① 常見的幾種排序演算法總結
對於非科班生的我來說,演算法似乎對我來說是個難點,查閱了一些資料,趁此來了解一下幾種排序演算法。
首先了解一下,什麼是程序
關於排序演算法通常我們所說的往往指的是內部排序演算法,即數據記錄在內存中進行排序。
排序演算法大體可分為兩種:
一種是比較排序,時間復雜度O(nlogn) ~ O(n^2),主要有:冒泡排序,選擇排序,插入排序,歸並排序,堆排序,快速排序等。
另一種是非比較排序,時間復雜度可以達到O(n),主要有:計數排序,基數排序,桶排序等
冒泡排序它重復地走訪過要排序的元素,一次比較相鄰兩個元素,如果他們的順序錯誤就把他們調換過來,直到沒有元素再需要交換,排序完成。這個演算法的名字由來是因為越小(或越大)的元素會經由交換慢慢「浮」到數列的頂端。
選擇排序類似於冒泡排序,只不過選擇排序是首先在未排序的序列中找到最小值(最大值),放到序列的起始位置,然後再從剩餘未排序元素中繼續尋找最小(大)元素,放到已排序序列的末尾,以此類推,直到所有元素均排序完畢。
插入排序比冒泡排序和選擇排序更有效率,插入排序類似於生活中抓撲克牌來。
插入排序具體演算法描述,以數組[3, 2, 4, 5, 1]為例。
前面三種排序演算法只有教學價值,因為效率低,很少實際使用。歸並排序(Merge sort)則是一種被廣泛使用的排序方法。
它的基本思想是,將兩個已經排序的數組合並,要比從頭開始排序所有元素來得快。因此,可以將數組拆開,分成n個只有一個元素的數組,然後不斷地兩兩合並,直到全部排序完成。
以對數組[3, 2, 4, 5, 1] 進行從小到大排序為例,步驟如下:
有了merge函數,就可以對任意數組排序了。基本方法是將數組不斷地拆成兩半,直到每一半隻包含零個元素或一個元素為止,然後就用merge函數,將拆成兩半的數組不斷合並,直到合並成一整個排序完成的數組。
快速排序(quick sort)是公認最快的排序演算法之一,有著廣泛的應用。
快速排序演算法步驟
參考:
常用排序演算法總結(一)
阮一峰-演算法總結
② 數據結構的排序演算法中,哪些排序是穩定的,哪些排序是不穩定的
一、穩定排序演算法
1、冒泡排序
2、雞尾酒排序
3、插入排序
4、桶排序
5、計數排序
6、合並排序
7、基數排序
8、二叉排序樹排序
二、不穩定排序演算法
1、選擇排序
2、希爾排序
3、組合排序
4、堆排序
5、平滑排序
6、快速排序
排序(Sorting) 是計算機程序設計中的一種重要操作,它的功能是將一個數據元素(或記錄)的任意序列,重新排列成一個關鍵字有序的序列。
一個排序演算法是穩定的,就是當有兩個相等記錄的關鍵字R和S,且在原本的列表中R出現在S之前,在排序過的列表中R也將會是在S之前。
不穩定排序演算法可能會在相等的鍵值中改變紀錄的相對次序,但是穩定排序演算法從來不會如此。不穩定排序演算法可以被特別地實現為穩定。
做這件事情的一個方式是人工擴充鍵值的比較,如此在其他方面相同鍵值的兩個對象間之比較,就會被決定使用在原先數據次序中的條目,當作一個同分決賽。然而,要記住這種次序通常牽涉到額外的空間負擔。
(2)排序演算法nlogn擴展閱讀:
排序演算法的分類:
1、通過時間復雜度分類
計算的復雜度(最差、平均、和最好性能),依據列表(list)的大小(n)。
一般而言,好的性能是 O(nlogn),且壞的性能是 O(n^2)。對於一個排序理想的性能是 O(n)。
而僅使用一個抽象關鍵比較運算的排序演算法總平均上總是至少需要 O(nlogn)。
2、通過空間復雜度分類
存儲器使用量(空間復雜度)(以及其他電腦資源的使用)
3、通過穩定性分類
穩定的排序演算法會依照相等的關鍵(換言之就是值)維持紀錄的相對次序。
③ 快速排序演算法在平均情況下的時間復雜度為 求詳解
時間復雜度為O(nlogn) n為元素個數
1. 快速排序的三個步驟:
1.1. 找到序列中用於劃分序列的元素
1.2. 用元素劃分序列
1.3. 對劃分後的兩個序列重復1,2兩個步驟指導序列無法再劃分
所以對於n個元素其排序時間為
T(n) = 2*T(n/2) + n (表示將長度為n的序列劃分為兩個子序列,每個子序列需要T(n/2)
的時間,而劃分序列需要n的時間)
而 T(1) = 1 (表示長度為1的序列無法劃分子序列,只需要1的時間即可)
T(n) = 2^logn + logn * n (n被不斷二分最終只能二分logn次(最優的情況,每次選取
的元素都均分序列))
= n + nlogn
因此T(n) = O(nlogn)
以上是最優情況的推導,因此快速排序在最優情況下其排序時間為O(nlogn),通常平均情況
我們也認為是此值。
在最壞情況下其會退化為冒泡排序,T(n) = T(n - 1) + n (每次選取的元素只能將序列劃分為
一段,即自身是 最小元素或最大元素)
因此T(n) = n * (n-1) / 2 相當於O(n^2)
④ 時間為O(nlg n)的排序演算法 如快速排序 堆排序 nlg是什麼意思。好象是lgn。 什麼意思
准確來說,是log(2,n),即以2為底取n的對數.
該時間復雜度的產生是由於演算法中使用了二分法.二分法的其中一個顯著的標志就是使得漸進復雜度變為2底對數級別.
直觀來說,對於1000個數的排序,效率為O(n)的排序(假設有)將花費1000"單位"的時間,那麼O(n²)的排序將花費10^6"單位"的時間.而O(nlogn)的排序將花費 1000*log(1000) ≈ 10000 "單位"的時間.
這里可以看出其效率的顯著優勢,
而通過函數有關特徵可以得知,對數函數是增長的越來越慢的,這就使得O(nlogn)的排序可以在越大的工作量中和平方級排序拉大差距.