其中前兩個隨機數和協商使用的演算法是明文的很容易獲取,最後一個 Premaster secret 會用伺服器提供的公鑰加密後傳輸給伺服器 (密鑰交換),如果這個預主密鑰被截取並破解則協商密鑰也可以被破解。

RSA 演算法的細節見: wiki 和 RSA演算法原理(二)- 阮一峰

RSA 的演算法核心思想是利用了極大整數 因數分解 的計算復雜性

而使用 DH(Diffie-Hellman) 演算法 進行密鑰交換,雙方只要交換各自的 DH 參數(在 ServerKeyExchange 發送 Server params,在 ClientKeyExchange 發送 Client params),不需要傳遞 Premaster secret,就可以各自算出這個預主密鑰

DH 的握手過程如下,大致過程與 RSA 類似,圖中只表達如何生成預主密鑰:

伺服器通過私鑰將客戶端隨機數 random_C,服務端隨機數 random_S,服務端 DH 參數 Server params 簽名生成 signature,然後在 ServerKeyExchange 消息中發送服務端 DH 參數和該簽名;

客戶端收到後用伺服器給的公鑰解密驗證簽名,並在 ClientKeyExchange 消息中發送客戶端 DH 參數 Client params;

服務端收到後,雙方都有這兩個參數,再各自使用這兩個參數生成預主密鑰 Premaster secret,之後的協商密鑰等步驟與 RSA 基本一致。

關於 DH 演算法如何生成預主密鑰,推薦看下 Wiki 和 Ephemeral Diffie-Hellman handshake

其核心思想是利用了 離散對數問題 的計算復雜性

演算法過程可以抽象成下圖:

雙方預先商定好了一對 P g 值 (公開的),而 Alice 有一個私密數 a(非公開,對應一個私鑰),Bob 有一個私密數 b(非公開,對應一個私鑰)

對於 Alice 和 Bob 來說通過對方發過來的公鑰參數和自己手中的私鑰可以得到最終相同的密鑰

而第三方最多知道 P g A B,想得到私鑰和最後的密鑰很困難,當然前提是 a b P 足夠大 (RFC3526 文檔中有幾個常用的大素數可供使用),否則暴力破解也有可能試出答案,至於 g 一般取個較小值就可以

如下幾張圖是實際 DH 握手發送的內容:

可以看到雙方發給對方的參數中攜帶了一個公鑰值,對應上述的 A 和 B

而且實際用的加密套件是 橢圓曲線 DH 密鑰交換 (ECDH) ,利用由橢圓曲線加密建立公鑰與私鑰對可以更進一步加強 DH 的安全性,因為目前解決橢圓曲線離散對數問題要比因式分解困難的多,而且 ECC 使用的密鑰長度比 RSA 密鑰短得多(目前 RSA 密鑰需要 2048 位以上才能保證安全,而 ECC 密鑰 256 位就足夠)

關於 橢圓曲線密碼學 - ECC ,推薦看下 A Primer on Elliptic Curve Cryptography - 原文 - 譯文

盡管可以選擇對任意一端進行身份驗證,但人們幾乎都啟用了對伺服器的身份驗證。如果伺服器選擇的套件不是匿名的,那麼就需要在 Certificate 消息中跟上自己的證書。

相比之下,伺服器通過發送 CertificateRequest 消息請求對客戶端進行身份驗證。消息中列出所有可接受的客戶端證書。作為響應,客戶端發送自己的 Certificate 消息(使用與伺服器發送證書相同的格式),並附上證書。此後,客戶端發送 CertificateVerify 消息,證明自己擁有對應的私鑰。

只有已經過身份驗證的伺服器才被允許請求客戶端身份驗證。基於這個原因,這個選項也被稱為相互身份驗證(mutual authentication)。

在 ServerHello 的過程中發出,請求對客戶端進行身份驗證,並將其接受的證書的公鑰和簽名演算法傳送給客戶端。

它也可以選擇發送一份自己接受的證書頒發機構列表,這些機構都用其可分辨名稱來表示:

在 ClientKeyExchange 的過程中發出,證明自己擁有的私鑰與之前發送的客戶端證書中的公鑰匹配。消息中包含一條到這一步為止的所有握手消息的簽名:

最初的會話恢復機制是,在一次完整協商的連接斷開時,客戶端和伺服器都會將會話的安全參數保存一段時間。希望使用會話恢復的伺服器為會話指定唯一的標識,稱為會話 ID(Session ID)。伺服器在 ServerHello 消息中將會話 ID 發回客戶端。

