導航:首頁 > 源碼編譯 > 貪心演算法入門教學視頻

貪心演算法入門教學視頻

發布時間:2023-02-18 17:38:44

程序員演算法基礎——貪心演算法

貪心是人類自帶的能力,貪心演算法是在貪心決策上進行統籌規劃的統稱。

比如一道常見的演算法筆試題---- 跳一跳

我們自然而然能產生一種解法:盡可能的往右跳,看最後是否能到達。
本文即是對這種貪心決策的介紹。

狹義的貪心演算法指的是解最優化問題的一種特殊方法,解決過程中總是做出當下最好的選擇,因為具有最優子結構的特點,局部最優解可以得到全局最優解;這種貪心演算法是動態規劃的一種特例。 能用貪心解決的問題,也可以用動態規劃解決。

而廣義的貪心指的是一種通用的貪心策略,基於當前局面而進行貪心決策。以 跳一跳 的題目為例:
我們發現的題目的核心在於 向右能到達的最遠距離 ,我們用maxRight來表示;
此時有一種貪心的策略:從第1個盒子開始向右遍歷,對於每個經過的盒子,不斷更新maxRight的值。

貪心的思考過程類似動態規劃,依舊是兩步: 大事化小 小事化了
大事化小:
一個較大的問題,通過找到與子問題的重疊,把復雜的問題劃分為多個小問題;
小事化了:
從小問題找到決策的核心,確定一種得到最優解的策略,比如跳一跳中的 向右能到達的最遠距離

在證明局部的最優解是否可以推出全局最優解的時候,常會用到數學的證明方式。

如果是動態規劃:
要湊出m元,必須先湊出m-1、m-2、m-5、m-10元,我們用dp[i]表示湊出i元的最少紙幣數;
有 dp[i]=min(dp[i-1], dp[i-2], dp[i-5], dp[i-10]) + 1 ;
容易知道 dp[1]=dp[2]=dp[5]=dp[10]=1 ;
根據以上遞推方程和初始化信息,可以容易推出dp[1~m]的所有值。

似乎有些不對? 平時我們找零錢有這么復雜嗎?
從貪心演算法角度出發,當m>10且我們有10元紙幣,我們優先使用10元紙幣,然後再是5元、2元、1元紙幣。
從日常生活的經驗知道,這么做是正確的,但是為什麼?

假如我們把題目變成這樣,原來的策略還能生效嗎?

接下來我們來分析這種策略:
已知對於m元紙幣,1,2,5元紙幣使用了a,b,c張,我們有a+2b+5c=m;
假設存在一種情況,1、2、5元紙幣使用數是x,y,z張,使用了更少的5元紙幣(z<c),且紙幣張數更少(x+y+z<a+b+c),即是用更少5元紙幣得到最優解。
我們令k=5*(c-z),k元紙幣需要floor(k/2)張2元紙幣,k%2張1元紙幣;(因為如果有2張1元紙幣,可以使用1張2元紙幣來替代,故而1元紙幣只能是0張或者1張)
容易知道,減少(c-z)張5元紙幣,需要增加floor(5*(c-z)/2)張2元紙幣和(5*(c-z))%2張紙幣,而這使得x+y+z必然大於a+b+c。
由此我們知道不可能存在使用更少5元紙幣的更優解。
所以優先使用大額紙幣是一種正確的貪心選擇。

對於1、5、7元紙幣,比如說要湊出10元,如果優先使用7元紙幣,則張數是4;(1+1+1+7)
但如果只使用5元紙幣,則張數是2;(5+5)
在這種情況下,優先使用大額紙幣是不正確的貪心選擇。(但用動態規劃仍能得到最優解)

如果是動態規劃:
前i秒的完成的任務數,可以由前面1~i-1秒的任務完成數推過來。
我們用 dp[i]表示前i秒能完成的任務數
在計算前i秒能完成的任務數時,對於第j個任務,我們有兩種決策:
1、不執行這個任務,那麼dp[i]沒有變化;
2、執行這個任務,那麼必須騰出來(Sj, Tj)這段時間,那麼 dp[i] = max(dp[i], dp[ S[j] ] ) + 1 ;
比如說對於任務j如果是第5秒開始第10秒結束,如果i>=10,那麼有 dp[i]=max(dp[i], dp[5] + 1); (相當於把第5秒到第i秒的時間分配給任務j)

再考慮貪心的策略,現實生活中人們是如何安排這種多任務的事情?我換一種描述方式:

我們自然而然會想到一個策略: 先把結束時間早的兼職給做了!
為什麼?
因為先做完這個結束時間早的,能留出更多的時間做其他兼職。
我們天生具備了這種優化決策的能力。

這是一道 LeetCode題目 。
這個題目不能直接用動態規劃去解,比如用dp[i]表示前i個人需要的最少糖果數。
因為(前i個人的最少糖果數)這種狀態表示會收到第i+1個人的影響,如果a[i]>a[i+1],那麼第i個人應該比第i+1個人多。
即是 這種狀態表示不具備無後效性。

