⑴ 《改變未來的九大演算法》pdf下載在線閱讀,求百度網盤雲資源
《改變未來的九大演算法》(【美】約翰·麥考密克(John MacCormick))電子書網盤下載免費在線閱讀
資源鏈接:
鏈接:https://pan..com/s/1H9xGBI57kr31OpzBGAIGcA
書名:改變未來的九大演算法
作者:【美】約翰·麥考密克(John MacCormick)
譯者:管策
豆瓣評分:7.5
出版社:中信出版社
出版年份:2019-2
頁數:272
內容簡介:
計算機如何精確地傳輸海量數據,識別語音和筆跡;智能手機、平板電腦如何在幾分之一秒內搜索整個頁面;身處大數據時代的我們,究竟該如何應對變化莫測的世界。
計算機演算法的底層建設為經濟和產業發展提供了原始動力。在科技互聯網時代,使用計算機和科技設備都不可避免地要依賴計算機科學的基礎思想,而這些思想都誕生於20世紀。
《改變未來的九大演算法》是一本科普讀物,作者致力於將計算機科學的復雜思想為大眾做深入淺出的解讀。此書通過簡明的語言和生動的例證,闡述了計算機王國的核心演算法:搜索引擎、PageRank、公鑰加密、糾錯碼、圖形識別、數據壓縮、資料庫、數字簽名等。在解釋這些演算法的同時,作者也向我們展示了充滿科學原創精神的計算機世界:每一種演算法的提出不但拓展了虛擬世界的領域,它同時也是人類智慧的彰顯,可以被廣泛運用於眾多領域,以推動商業和社會文明的發展。
作者簡介:
約翰·麥考密克(John MacCormick),計算機科學的領頭人和導師。牛津大學博士,曾在惠普和微軟從事研究工作。現任迪金森學院計算機學科的教授。多項專利所有者。
⑵ 風靡全球的十大演算法
作者 | George Dvorsky
編譯 | 深度學習這件小事
1 排序演算法
所謂排序,就是使一串記錄,按照其中的某個或某些關鍵字的大小,遞增或遞減的排列起來的操作。排序演算法,就是如何使得記錄按照要求排列的方法。排序演算法在很多領域得到相當地重視,尤其是在大量數據的處理方面。一個優秀的演算法可以節省大量的資源。
穩定的
冒泡排序(bubble sort) — O(n^2) 雞尾酒排序(Cocktail sort,雙向的冒泡排序) — O(n^2) 插入排序(insertion sort)— O(n^2) 桶排序(bucket sort)— O(n); 需要 O(k) 額外空間 計數排序(counting sort) — O(n+k); 需要 O(n+k) 額外空間 合並排序(merge sort)— O(nlog n);需要 O(n) 額外空間 原地合並排序— O(n^2) 二叉排序樹排序 (Binary tree sort) — O(nlog n)期望時間; O(n^2)最壞時間;需要 O(n) 額外空間 鴿巢排序(Pigeonhole sort)— O(n+k); 需要 O(k) 額外空間 基數排序(radix sort)— O(n·k); 需要 O(n) 額外空間 Gnome 排序— O(n^2) 圖書館排序— O(nlog n) withhigh probability,需要(1+ε)n額外空間不穩定的
選擇排序(selection sort)— O(n^2) 希爾排序(shell sort)— O(nlog n) 如果使用最佳的現在版本 組合排序— O(nlog n) 堆排序(heapsort)— O(nlog n) 平滑排序— O(nlog n) 快速排序(quicksort)— O(nlog n) 期望時間,O(n^2) 最壞情況;對於大的、亂數列表一般相信是最快的已知排序 Introsort—O(nlog n) Patience sorting— O(nlog n+k) 最壞情況時間,需要額外的 O(n+ k) 空間,也需要找到最長的遞增子串列(longest increasing subsequence)不實用的
Bogo排序— O(n× n!) 期望時間,無窮的最壞情況。 Stupid sort— O(n^3); 遞歸版本需要 O(n^2)額外存儲器 珠排序(Bead sort) — O(n) or O(√n),但需要特別的硬體 Pancake sorting— O(n),但需要特別的硬體 stooge sort——O(n^2.7)很漂亮但是很耗時2 傅立葉變換與快速傅立葉變換