希望恢復早先會話的客戶端將適當的 Session ID 放入 ClientHello 消息,然後提交。伺服器如果同意恢復會話,就將相同的 Session ID 放入 ServerHello 消息返回,接著使用之前協商的主密鑰生成一套新的密鑰,再切換到加密模式,發送 Finished 消息。
客戶端收到會話已恢復的消息以後,也進行相同的操作。這樣的結果是握手只需要一次網路往返。

Session ID 由伺服器端支持,協議中的標准欄位,因此基本所有伺服器都支持,伺服器端保存會話 ID 以及協商的通信信息,佔用伺服器資源較多。

用來替代伺服器會話緩存和恢復的方案是使用會話票證(Session ticket)。使用這種方式,除了所有的狀態都保存在客戶端(與 HTTP Cookie 的原理類似)之外,其消息流與伺服器會話緩存是一樣的。

其思想是伺服器取出它的所有會話數據(狀態)並進行加密 (密鑰只有伺服器知道),再以票證的方式發回客戶端。在接下來的連接中,客戶端恢復會話時在 ClientHello 的擴展欄位 session_ticket 中攜帶加密信息將票證提交回伺服器,由伺服器檢查票證的完整性,解密其內容,再使用其中的信息恢復會話。

這種方法有可能使擴展伺服器集群更為簡單,因為如果不使用這種方式,就需要在服務集群的各個節點之間同步會話。
Session ticket 需要伺服器和客戶端都支持,屬於一個擴展欄位,佔用伺服器資源很少。

⑷ 為什麼要進行dq解耦控制

容易使控制系統喪失穩定性。dq解耦控制容易使控制系統喪失穩定性,因此必須考慮通道間的耦合效應,並對其解耦。解耦控制系統,就是採用某種結構,尋找合適的控制規律來消除系統中各控制迴路之間的相互耦合關系,使每一個輸入只控制相應的一個輸出,每一個輸出又只受到一個控制的作用。

⑸ 解耦控制的主要分類

三種解耦理論分別是:基於Morgan問題的解耦控制,基於特徵結構配置的解耦控制和基於H_∞的解耦控制理論。
在過去的幾十年中,有兩大系列的解耦方法佔據了主導地位。其一是圍繞Morgan問題的一系列狀態空間方法,這種方法屬於全解耦方法。這種基於精確對消的解耦方法,遇到被控對象的任何一點攝動,都會導致解耦性的破壞,這是上述方法的主要缺陷。其二是以Rosenbrock為代表的現代頻域法,其設計目標是被控對象的對角優勢化而非對角化,從而可以在很大程度上避免全解耦方法的缺陷,這是一種近似解耦方法。

⑹ 解耦控制的相關解法

選擇適當的控制規律將一個多變數系統化為多個獨立的單變數系統的控制問題。在解耦控制問題中,基本目標是設計一個控制裝置,使構成的多變數控制系統的每個輸出變數僅由一個輸入變數完全控制,且不同的輸出由不同的輸入控制。在實現解耦以後,一個多輸入多輸出控制系統就解除了輸入、輸出變數間的交叉耦合,從而實現自治控制,即互不影響的控制。互不影響的控制方式,已經應用在發動機控制、鍋爐調節等工業控制系統中。多變數系統的解耦控制問題,早在30年代末就已提出,但直到1969年才由E.G.吉爾伯特比較深入和系統地加以解決。 對於輸出和輸入變數個數相同的系統,如果引入適當的控制規律,使控制系統的傳遞函數矩陣為非奇異對角矩陣,就稱系統實現了完全解耦。使多變數系統實現完全解耦的控制器,既可採用狀態反饋結合輸入變換的形式,也可採用輸出反饋結合補償裝置的形式。給定n維多輸入多輸出線性定常系統(A,B,C)(見線性系統理論),將輸出矩陣C表示為