如果是我們分配糖果,我們應該怎麼分配?
答案是: 從分數最低的開始。
按照分數排序,從最低開始分,每次判斷是否比左右的分數高。
假設每個人分c[i]個糖果,那麼對於第i個人有 c[i]=max(c[i-1],c[c+1])+1 ; (c[i]默認為0,如果在計算i的時候,c[i-1]為0,表示i-1的分數比i高)
但是,這樣解決的時間復雜度為 O(NLogN) ,主要瓶頸是在排序。
如果提交,會得到 Time Limit Exceeded 的提示。

我們需要對貪心的策略進行優化:
我們把左右兩種情況分開看。
如果只考慮比左邊的人分數高時,容易得到策略:
從左到右遍歷,如果a[i]>a[i-1],則有c[i]=c[i-1]+1;否則c[i]=1。

再考慮比右邊的人分數高時,此時我們要從數組的最右邊,向左開始遍歷:
如果a[i]>a[i+1], 則有c[i]=c[i+1]+1;否則c[i]不變;

這樣講過兩次遍歷,我們可以得到一個分配方案,並且時間復雜度是 O(N)

題目給出關鍵信息:1、兩個人過河,耗時為較長的時間;
還有隱藏的信息:2、兩個人過河後,需要有一個人把船開回去;
要保證總時間盡可能小,這里有兩個關鍵原則: 應該使得兩個人時間差盡可能小(減少浪費),同時船回去的時間也盡可能小(減少等待)。

先不考慮空船回來的情況,如果有無限多的船,那麼應該怎麼分配?
答案: 每次從剩下的人選擇耗時最長的人,再選擇與他耗時最接近的人。

再考慮只有一條船的情況,假設有A/B/C三個人,並且耗時A<B<C。
那麼最快的方案是:A+B去, A回;A+C去;總耗時是A+B+C。(因為A是最快的,讓其他人來回時間只會更長, 減少等待的原則

如果有A/B/C/D四個人,且耗時A<B<C<D,這時有兩種方案:
1、最快的來回送人方式,A+B去;A回;A+C去,A回;A+D去; 總耗時是B+C+D+2A (減少等待原則)
2、最快和次快一起送人方式,A+B先去,A回;C+D去,B回;A+B去;總耗時是 3B+D+A (減少浪費原則)
對比方案1、2的選擇,我們發現差別僅在A+C和2B;
為何方案1、2差別里沒有D?
因為D最終一定要過河,且耗時一定為D。

如果有A/B/C/D/E 5個人,且耗時A<B<C<D<E,這時如何抉擇?
仍是從最慢的E看。(參考我們無限多船的情況)
方案1,減少等待;先送E過去,然後接著考慮四個人的情況;
方案2,減少浪費;先送E/D過去,然後接著考慮A/B/C三個人的情況;(4人的時候的方案2)

到5個人的時候,我們已經明顯發了一個特點:問題是重復,且可以由子問題去解決。
根據5個人的情況,我們可以推出狀態轉移方程 dp[i] = min(dp[i - 1] + a[i] + a[1], dp[i - 2] + a[2] + a[1] + a[i] + a[2]);
再根據我們考慮的1、2、3、4個人的情況,我們分別可以算出dp[i]的初始化值:
dp[1] = a[1];
dp[2] = a[2];
dp[3] = a[2]+a[1]+a[3];
dp[4] = min(dp[3] + a[4] + a[1], dp[2]+a[2]+a[1]+a[4]+a[2]);

由上述的狀態轉移方程和初始化值,我們可以推出dp[n]的值。

貪心的學習過程,就是對自己的思考進行優化。
是把握已有信息,進行最優化決策。
這里還有一些收集的 貪心練習題 ,可以實踐練習。
這里 還有在線分享,歡迎報名。

② 貪心演算法幾個經典例子

[背包問題]有一個背包,背包容量是M=150。有7個物品,物品可以分割成任意大小。

要求盡可能讓裝入背包中的物品總價值最大,但不能超過總容量。

貪心演算法是很常見的演算法之一,這是由於它簡單易行,構造貪心策略簡單。但是,它需要證明後才能真正運用到題目的演算法中。一般來說,貪心演算法的證明圍繞著整個問題的最優解一定由在貪心策略中存在的子問題的最優解得來的。

對於本例題中的3種貪心策略,都無法成立,即無法被證明。

③ 五大常用演算法之一:貪心演算法

所謂貪心選擇性質是指所求問題的整體最優解可以通過一系列局部最優的選擇,換句話說,當考慮做何種選擇的時候,我們只考慮對當前問題最佳的選擇而不考慮子問題的結果。這是貪心演算法可行的第一個基本要素。貪心演算法以迭代的方式作出相繼的貪心選擇,每作一次貪心選擇就將所求問題簡化為規模更小的子問題。 對於一個具體問題,要確定它是否具有貪心選擇性質,必須證明每一步所作的貪心選擇最終導致問題的整體最優解。
當一個問題的最優解包含其子問題的最優解時,稱此問題具有最優子結構性質。問題的最優子結構性質是該問題可用貪心演算法求解的關鍵特徵。