傅立葉是一位法國數學家和物理學家,原名是JeanBaptiste Joseph Fourier(1768-1830), Fourier於1807年在法國科學學會上發表了一篇論文,論文里描述運用正弦曲線來描述溫度分布,論文里有個在當時具有爭議性的決斷:任何連續周期信號都可以由一組適當的正弦曲線組合而成。當時審查這個論文拉格朗日堅決反對此論文的發表,而後在近50年的時間里,拉格朗日堅持認為傅立葉的方法無法表示帶有稜角的信號,如在方波中出現非連續變化斜率。直到拉格朗日死後15年這個論文才被發表出來。誰是對的呢?拉格朗日是對的:正弦曲線無法組合成一個帶有稜角的信號。但是,我們可以用正弦曲線來非常逼近地表示它,逼近到兩種表示方法不存在能量差別,基於此,傅立葉是對的。為什麼我們要用正弦曲線來代替原來的曲線呢?如我們也還可以用方波或三角波來代替呀,分解信號的方法是無窮多的,但分解信號的目的是為了更加簡單地處理原來的信號。用正餘弦來表示原信號會更加簡單,因為正餘弦擁有原信號所不具有的性質:正弦曲線保真度。一個正餘弦曲線信號輸入後,輸出的仍是正餘弦曲線,只有幅度和相位可能發生變化,但是頻率和波的形狀仍是一樣的。且只有正餘弦曲線才擁有這樣的性質,正因如此我們才不用方波或三角波來表示。
3 Dijkstra 演算法
Dijkstra演算法是典型的演算法。Dijkstra演算法是很有代表性的演算法。Dijkstra一般的表述通常有兩種方式,一種用永久和臨時標號方式,一種是用OPEN, CLOSE表的方式,這里均採用永久和臨時標號的方式。注意該演算法要求圖中不存在負權邊。
4 RSA演算法變換
RSA是目前最有影響力的公鑰加密演算法,它能夠抵抗到目前為止已知的絕大多數密碼攻擊,已被ISO推薦為公鑰數據加密標准。今天只有短的RSA鑰匙才可能被強力方式解破。到2008年為止,世界上還沒有任何可靠的攻擊RSA演算法的方式。只要其鑰匙的長度足夠長,用RSA加密的信息實際上是不能被解破的。但在分布式計算和量子計算機理論日趨成熟的今天,RSA加密安全性受到了挑戰。
5 安全哈希演算法
一種對輸入信息(例如消息)進行摘要的演算法。摘要過程能夠完成下列特點:不同的輸入信息絕對不會具有相同的指紋:相近輸入信息經過摘要之後的輸出信息具有較大的差異,同時計算上很難生產一個與給定輸入具有相同指紋的輸入。(即不可逆)。
6 整數因式分解
這是在計算機領域被大量使用的數學演算法,沒有這個演算法,信息加密會更不安全。該演算法定義了一系列步驟,得到將一合數分解為更小因子的質數分解式。這被認為是一種FNP問題,它是NP分類問題的延伸,極其難以解決。許多加密協議(如RSA演算法)都基於這樣一個原理:對大的合數作因式分解是非常困難的。如果一個演算法能夠快速地對任意整數進行因式分解,RSA的公鑰加密體系就會失去其安全性。量子計算的誕生使我們能夠更容易地解決這類問題,同時它也打開了一個全新的領域,使得我們能夠利用量子世界中的特性來保證系統安全。
7 鏈接分析
鏈接分析,源於對Web結構中超鏈接的多維分析。當前其應用主要體現在網路信息檢索、網路計量學、數據挖掘、Web結構建模等方山。作為Google的核心技術之一,鏈接分析演算法應用已經顯現出j驚人的商業價值。
8 比例積分微分演算法
你是否曾經用過飛機、汽車、衛星服務或手機網路?你是否曾經在工廠工作或是看見過機器人?如果回答是肯定的,那麼你應該已經見識過這個演算法了。大體上,這個演算法使用一種控制迴路反饋機制,將期望輸出信號和實際輸出信號之間的錯誤最小化。無論何處,只要你需要進行信號處理,或者你需要一套電子系統,用來自動化控制機械、液壓或熱力系統,這個演算法都會有用武之地。可以這樣說,如果沒有這個演算法,現代文明將不復存在。
9 數據壓縮演算法
在現今的電子信息技術領域,正發生著一場有長遠影響的數字化革命。由於數字化的多媒體信息尤其是數字視頻、音頻信號的數據量特別龐大,如果不對其進行有效的壓縮就難以得到實際的應用。因此,數據壓縮技術已成為當今數字通信、廣播、存儲和多媒體娛樂中的一項關鍵的共性技術。
10 隨機數生成
在統計學的不同技術中需要使用隨機數,比如在從統計總體中抽取有代表性的樣本的時候,或者在將實驗動物分配到不同的試驗組的過程中,或者在進行蒙特卡羅模擬法計算的時候等等。