C戁為C的第i個行向量,i=1,2,…,m,m為輸出向量的維數。再規定一組結構指數di(i=1,2,…,m):當C戁B=0,C戁AB=0…,C戁AB=0時,取di=n-1;否則,di取為使CiAB≠0的最小正整數N,N=0,1,2,…,n-1。利用結構指數可組成解耦性判別矩陣:
已證明,系統可用狀態反饋和輸入變換,即通過引入控制規律u=-Kx+Lv,實現完全解耦的充分必要條件是矩陣E為非奇異。這里,u為輸入向量,x為狀態向量,v為參考輸入向量,K為狀態反饋矩陣,L為輸入變換矩陣。對於滿足可解耦性條件的多變數系統,通過將它的系數矩陣A,B,C化成為解耦規范形,便可容易地求得所要求的狀態反饋矩陣K和輸入變換矩陣L。完全解耦控制方式的主要缺點是,它對系統參數的變動很敏感,系統參數的不準確或者在運行中的某種漂移都會破壞完全解耦。 一個多變數系統在單位階躍函數(見過渡過程) 輸入作用下能通過引入控制裝置實現穩態解耦時,就稱實現了靜態解耦控制。對於線性定常系統(A,B,C),如果系統可用狀態反饋來穩定,且系數矩陣A、B、C滿足關於秩的關系式,則系統可通過引入狀態反饋和輸入變換來實現靜態解耦。多變數系統在實現了靜態解耦後,其閉環控制系統的傳遞函數矩陣G(s)當s=0時為非奇異對角矩陣;但當s≠0時,G(s)不是對角矩陣。對於滿足解耦條件的系統,使其實現靜態解耦的狀態反饋矩陣K和輸入變換矩陣L可按如下方式選擇:首先,選擇K使閉環系統矩陣(A-BK)的特徵值均具有負實部。隨後,選取輸入變換矩陣,式中D為非奇異對角矩陣,其各對角線上元的值可根據其他性能指標來選取。由這樣選取的K和L所構成的控制系統必定是穩定的,並且它的閉環傳遞函數矩陣G(s)當s=0時即等於D。在對系統參數變動的敏感方面,靜態解耦控制要比完全解耦控制優越,因而更適宜於工程應用。

⑺ 變頻器應用技術研究論文參考範文

隨著我國電力技術和科技的快速發展,電力變頻器廣泛的應用於工業生產以及人類日常生活中。這是我為大家整理的變頻器應用技術論文參考 範文 ,僅供參考!
變頻器應用技術論文參考範文篇一:《變頻器節能技術應用與研究》
【摘 要】本文根據水泵、風機軸功率與轉速的平方成正比的特點,闡述變頻調速節能原理,提出泵與風機應採用變頻技術,已降低成本,延長設備使用壽命,提高經濟效益。

【關鍵詞】變頻器;節能;水泵;風機

0 引言

鍋爐是比較常見的用於集中供熱設備,通常情況下,由於氣溫和負荷的變化,需對鍋爐燃燒情況進行調節,傳統的調節方式其原理是依靠增加系統的阻力,水泵採用調節閥門來控制流量,風機採用調節風門擋板開度的大小來控制風量。但在運行中調節閥門、擋板的方式,不論供熱需求大小,水泵、風機都要滿負荷運轉,拖動水泵、風機的電動機的軸功率並不會改變,電動機消耗的能量也並沒有減少,而實際生產所需要的流量一般都比設計的最大流量小很多,因而普遍存在著“大馬拉小車”現象。鍋爐這樣的運行方式不僅損失了能量,而且增大了設備損耗,導致設備使用壽命縮短,維護、維修費用高。把變頻調速技術應用於水泵(或風機)的控制,代替閥門(或擋板)控制就能在控制過程中不增加管路阻力,提高系統的效率。變頻調速能夠根據負荷的變化使電動機自動、平滑地增速或減速,實現電動機無級變速。變頻調速范圍寬、精度高,是電動機最理想的調速方式。如果將水泵、風機的非調速電動機改造為變頻調速電動機,其耗電量就能隨負荷變化,從而節約大量電能。

1 變頻器應用在水泵、風機的節能原理

圖1為水泵(風機)的H-Q關系曲線。圖1中,曲線R2為水泵(風機)在給定轉速下滿負荷時,閥門(擋板)全開運行時阻力特徵曲線;曲線 R1為部分負荷時,閥門(擋板)部分開啟時的阻力特性曲線;曲線H(n1)和H(n2)表示不同轉速時的Q=f(H)曲線。採用閥門(擋板)控制時,流(風)量從Q2減小到Q1,阻力曲線從R2移到R1,揚程(風壓)從HA移到HB。採用調速控制時,H(n2)移到H(n1),流(風)量從Q2減小到Q1,揚程(風壓)從HA移到HC。

圖1 水泵(風機)的H-Q關系曲線

圖2為水泵(風機)的P-Q的關系曲線。由圖2可以看出,流(風)量Q1時,採用閥門(擋板)控制的功率為PB。採用變頻調速控制的功率為 PC。ΔP=PB-PC就是節省的功率。

圖2 為水泵(風機)的P-Q的關系曲線

如果不計風機的效率η,則採用閥門(擋板)時的功率消耗在圖中由面積OHBBQ1所代表,而採用調速控制時的功率消耗由面積OHCCQ1所代表,後者較前者面積相差為HCHBBC,即採用調速控制流(風)量比採用閥門(擋板)控制可節約能量。