值得注意的是,貪心演算法並不是完全不可以使用,貪心策略一旦經過證明成立後,它就是一種高效的演算法。比如, 求最小生成樹的Prim演算法和Kruskal演算法都是漂亮的貪心演算法
貪心演算法還是很常見的演算法之一,這是由於它簡單易行,構造貪心策略不是很困難。
可惜的是,它需要證明後才能真正運用到題目的演算法中。
一般來說,貪心演算法的證明圍繞著:整個問題的最優解一定由在貪心策略中存在的子問題的最優解得來的。
對於例題中的3種貪心策略,都是無法成立(無法被證明)的,解釋如下:
貪心策略:選取價值最大者。反例:

W=30

物品:A B C

重量:28 12 12

價值:30 20 20

根據策略,首先選取物品A,接下來就無法再選取了,可是,選取B、C則更好。

(2)貪心策略:選取重量最小。它的反例與第一種策略的反例差不多。

(3)貪心策略:選取單位重量價值最大的物品。反例:

W=30

物品:A B C

重量:28 20 10

價值:28 20 10

根據策略,三種物品單位重量價值一樣,程序無法依據現有策略作出判斷,如果選擇A,則答案錯誤。但是果在條件中加一句當遇見單位價值相同的時候,優先裝重量小的,這樣的問題就可以解決.

所以需要說明的是,貪心演算法可以與隨機化演算法一起使用,具體的例子就不再多舉了。(因為這一類演算法普及性不高,而且技術含量是非常高的,需要通過一些反例確定隨機的對象是什麼,隨機程度如何,但也是不能保證完全正確,只能是極大的幾率正確)。

④ 演算法09-貪心演算法

貪心演算法與動態規劃的不同在於它對每個子問題的解決方案都作出選擇,不能回退。動態規劃則會保存以前的運算結果,並根據以前的結果對當前進行選擇,有回退功能。

很多情況下,可以在某一步用貪心演算法,全局再加一個搜索或遞歸或動態規劃之類

貪心法可以解決一些最優化問題,如:求圖中的最小生成樹、求哈夫曼編碼等。然而對於工程和生活中的問題,貪心法一般不能得到我們所要求的答案。
一單一個問題可以通過貪心法來解決,那麼貪心法一般是解決這個問題的最好辦法。由於貪心法的高效性以及其所求得的答案比較接近最優結果,貪心法也可以用作輔助演算法或者直接解決一些要求結果不特別精確的問題。

當硬幣可選集合固定:Coins = [20,10,5,1],求最少幾個硬幣可以拼出總數。比如total=36。
36 - 20 = 16 20
16 - 10 = 6 20 10
6 - 5 = 1 20 10 5
1 - 1 = 0 20 10 5 1
前面這些硬幣依次是後面硬幣的整數倍,可以用貪心法,能得到最優解,

貪心法的反例
非整除關系的硬幣,可選集合:Coins = [10,9,1],求拼出總數為18最少需要幾個硬幣?
最優化演算法:9 + 9 = 18 兩個9
貪心演算法:18 - 10 = 8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 = 0 八個1

簡單地說,問題能夠分解成子問題來解決,子問題的最優解能遞推到最終問題的最優解。這種子問題最優解成為最優子結構。
貪心演算法與動態規劃的不同在於它對每個子問題的最終方案都作出選擇,不能回退。
動態規劃則會保存以前的運算結果,並根據以前的結果對當前進行選擇,有回退功能。

假設你是一位很棒的家長,想要給你的孩子們一些小餅干。但是,每個孩子最多隻能給一塊餅干。
對每個孩子 i,都有一個胃口值 g[i],這是能讓孩子們滿足胃口的餅乾的最小尺寸;並且每塊餅干 j,都有一個尺寸 s[j] 。如果 s[j] >= g[i],我們可以將這個餅干 j 分配給孩子 i ,這個孩子會得到滿足。你的目標是盡可能滿足越多數量的孩子,並輸出這個最大數值。
示例 1:
輸入: g = [1,2,3], s = [1,1]
輸出: 1
解釋:
你有三個孩子和兩塊小餅干,3個孩子的胃口值分別是:1,2,3。
雖然你有兩塊小餅干,由於他們的尺寸都是1,你只能讓胃口值是1的孩子滿足。
所以你應該輸出1。
示例 2:
輸入: g = [1,2], s = [1,2,3]
輸出: 2
解釋:
你有兩個孩子和三塊小餅干,2個孩子的胃口值分別是1,2。
你擁有的餅干數量和尺寸都足以讓所有孩子滿足。
所以你應該輸出2.
提示:
1 <= g.length <= 3 * 104
0 <= s.length <= 3 * 104
1 <= g[i], s[j] <= 231 - 1