2 水泵、風機的節能計算和分析

通常轉速n與頻率f成正比,若將電動機的運行頻率由原來的50Hz降至40Hz時,其實際轉速則降為額定轉速的80%,即實際轉速nsn和額定轉速nn:nsn=(■)nn=0.4nn。設K為電機過載系數,則電動機額定功率Pn=Kn■■。因此電動機運行在40Hz時,實際功率為:

Psn=Kn■■=K(0.4nn)3=0.064Kn■■=0.064Pn

節能率 =■=■=■=93.6%

表1 電動機節能率

供熱公司勝利鍋爐房將電動機改為變頻調速,其中:

表2 補水泵電動機在定速和變速不同情況下測出的數據

根據表2的數據,一個採暖期按190天計算,工業電費單價為0.37元/kWh。加裝變頻器後補水泵電動機節約電費:

(11-1.73)×24×190×0.37=15640.344元

表3 鼓風機電動機在定速和變速不同情況下測出的數據

根據表3的數據,勝利車間有5台鼓風機電動機。一個採暖期按190天計算,工業電費單價為0.37元/kWh。加裝變頻器後鼓風機電動機節約電費:

(18.5-3.95)×24×190×0.37×5=122743.8元

表4 引風機電動機在定速和變速不同情況下測出的數據

根據表4的數據,勝利車間有5台鼓風機電動機。一個採暖期按190天計算,工業電費單價為0.37元/kWh。加裝變頻器後引風機電動機節約電費:

(37-32.9)×24×190×0.37×5=34587.6元

綜上所述,勝利車間安裝變頻後,一個保溫期合計節約電費:

15640.344+122743.8+34587.6=172971.744元

節能效果明顯。

通過上述分析和實際應用,鍋爐水泵、風機採用變頻調速後具有以下優點。

(1)水泵、風機的電動機工作電流下降,溫升明顯下降,同時減少了機械磨損,維修工作量大大減少。

(2)保護功能可靠,消除了電動機因過載或單相運行而燒壞的現象,延長了使用壽命,能長期穩定運行。

(3)電動機實現軟起動,實現平滑地無級調速,精度高,調速范圍寬(0-100%)。頻率變化范圍大(O-50Hz)。效率可高達(90%-95%)以上。減小了對電網的沖擊。

(4)安裝容易,調試方便,操作簡便,維護量小。

(5)節能省電,燃煤效率提高。

(6)變頻器可採用軟體與計算機可編程式控制制器聯機控制的功能,容易實現生產過程的自動控制。

3 結束語

引進變頻器可以實現能源的有效利用,避免過多的能源消耗。使用變頻器節能主要是通過改變電動機的轉速實現流量和壓力的控制,來降低管道阻力,減少了閥門半開的能源損失。其次變頻狀態下的水泵(風機)運行轉速明顯低於工頻電源之下,這樣能盡量減少由於摩擦帶來的電力損耗。最後變頻技術是一種先進的現代自動化技術,自動化的運行能增加電力運行的可靠性,節省人力投入,從而實現了成本的節約。

【參考文獻】

[1]趙斌,莫桂強.變頻調速器在鍋爐風機節能改造中的應用[J].廣西電力.

[2]吳民強.泵與風機節能技術問答[M].北京:中國電力出版社,1998.

[3]梁學造,蔡澤發.非同步電動機的降損節能 方法 [Z].湖南省電力工業局.
變頻器應用技術論文參考範文篇二:《變頻器技術改造實踐與應用》
【摘要】介紹了鍋爐風機電機以及補水泵、循環泵電機等設備變頻器技術改造實例及應用,並對變頻器調速改造中應注意的一些技術問題進行了論述。

【關鍵詞】自動化控制;變頻器;技術改造

1 鍋爐風機電機應用變頻器調速控制

以DHL141.57/150/90AⅡ熱水鍋爐為例,每台鍋爐配置引風機和鼓風機各六台,各電機主要技術參數如下:

型號 容量(KW) 電壓(V) 額定電流(A)

引風機 Y280S4 75 380 139.7

鼓風機 Y200L4 30 380 57

在進行變頻器改造以前,各風機在正常情況下的運行數據統計如下:

平均電流 最大電流 最小電流

引風機 142 145 139

鼓風機 59 63 57

首先選擇在1#5#爐的鼓、引風機上進行改造嘗試,並考慮到風機電機功率設計時配置,選擇相匹配功率的變頻器來控制電機,變頻器的型號為ABB ACS51001157A4(引風機)、ZXBP30(鼓風機),電壓等級為380V,通過一段時間的運行測試,引風機工頻電流由原來的平均140(A)下降到現在的平均95―110(A),鼓風機工頻電流由原來的平均57(A)下降到現在的平均30(A)節能效果相當顯著,並且變頻器技術性能完全滿足鍋爐運行工藝的要求(主要是風壓、風量、加減風的速率等),電機在啟動、運行調節、控制操作等方面都得到極大的改善。變頻調速由安裝在鍋爐操作台上的啟動、停機、轉速調整開關進行遠程式控制制,並可同DCS系統介面,通過DCS實現變頻器的調速控制,變頻調速裝置還提供報警指示、故障指示、待機狀態、運行狀態、連鎖保護等保護信息以及轉速給定值和風機實際轉速值等必要指示,以便操作人員進行操作控制。

2 補水泵、循環泵電機應用變頻器進行調節控制

以2台補水泵、4台循環泵實際應用為例,其電動機的技術參數分別為:

序號 型號 功率 額定電流 流量

補水泵 1#泵 Y180M4 18.5 35.9 25

2#泵 Y180M4 18.5 35.9 25

循環泵 1#泵 Y315M14 132 237 630

2#泵 Y315M14 132 237 630

3#泵 Y315M14 132 237 630

4#泵 Y2315M4 132 240.4 630

正常補水時泵出力太大,緊急補水時一台泵又不能滿足耗水需要,同時啟動時出力又太大,連續供水補水效率高,效果也好。補水泵改用變頻器調節補水,不僅僅在於考慮它對電機的節能效益,更重要的是從生產設備運行安全形度考慮,變頻器選用富士FRN132P11S―4CX,電壓等級為380V。

為充分利用變頻器,採用1台變頻器來實現兩台電機的調速控制;2台補水泵均可實現變速、定速兩種方式運行,變頻器在同一時間只能作一台電機的變頻電源,所以每台電機啟動、停止必須相互閉鎖,用邏輯電路控制,保證可靠切換,出口採用雙投閘刀切換;2台補水泵工作時,其中一台由工頻供電作定速運行,另一台由變頻器供電作變速運行,同一台電機的變速、定速運行由交流接觸器相互閉鎖,即在變速運行時,定速合不上,如下圖中,1C1與1C2及2C1與2C2不允許同時合上;為確保工藝控制安全、可靠,變頻器及兩台電機的控制、保護、測量單元全部集中在就地控制櫃內,控制調節通過屏蔽信號電纜引接到控制室;

圖1 補水泵電機變頻器接線,虛框內為改造增加部分3 變頻器調速改造中應注意的一些技術問題

鍋爐的安全運行是全隊動力的根本保證,雖然變頻調速裝置是可靠的,但一旦出現問題,必須確保鍋爐安全供熱,所以,必須實現工頻――變頻運行的切換系統(旁路系統),在生產過程中,採用手工切換如能滿足設備運行工藝要求,建議盡量不要選用自動旁路,對一般的小功率電機,採用雙投閘刀方式作為手動、自動切換手段也是比較理想的方法。

對於大慣量負荷的電機(如鍋爐引風機),在變頻改造後,要注意風機可能存在扭曲共振現象,運行中,一旦發生共振,將嚴重損壞風機和拖動電機。所以,必須計算或測量風機――電機連接軸系扭振臨界轉速以及採取相應的技術 措施 (如設置頻率跳躍功能避開共振點、軟連接及機座加震動吸收橡膠等)。

採用變頻調速控制後,如果變頻器長時間運行在1/2工頻以下,隨著電機轉速的下降,電機散熱能力也下降,同時電機發熱量也隨之減少。所以電機的本身溫度其實是下降的,仍舊能夠正常運行而不至溫度過高。

變頻器不能由輸出口反向送電,在電氣迴路設計中必須注意,如在補水泵和循環泵變頻器改造接線圖中,要求1C1與1C2及2C1與2C2不允許同時合上,不僅要求在電氣二次迴路中實現電氣的連鎖,同時要求在機械上實現機構互鎖,以確保變頻器的運行安全。

低壓變頻器,由於體積較小,在改造中的安裝地點選擇比較容易些。選擇變頻器室位置,既要考慮離電機設備不能太遠,又要考慮周圍環境對變頻器運行可能造成的影響。變頻器的安裝和運行環境要求較高,為了使變頻器能長期穩定和可靠運行,對安裝變頻器室的室內環境溫度要求最好控制在0-40℃之間,如果溫度超過允許值,應考慮配備相應的空調設備。同時,室內不應有較大灰塵、腐蝕或爆炸性氣體、導電粉塵等。

要保證變頻器櫃體和廠房大地的可靠連接,保證人員和設備安全。為防止信號干擾,控制系統最好埋設獨立的接地系統,對接地電阻的要求不大於4Ω。到變頻器的信號線,必須採用屏蔽電纜,屏蔽線的一端要求可靠接地。