給定一個數組,它的第 i 個元素是一支給定股票第 i 天的價格。
設計一個演算法來計算你所能獲取的最大利潤。你可以盡可能地完成更多的交易(多次買賣一支股票)。
注意:你不能同時參與多筆交易(你必須在再次購買前出售掉之前的股票)。
示例 1:
輸入: [7,1,5,3,6,4]
輸出: 7
解釋: 在第 2 天(股票價格 = 1)的時候買入,在第 3 天(股票價格 = 5)的時候賣出, 這筆交易所能獲得利潤 = 5-1 = 4 。
隨後,在第 4 天(股票價格 = 3)的時候買入,在第 5 天(股票價格 = 6)的時候賣出, 這筆交易所能獲得利潤 = 6-3 = 3 。
示例 2:
輸入: [1,2,3,4,5]
輸出: 4
解釋: 在第 1 天(股票價格 = 1)的時候買入,在第 5 天 (股票價格 = 5)的時候賣出, 這筆交易所能獲得利潤 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接連購買股票,之後再將它們賣出。
因為這樣屬於同時參與了多筆交易,你必須在再次購買前出售掉之前的股票。
示例 3:
輸入: [7,6,4,3,1]
輸出: 0
解釋: 在這種情況下, 沒有交易完成, 所以最大利潤為 0。

給定一個非負整數數組 nums ,你最初位於數組的 第一個下標 。
數組中的每個元素代表你在該位置可以跳躍的最大長度。
判斷你是否能夠到達最後一個下標。
示例 1:
輸入:nums = [2,3,1,1,4]
輸出:true
解釋:可以先跳 1 步,從下標 0 到達下標 1, 然後再從下標 1 跳 3 步到達最後一個下標。
示例 2:
輸入:nums = [3,2,1,0,4]
輸出:false
解釋:無論怎樣,總會到達下標為 3 的位置。但該下標的最大跳躍長度是 0 , 所以永遠不可能到達最後一個下標。

給定一個非負整數數組,你最初位於數組的第一個位置。
數組中的每個元素代表你在該位置可以跳躍的最大長度。
你的目標是使用最少的跳躍次數到達數組的最後一個位置。
示例:
輸入: [2,3,1,1,4]
輸出: 2
解釋: 跳到最後一個位置的最小跳躍數是 2。
從下標為 0 跳到下標為 1 的位置,跳 1 步,然後跳 3 步到達數組的最後一個位置。
說明:
假設你總是可以到達數組的最後一個位置。
移動下標只要遇到當前覆蓋最遠距離的下標,直接步數加一,不考慮是不是終點的情況。
想要達到這樣的效果,只要讓移動下標,最大隻能移動到nums.size - 2的地方就可以了。
因為當移動下標指向nums.size - 2時:
如果移動下標等於當前覆蓋最大距離下標, 需要再走一步(即ans++),因為最後一步一定是可以到的終點。(題目假設總是可以到達數組的最後一個位置),如圖:

如果移動下標不等於當前覆蓋最大距離下標,說明當前覆蓋最遠距離就可以直接達到終點了,不需要再走一步。如圖:

機器人在一個無限大小的 XY 網格平面上行走,從點 (0, 0) 處開始出發,面向北方。該機器人可以接收以下三種類型的命令 commands :
-2 :向左轉 90 度
-1 :向右轉 90 度
1 <= x <= 9 :向前移動 x 個單位長度
在網格上有一些格子被視為障礙物 obstacles 。第 i 個障礙物位於網格點 obstacles[i] = (xi, yi) 。
機器人無法走到障礙物上,它將會停留在障礙物的前一個網格方塊上,但仍然可以繼續嘗試進行該路線的其餘部分。
返回從原點到機器人所有經過的路徑點(坐標為整數)的最大歐式距離的平方。(即,如果距離為 5 ,則返回 25 )
注意:
北表示 +Y 方向。
東表示 +X 方向。
南表示 -Y 方向。
西表示 -X 方向。
示例 1:
輸入:commands = [4,-1,3], obstacles = []
輸出:25
解釋:
機器人開始位於 (0, 0):

在檸檬水攤上,每一杯檸檬水的售價為 5 美元。
顧客排隊購買你的產品,(按賬單 bills 支付的順序)一次購買一杯。
每位顧客只買一杯檸檬水,然後向你付 5 美元、10 美元或 20 美元。你必須給每個顧客正確找零,也就是說凈交易是每位顧客向你支付 5 美元。
注意,一開始你手頭沒有任何零錢。
如果你能給每位顧客正確找零,返回 true ,否則返回 false 。
示例 1:
輸入:[5,5,5,10,20]
輸出:true
解釋:
前 3 位顧客那裡,我們按順序收取 3 張 5 美元的鈔票。
第 4 位顧客那裡,我們收取一張 10 美元的鈔票,並返還 5 美元。
第 5 位顧客那裡,我們找還一張 10 美元的鈔票和一張 5 美元的鈔票。
由於所有客戶都得到了正確的找零,所以我們輸出 true。
示例 2:
輸入:[5,5,10]
輸出:true
示例 3:
輸入:[10,10]
輸出:false
示例 4:
輸入:[5,5,10,10,20]
輸出:false
解釋:
前 2 位顧客那裡,我們按順序收取 2 張 5 美元的鈔票。
對於接下來的 2 位顧客,我們收取一張 10 美元的鈔票,然後返還 5 美元。
對於最後一位顧客,我們無法退回 15 美元,因為我們現在只有兩張 10 美元的鈔票。
由於不是每位顧客都得到了正確的找零,所以答案是 false。

給定不同面額的硬幣 coins 和一個總金額 amount。編寫一個函數來計算可以湊成總金額所需的最少的硬幣個數。如果沒有任何一種硬幣組合能組成總金額,返回 -1。
你可以認為每種硬幣的數量是無限的。
示例 1:
輸入:coins = [1, 2, 5], amount = 11
輸出:3
解釋:11 = 5 + 5 + 1
示例 2:
輸入:coins = [2], amount = 3
輸出:-1
示例 3:
輸入:coins = [1], amount = 0
輸出:0
示例 4:
輸入:coins = [1], amount = 1
輸出:1
示例 5:
輸入:coins = [1], amount = 2
輸出:2

⑤ (三) 貪心演算法

貪心演算法的思想非常簡單且演算法效率很高,在一些問題的解決上有著明顯的優勢。

假設有3種硬幣,面值分別為1元、5角、1角。這3種硬幣各自的數量不限,現在要找給顧客3元6角錢,請問怎樣找才能使得找給顧客的硬幣數量最少呢?

你也許會不假思索的說出答案:找給顧客3枚1元硬幣,1枚5角硬幣,1枚1角硬幣。其實也可以找給顧客7枚5角硬幣,1枚1角硬幣。可是在這里不符合題意。在這里,我們下意識地應用了所謂貪心演算法解決這個問題。

所謂貪心演算法,就是 總是做出在當前看來是最好的選擇(未從整體考慮) 的一種方法。以上述的題目為例,為了找給顧客的硬幣數量最少,在選擇硬幣的面值時,當然是盡可能地選擇面值大的硬幣。因此,下意識地遵循了以下方案:
(1)首先找出一個面值不超過3元6角的最大硬幣,即1元硬幣。
(2)然後從3元6角中減去1元,得到2元6角,再找出一個面值不超過2元6角的最大硬幣,即1元硬幣。
(3)然後從2元6角中減去1元,得到1元6角,再找出一個面值不超過1元6角的最大硬幣,即1元硬幣。
(4)然後從1元6角中減去1元,得到6角,再找出一個面值不超過6角的最大硬幣,即5角硬幣。
(5)然後從6角中減去5角,得到1角,再找出一個面值不超過1角的最大硬幣,即1角硬幣。
(6)找零錢的過程結束。
這個過程就是一個典型的貪心演算法思想。

貪心策略總是做出在當前看來是最優的選擇,也就是說貪心策略並不是從整體上加以考慮,它所做出的選擇只是在某種意義上的 局部最優解 ,而許多問題自身的特性決定了該問題運用貪心策略可以得到最優解或較優解。(註:貪心演算法不是對所有問題都能得到整體最優解,但對范圍相當廣泛的許多問題它能產生整體最優解。但其解必然是最優解的很好近似解。)

貪心演算法沒有固定的演算法框架,演算法設計的關鍵是 貪心策略的選擇 。選擇的貪心策略必須具備無後效性。

貪心策略 適用的前提 是:

嚴格意義上講,要使用貪心演算法求解問題,該問題應當具備以下性質:

注意 :對於一個給定的問題,往往可能有好幾種量度標准。初看起來,這些量度標准似乎都是可取的,但實際上,用其中的大多數量度標准作貪婪處理所得到該量度意義下的最優解並不是問題的最優解,而是次優解。

因此, 選擇能產生問題最優解的最優量度標準是使用貪婪演算法的核心 。

實際上,貪心演算法 適用的情況很少 。一般,對一個問題分析是否適用於貪心演算法,可以先選擇該問題下的幾個實際數據進行分析,就可做出判斷。

最優解問題大部分都可以拆分成一個個的子問題(多階段決策問題),把解空間的遍歷視作對子問題樹的遍歷,則以某種形式對樹整個的遍歷一遍就可以求出最優解,大部分情況下這是不可行的。

貪心演算法和動態規劃本質上是對子問題樹的一種修剪,兩種演算法要求問題都具有的一個性質就是子問題最優性(組成最優解的每一個子問題的解,對於這個子問題本身肯定也是最優的)。

動態規劃方法代表了這一類問題的一般解法, 自底向上 構造子問題的解,對每一個子樹的根,求出下面每一個葉子的值,並且以其中的最優值作為自身的值,其它的值舍棄。

而貪心演算法是動態規劃方法的一個特例,可以證明每一個子樹的根的值不取決於下面葉子的值,而只取決於當前問題的狀況。換句話說,不需要知道一個節點所有子樹的情況,就可以求出這個節點的值。由於貪心演算法的這個特性,它對解空間樹的遍歷不需要自底向上,而只需要自根開始( 自頂向下 ),選擇最優的路,一直走到底就可以了。

一個問題分為多個階段,每個階段可以有n種決策,各個階段的決策構成一個決策序列,稱為一個策略。
這兩種演算法都是選擇性演算法,在進行決策的選擇時:

前提是這個問題得具有貪心選擇性質,需要證明(數學歸納法(第一、第二)),如果不滿足那就只能使用動態規劃解決。(一旦證明貪心選擇性質,用貪心演算法解決問題比動態規劃具有更低的時間復雜度和空間復雜度。)

從范疇上來看:
Greedy ⊂ DP ⊂ Searching (貪心是動規的特例)
即所有的貪心演算法問題都能用DP求解,更可以歸結為一個搜索問題,反之不成立。

貪心演算法所作的選擇可以依賴於以往所作過的選擇,但決不依賴於將來的選擇,也不依賴於子問題的解,這使得演算法在編碼和執行的過程中都有著一定的速度優勢。如果一個問題可以同時用幾種方法解決,貪心演算法應該是最好的選擇之一。但是貪心演算法並不是對所有的問題都能得到整體最優解或最理想的近似解,與回溯法等比較,它的適用區域相對狹窄許多,因此正確地判斷它的應用時機十分重要。

一步一步地進行,常 以當前情況為基礎根據某個優化測度作最優選擇,而不考慮各種可能的整體情況 ,它省去了為找最優解要窮盡所有可能而必須耗費的大量時間。

它採用 自頂向下 ,以 迭代 的方法做出相繼的貪心選擇,每做一次貪心選擇就將所求問題簡化為一個規模更小的子問題,通過每一步貪心選擇,可得到問題的一個最優解,雖然每一步上都要保證能獲得局部最優解,但由此產生的全局解有時不一定是最優的,所以 貪心法不需要回溯 。

【問題描述】
馬的遍歷問題。在8×8方格的棋盤上,從任意指定方格出發,為馬尋找一條走遍棋盤每一格並且只經過一次的一條最短路徑。

【貪心演算法】
其實馬踏棋盤的問題很早就有人提出,且早在1823年,J.C.Warnsdorff就提出了一個有名的演算法。在每個結點對其子結點進行選取時,優先選擇『出口』最小的進行搜索,『出口』的意思是在這些子結點中它們的可行子結點的個數,也就是『孫子』結點越少的越優先跳,為什麼要這樣選取,這是一種局部調整最優的做法,如果優先選擇出口多的子結點,那出口少的子結點就會越來越多,很可能出現『死』結點(顧名思義就是沒有出口又沒有跳過的結點),這樣對下面的搜索純粹是徒勞,這樣會浪費很多無用的時間,反過來如果每次都優先選擇出口少的結點跳,那出口少的結點就會越來越少,這樣跳成功的機會就更大一些。

⑥ 貪心演算法的介紹

貪心演算法(又稱貪婪演算法)是指,在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,他所做出的是在某種意義上的局部最優解。貪心演算法不是對所有問題都能得到整體最優解,關鍵是貪心策略的選擇,選擇的貪心策略必須具備無後效性,即某個狀態以前的過程不會影響以後的狀態,只與當前狀態有關。

⑦ 數據結構之貪心演算法

貪婪演算法(Greedy)的定義:是一種在每一步選中都採取在當前狀態下最好或最優的選擇,從而希望導致結果是全局最好或最優的演算法。
貪婪演算法:當下做局部最優判斷,不能回退
(能回退的是回溯,最優+回退是動態規劃)
由於貪心演算法的高效性以及所求得答案比較接近最優結果,貪心演算法可以作為輔助演算法或解決一些要求
結果不特別精確的問題
注意:當下是最優的,並不一定全局是最優的。舉例如下:

有硬幣分值為10、9、4若干枚,問如果組成分值18,最少需要多少枚硬幣?
採用貪心演算法,選擇當下硬幣分值最大的:10
18-10=8
8/4=2
即:1個10、2個4,共需要3枚硬幣
實際上我們知道,選擇分值為9的硬幣,2枚就夠了
18/9=2
如果改成:

背包問題是演算法的經典問題,分為部分背包和0-1背包,主要區別如下:
部分背包:某件物品是一堆,可以帶走其一部分
0-1背包:對於某件物品,要麼被帶走(選擇了它),要麼不被帶走(沒有選擇它),不存在只帶走一部分的情況。
部分背包問題可以用貪心演算法求解,且能夠得到最優解。
假設一共有N件物品,第 i 件物品的價值為 Vi ,重量為Wi,一個小偷有一個最多隻能裝下重量為W的背包,他希望帶走的物品越有價值越好,可以帶走某件物品的一部分,請問:他應該選擇哪些物品?
假設背包可容納50Kg的重量,物品信息如下表:

將物品按單位重量 所具有的價值排序。總是優先選擇單位重量下價值最大的物品
按照我們的貪心策略,單位重量的價值排序: 物品A > 物品B > 物品C
因此,我們盡可能地多拿物品A,直到將物品1拿完之後,才去拿物品B,然後是物品C 可以只拿一部分.....