隨著電力電子技術的發展,變頻器的各項技術性能也得到拓寬和提高,在熱電行業中,風機水泵類負荷較多,充分應用變頻器進行節能改造已經逐漸被大家所接受。對於目前低壓變頻器,投資較低、效益高,一年左右就可以收回投資而被廣泛應用。隨著目前國產變頻器的迅速發展,使得變頻器的性能價格比大大提高,為利用變頻器進行節能技術改造提供了更加廣闊的前景。

參考文獻:

[1]王占奎.變頻調速應用百例.北京:科學出版社出版,1999.4

[2]吳忠智,吳加林.變頻器應用手冊.北京:機械工業出版社,2002.7
變頻器應用技術論文參考範文篇三:《淺議變頻調速技術的應用》
摘要:調速和起制動性能、高效率、高功率因數的節電效果、適用范圍廣等優點,而被國內外公認為最有發展前途的調速方式。隨著工業自動化程度的不斷提高和能源全球性短缺,變頻器越來越廣泛地應用在冶金、機械、石油、化工、紡織、造紙、食品等各個行業以及風機、水泵等節能場合,並取得了顯著的經濟效益。近年來高電壓、大電流的SCR,GTO,IGBT,IG-GT以及智能模塊IPM(IntelligentPowerMole)等器件的生產以及並聯、串聯技術的發展應用,使高電壓、大功率變頻器產品的生產及應用成為現實。

關鍵詞:變頻器,控制技術,應用

電力電子技術誕生至今已近50年,他對人類的文明起了巨大的作用.近10年來,隨著電力電子技術、計算機技術、自動控制技術的迅速發展,電氣傳動技術面臨著一場歷史革命,即交流調速取代直流調速和計算機數字控制技術取代模擬控制技術已成為發展趨勢。交流電機變頻調速技術是當今節電、改善工藝流程以提高產品質量和改善環境、推動技術進步的一種主要手段。變頻調速以其有益的

調速和起制動性能、高效率、高功率因數的節電效果、適用范圍廣等優點,而被國內外公認為最有發展前途的調速方式。

1.變頻調速技術的現狀

電氣傳動控制系統通常由電動機、控制裝置和信息裝置三部分組成。電氣傳動可分為調速和不調速兩大類,調速又分為交流調速和直流調速兩種方式。不調速電動機直接由電網供電。但是,隨著電力電子技術的發展,原本不調速的機械越來越多地改用調速傳動以節約電能,改善產品質量,提高產量。以我國為例,60%的發電量是通過電動機消耗的。因此,調速傳動有著巨大的節能潛力,變頻調速是交流調速的基礎和主幹內容,變頻調速技術的出現使頻率變為可以充分利用的資源。近年來。變頻調速技術已成為交流調速中最活躍、發展最快的技術。

1.1國外現狀

採用變頻的方法,實現對電機轉速的控制,大約已有40年的歷史,但變頻調速技術的高速發展,則是近十年的事情,主要是由下面幾個因素決定:

1.1.1市場有大量需求

隨著工業自動化程度的不斷提高和能源全球性短缺,變頻器越來越廣泛地應用在冶金、機械、石油、化工、紡織、造紙、食品等各個行業以及風機、水泵等節能場合,並取得了顯著的經濟效益。

1.1.2功率器件發展迅速

變頻調速技術是建立在電力電子技術基礎之上的。近年來高電壓、大電流的SCR,GTO,IGBT,IG-GT以及智能模塊IPM(Intelligent Power Mole)等器件的生產以及並聯、串聯技術的發展應用,使高電壓、大功率變頻器產品的生產及應用成為現實。在大功率交—交變頻(循環交流器)調速技術方面,法國阿爾斯通已能提供單機容量達30000kW的電器傳動設備用於船舶推進系統。在大功率無換向器電機變頻調速技術方面,義大利ABB公司提供了單機容量為60000kW的設備用於抽水蓄能電站;在中功率變頻調速技術方面,德國西門子公司Simovert A電流型晶閘管變頻調速設備單機容量為10-2600kVA和Simovert PGTOPWM變頻調速設備單機容量為100-900kVA,其控制系統已實現全數字化,用於電機風車,風機,水泵傳動;在小功率變頻調速技術方面,日本富士BJT變頻器最大單機容量可達700kVA,IGBT變頻器已形成系列產品,其控制系統也已實現全數字化。

IPM投入應用比IGBT約晚二年,由於IPM包含了1GBT晶元及外圍的驅動和保護電路,有的甚至還把光耦也集成於一體,是一種更為適用的集成型功率器件。目前,在模塊額定電流10-600A范圍內,通用變頻器均有採用IPM的趨向。IPM除了在工業變頻器中被大量採用之外,經濟型的IPM在近年內也開始在一些民用品,如家用空調變頻器,冰箱變頻器,洗衣機變頻器中得到應用。IPM也在向更高的水平發展,日本三菱電機最近開發的專用智能模塊ASIPM將不需要外接光耦,通過內部自舉電路可單電源供電,並採用了低電感的封裝技術,在實現系統小型化、專用化、高性能、低成本方面又推近了一步。

1.1.3控制理論和微電子技術的支持

在現代自動化控制領域中,以現代控制論為基礎,融入模糊控制、專家控制、神經控制等新的控制理論,為高性能變頻調速提供了理論基礎;16位、32位高速微處理器以及信號處理器(DSP)和專用集成電路(ASIC)技術的快速發展,則為實現變頻調速的高精度、多功能提供了硬體手段。

1.2國內現狀

從整體上看我國電氣傳動系統製造技術水平較國際先進水平差距10-15年。在大功率交-交,無換向器電動機等變頻技術方面,國內只有少數科研單位有能力製造,但在數字化及系統可靠性方面與國外還有相當差距。而這方面產品在諸如抽水蓄能電站機組啟動及運行、大容量風機、壓縮機和軋機傳動、礦井卷揚機方面有很大需求。在中小頻率技術方面,國內學者做了大量變頻理論的基礎研究。早在80年代,已成功引入矢量控制的理論,針對交流電機具有多變數、強耦合、非線性的特點,採用了線性解耦和非線性解耦的方法,探討交流電機變頻調速的控制策略。

進入90年代,隨著高性能單片機和數字信號處理的使用,國內學者緊跟國外最新控制策略,針對交流電機感應特點,採用高次諧波注入SPWM和空間磁通矢量PWM等方法,控制演算法採用模糊控制,神經網路理論對感應電機轉子電阻、磁鏈和轉矩進行在線觀測,在實現無速度感測器交流變頻調速系統的研究上作了有益的基礎研究。在新型電力電子器件應用方面,由於GTR,GTO,IGBT,IPM等全控制器件的使用,使得中小功率的變流主電路大大簡化,大功率SCR,GTO,IG-BT,IGCT等器件的並聯、串聯技術應用,使高電壓、大電流變頻器產品的生產及應用成為現實。在控制器件方面,實現了從16位單片機到32位DSP的應用。國內學者一直致力於變頻調速新型控制策略的研究,但由於半導體功率器件和DSP等器件依賴進口,使得變頻器的製造成本較高,無法形成產業化,與國外的知名品牌相抗衡。國內幾乎所有的產品都是普通的V/f控制,僅有少量的樣機採用矢量控制,品種與質量還不能滿足市場需要,每年需大量進口高性能的變頻器。

因此,國內交流變頻調速技術產業狀況表現如下:(1)變頻器控制策略的基礎研究與國外差距不大。(2)變頻器的整機技術落後,國內雖有很多單位投入了一定的人力、物力,但由於力量分散,並沒形成一定的技術和生產規模。(3)變頻器產品所用半導體功率器件的製造業幾乎是空白。(4)相關配套產業及行業落後。(5)產銷量少,可靠性及工藝水平不高。

2.變頻調速技術未來發展的方向

變頻調速技術主要向著兩個方向發展:一是實現高功率因數、高效率、無諧波干擾,研製具有良好電磁兼容性能的“綠色電器”;二是向變頻器應用的深度和廣度發展。隨著變流器應用領域深度和廣度的不斷開拓,變頻調速技術將越來越清楚地展示它在一個國家國民經濟中的重要性。可以預料,現代控制理論和人工智慧技術在變頻調速技術的應用和推廣,將賦予它更強的生命力和更高的技術含量。其發展方向具有如下幾項:(1)實現高水平的控制;(2)開發清潔電能的變流器;(3)縮小裝置的尺寸;(4)高速度的數字控制;(5)模擬與計算機輔助設計(CAD)技術。論文檢測。

3變頻調速技術的應用

縱觀我國變頻調速技術的應用,總的說來走的是一個由試驗到實用,由零星到大范圍,由輔助系統到生產裝置,由單純考慮節能到全面改善工藝水平,由手動控制到自動控制,由低壓中小容量到高壓大容量,一句話,由低級到高級的過程。論文檢測。我國是一個能耗大國,60%的發電量被電動機消耗掉,據有關資料統計,我國大約有風機、水泵、空氣壓縮機4200萬台,裝機容量約1.1億萬千瓦,然而實際工作效率只有40%-60%,損耗電能占總發電量的40%,已有 經驗 表明,應用變頻調速技術,節電率一般可達10%-30%,有的甚至高達40%,節能潛力巨大。

有關資料表明,我國火力發電廠有八種泵與風機配套電動機的總容量為12829MW,年總用電量為450。2億千瓦小時。還有總容量約為3913MW的泵與風機需要進行節能改造,完成改造後,估計年節電量可達25。論文檢測。69億千瓦小時;冶金企業也是我國的能耗大戶,單位產品能耗高出日本3倍,法國4。9倍,印度1。9倍,冶金企業使用的風機泵類非常多,實施變頻改造,不僅可以大幅度節約電能,還可改善產品質量。

參考文獻

[1]何慶華,陳道兵. 變頻器常見故障的處理及日常維護[J]. 變頻器世界, 2009, (04) .