在不考慮排序的前提下,貪心演算法只需要一次循環,所以時間復雜度是O(n)

優點:性能高,能用貪心演算法解決的往往是最優解
缺點:在實際情況下能用的不多,用貪心演算法解的往往不是最好的

針對一組數據,我們定義了限制值和期望值,希望從中選出幾個數據,在滿足限制值的情況下,期望值最大。
每次選擇當前情況下,在對限制值同等貢獻量的情況下,對期望值貢獻最大的數據(局部最優而全局最優)
大部分能用貪心演算法解決的問題,貪心演算法的正確性都是顯而易見的,也不需要嚴格的數學推導證明
在實際情況下,用貪心演算法解決問題的思路,並不總能給出最優解

⑧ 關於編程的貪心法

定義
所謂貪心演算法(又稱貪婪演算法)是指,在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,他所做出的僅是在某種意義上的局部最優解。 貪心演算法不是對所有問題都能得到整體最優解,但對范圍相當廣泛的許多問題他能產生整體最優解或者是整體最優解的近似解。
[編輯本段]貪心演算法的基本思路
1.建立數學模型來描述問題。 2.把求解的問題分成若干個子問題。 3.對每一子問題求解,得到子問題的局部最優解。 4.把子問題的解局部最優解合成原來解問題的一個解。 實現該演算法的過程: 從問題的某一初始解出發; while 能朝給定總目標前進一步 do 求出可行解的一個解元素; 由所有解元素組合成問題的一個可行解。 下面是一個可以試用貪心演算法解的題目,貪心解的確不錯,可惜不是最優解。
[編輯本段]例題分析
[背包問題]有一個背包,背包容量是M=150。有7個物品,物品不可以分割成任意大小。 要求盡可能讓裝入背包中的物品總價值最大,但不能超過總容量。 物品 A B C D E F G 重量 35 30 60 50 40 10 25 價值 10 40 30 50 35 40 30 分析: 目標函數: ∑pi最大 約束條件是裝入的物品總重量不超過背包容量:∑wi<=M( M=150) (1)根據貪心的策略,每次挑選價值最大的物品裝入背包,得到的結果是否最優? (2)每次挑選所佔重量最小的物品裝入是否能得到最優解? (3)每次選取單位重量價值最大的物品,成為解本題的策略。 值得注意的是,貪心演算法並不是完全不可以使用,貪心策略一旦經過證明成立後,它就是一種高效的演算法。 貪心演算法還是很常見的演算法之一,這是由於它簡單易行,構造貪心策略不是很困難。 可惜的是,它需要證明後才能真正運用到題目的演算法中。 一般來說,貪心演算法的證明圍繞著:整個問題的最優解一定由在貪心策略中存在的子問題的最優解得來的。 對於例題中的3種貪心策略,都是無法成立(無法被證明)的,解釋如下: (1)貪心策略:選取價值最大者。 反例: W=30 物品:A B C 重量:28 12 12 價值:30 20 20 根據策略,首先選取物品A,接下來就無法再選取了,可是,選取B、C則更好。 (2)貪心策略:選取重量最小。它的反例與第一種策略的反例差不多。 (3)貪心策略:選取單位重量價值最大的物品。 反例: W=30 物品:A B C 重量:28 20 10 價值:28 20 10 根據策略,三種物品單位重量價值一樣,程序無法依據現有策略作出判斷,如果選擇A,則答案錯誤。 【注意:如果物品可以分割為任意大小,那麼策略3可得最優解】 對於選取單位重量價值最大的物品這個策略,可以再加一條優化的規則:對於單位重量價值一樣的,則優先選擇重量小的!這樣,上面的反例就解決了。 但是,如果題目是如下所示,這個策略就也不行了。 W=40 物品:A B C 重量:28 20 15 價值:28 20 15 附:本題是個NP問題,用貪心法並不一定可以求得最優解,以後了解了動態規劃演算法後本題就有了新的解法。
[編輯本段]備注
貪心演算法當然也有正確的時候。求最小生成樹的Prim演算法和Kruskal演算法都是漂亮的貪心演算法。 所以需要說明的是,貪心演算法可以與隨機化演算法一起使用,具體的例子就不再多舉了。(因為這一類演算法普及性不高,而且技術含量是非常高的,需要通過一些反例確定隨機的對象是什麼,隨機程度如何,但也是不能保證完全正確,只能是極大的幾率正確)
[編輯本段]附貪心演算法成功案例之一
馬踏棋盤的貪心演算法 123041-23 XX 【問題描述】 馬的遍歷問題。在8×8方格的棋盤上,從任意指定方格出發,為馬尋找一條走遍棋盤每一格並且只經過一次的一條最短路徑。 【初步設計】 首先這是一個搜索問題,運用深度優先搜索進行求解。演算法如下: 1、 輸入初始位置坐標x,y; 2、 步驟 c: 如果c> 64輸出一個解,返回上一步驟c-- (x,y) ← c 計算(x,y)的八個方位的子結點,選出那此可行的子結點 循環遍歷所有可行子結點,步驟c++重復2 顯然(2)是一個遞歸調用的過程,大致如下: void dfs(int x,int y,int count) { int i,tx,ty; if(count> N*N) { output_solution();//輸入一個解 return; }

⑨ 貪心演算法缺點

貪心演算法缺點:

不從總體上考慮其它可能情況,每次選取局部最優解,不再進行回溯處理,所以很少情況下得到最優解。這演算法不懂得深謀遠慮,自然可能走不到最好的結果啦。

貪心演算法基本步驟:

步驟1:從某個初始解出發;

步驟2:採用迭代的過程,當可以向目標前進一步時,就根據局部最優策略,得到一部分解,縮小問題規模;

步驟3:將所有解綜合起來。

⑩ 活動選擇(貪心演算法)

參考: 【演算法導論】貪心演算法之活動選擇問題

貪心演算法(Greedy Algorithm)在每一步都做出當時看起來最佳的選擇,寄希望這樣的選擇能導致全局最優解。
這種演算法並不能保證得到最優解,但對很多問題確實可以求得最優解。

假定有一個n個活動的集合S={a1,a2,a3,...,an},這些活動 使用同一個資源 ,而這個資源在某個時刻 只能給一個活動使用 。每個活動都有一個 開始時間si 和一個 結束時間fi ,其中0<=si<fi<=∞。
如果活動ai被選中,則此活動發生在 半開區間[si,fi) 中。
若兩個活動ai和aj的 時間區間不重疊 ,則稱這兩個活動是 兼容

在活動選擇問題中,我們希望選出一個最大兼容活動集。
假定活動已經按照 結束時間遞增順序 排好序
f1<=f2<=f3<=...<=fn

考慮如下例子:

可以看到,{a3,a9,a11}是由相互兼容的活動組成。但它不是一個最大集,{a1,a4,a8,a11}更大,是一個最大集。(最大集不唯一)

假設:Sij表示在ai結束之後,在aj開始之前的活動的 集合 。Aij表示Sij的一個最大相互兼容的活動子集。
那麼只要Sij非空,則Aij至少會包含一個活動,假設為ak。那麼可以將Aij分解為:Aij = Aik+ak+Akj。
假設Cij為Aij的大小,那麼有Cij=cik+ckj+1。
於是,我們可以利用動態規劃得到這個問題的遞歸解

我們當然可以利用動態規劃自底向上地求解這個問題,但是我們可以利用貪心演算法更快地求解問題答案。

我們選擇活動 結束時間最早 的那個活動,這樣能夠給其他活動盡可能的騰出多餘的時間,而後每一步都在剩下的活動中選取最早的活動,這樣就可以獲得一個最優解。

為什麼貪心選擇——最早結束的活動ai——總是最優解的一部分呢?

假設Aij是Sij的某個最大兼容活動集,假設Aij中,最早結束的活動是an。(an是最優解中最早結束的,不一定是原先活動中最早結束的)我們要證明我們選擇的a1(原先活動集中最早結束的)也在最優解中。
分兩種情況:

①如果an=a1,則得證

②如果an不等於a1,則an的結束時間一定會 晚於 a1的結束時間,我們用a1去 替換 Aij中的an,於是得到A',由於a1比an結束的早,而Aij中的其他活動都比an的結束時間開始 的要晚,所以A'中的 其他活動 都與a1不相交 ,所以A'中的所有活動是兼容的,所以A`也是Sij的一個最大兼容活動集。
(簡單說,就是用a1 替換 an,得到另一個解A',由於a1最早結束,當然與其他活動不相交,於是A'也兼容且個數和A一樣,所以A'也是最優解)

於是證明了命題。

通過以上分析,我們可以反復地選擇最先結束的活動,保留於此活動兼容的活動,重復執行,直到不再有剩餘活動。
貪心演算法通常是 自頂向下 地設計:做出一個選擇,然後求解剩下的那個子問題

為了方便初始化,我們添加一個虛擬活動a0,其結束時間為f0=0

由於我們之前就已經將活動按結束時間排好序,每一次找元素都只對元素訪問一次,所以貪心演算法的時間復雜度是大theta(n)

閱讀全文

與貪心演算法入門教學視頻相關的資料

熱點內容
php正則class 瀏覽:734
怎麼在文件夾查找一堆文件 瀏覽:541
核酸報告用什麼app 瀏覽:789
u8怎麼ping通伺服器地址 瀏覽:992
安卓什麼手機支持背部輕敲調出健康碼 瀏覽:868
程序員抽獎排行 瀏覽:742
扭蛋人生安卓如何下載 瀏覽:722
什麼app文檔資源多好 瀏覽:922
黑馬程序員APP 瀏覽:146
掌閱小說是哪個app 瀏覽:45
如何把u盤的軟體安裝到安卓機 瀏覽:998
php跑在什麼伺服器 瀏覽:122
編譯器怎麼跳轉到下一行 瀏覽:450
嵌入式py編譯器 瀏覽:324
rplayer下載安卓哪個文件夾 瀏覽:298
安卓手機里的電子狗怎麼用 瀏覽:748
pythonspyder入門 瀏覽:764
趣質貓app是什麼 瀏覽:62
皮帶壓縮機經常吸不上 瀏覽:207
西部隨行版怎樣加密 瀏覽:997