[2]龍卓珉,羅雪蓮. 矩陣式變頻調速系統抗干擾設計[J]. 變頻器世界, 2009, (04) .

猜你喜歡:

1. 電氣類科技論文

2. 電子應用技術論文

3. 電氣控制與plc應用技術論文

4. 變頻器應用技術論文

5. 變電運行技術論文

6. 光伏應用技術論文

⑻ 什麼是解耦以及常用的解耦方法

1、耦合是指兩個或兩個以上的體系或兩種運動形式間通過相互作用而彼此影響以至聯合起來的現象。 解耦就是用數學方法將兩種運動分離開來處理問題,常用解耦方法就是忽略或簡化對所研究問題影響較小的一種運動,只分析主要的運動。

2、常用的解耦方法:

完全解耦控制:對於輸出和輸入變數個數相同的系統,如果引入適當的控制規律,使控制系統的傳遞函數矩陣為非奇異對角矩陣,就稱系統實現了完全解耦。

靜態解耦控制:一個多變數系統在單位階躍函數(見過渡過程) 輸入作用下能通過引入控制裝置實現穩態解耦時,就稱實現了靜態解耦控制。

軟體解耦:說起軟體的解耦必然需要談論耦合度,降低耦合度即可以理解為解耦,模塊間有依賴關系必然存在耦合,理論上的絕對零耦合是做不到的,但可以通過一些現有的方法將耦合度降至最低。

(8)壓縮機解耦控制演算法擴展閱讀:

三種解耦理論分別是:基於Morgan問題的解耦控制,基於特徵結構配置的解耦控制和基於H_∞的解耦控制理論。

在過去的幾十年中,有兩大系列的解耦方法佔據了主導地位。

其一是圍繞Morgan問題的一系列狀態空間方法,這種方法屬於全解耦方法。這種基於精確對消的解耦方法,遇到被控對象的任何一點攝動,都會導致解耦性的破壞,這是上述方法的主要缺陷。

其二是以Rosenbrock為代表的現代頻域法,其設計目標是被控對象的對角優勢化而非對角化,從而可以在很大程度上避免全解耦方法的缺陷,這是一種近似解耦方法。

⑼ 可實現壓縮比和流量解耦調節的壓縮機為什麼

磁懸浮變頻離心壓縮機。
磁懸浮變頻離心壓縮機的負荷調節通常採用進口導葉進行調節,通過改變流通面積以及氣流角度,從而實現壓縮比和流量的精準控制。
空調節系統不採集蒸發器出風口的溫度信號,而是根據空調節管路中的壓力變化信號調節壓縮機的壓縮比。

⑽ 什麼叫功率解耦控制

說白了就是兩個齒輪一個帶著另一個可以轉動從而帶動負載運行,同時也可以單獨轉動帶動負載運行,這就叫解耦控制。

閱讀全文

與壓縮機解耦控制演算法相關的資料

熱點內容
阿里雲伺服器沒有實例 瀏覽:601
綿陽有沒有什麼app 瀏覽:844
怎麼用游俠映射伺服器 瀏覽:917
為什麼無意下載的app無法刪除 瀏覽:304
word2007打開pdf 瀏覽:117
php正則class 瀏覽:736
怎麼在文件夾查找一堆文件 瀏覽:543
核酸報告用什麼app 瀏覽:791
u8怎麼ping通伺服器地址 瀏覽:994
安卓什麼手機支持背部輕敲調出健康碼 瀏覽:870
程序員抽獎排行 瀏覽:744
扭蛋人生安卓如何下載 瀏覽:724
什麼app文檔資源多好 瀏覽:924
黑馬程序員APP 瀏覽:148
掌閱小說是哪個app 瀏覽:47
如何把u盤的軟體安裝到安卓機 瀏覽:1000
php跑在什麼伺服器 瀏覽:126
編譯器怎麼跳轉到下一行 瀏覽:454
嵌入式py編譯器 瀏覽:328
rplayer下載安卓哪個文件夾 瀏覽:302