導航:首頁 > 源碼編譯 > 曲線識別演算法

曲線識別演算法

發布時間:2023-02-24 02:54:25

1. 貝塞爾曲線演算法的詳細內容

//從1開始,是因為第一個是控制點,如果曲線不封閉,那麼第一個控制點是沒有用的。
//每一段貝賽爾曲線由相鄰的兩個頂點和之間的兩個控制點決定,所以頻率為3(後一個頂點在下一組中還要使用)
for(i=1;i<count-2;i+=3){
BezierToPoly(&bezierPts,apt,precision); //拆分每一段
polyPt.Append(apt);//拆分完成,加入數組
}
//如果是封閉曲線,那麼需要將最後一個頂點和第一個頂點以及最後一個控制點以及第一個控制點組成一組進行拆分
if(bClose){
CPoint ptBuffer[4];
ptBuffer[0] = bezierPts[count-2];
ptBuffer[1] = bezierPts[count-1];
ptBuffer[2] = bezierPts[0];
ptBuffer[3] = bezierPts[1];
BezierToPoly(&ptBuffer[0], apt,precision);
polyPt.Append(apt);
}
count = polyPt.GetSize();
i=0;
//過濾相鄰的值相等的點(由於精度和誤差,可能會有一些坐標值相同的相鄰拆分點)
while(i<count-1){
if(polyPt ==polyPt[i+1]){
polyPt.RemoveAt(i+1);
count--;
continue;
}
i++;
}
return true;
}
//拆分貝賽爾曲線
bool InciseBezier(CPoint *pSrcPt, CPoint *pDstPt)
{
CPoint buffer[3][3];
int i;
for(i=0;i<3;i++){
buffer[0] = pSrcPt + pSrcPt[i+1];
buffer[0].x /=2;
buffer[0].y /=2;
}
for(i=0;i<2;i++){
buffer[1] = buffer[0] + buffer[0][i+1];
buffer[1].x /=2;
buffer[1].y /=2;
}
buffer[2][0] = buffer[1][0] + buffer[1][1];
buffer[2][0].x /=2;
buffer[2][0].y /=2;
pDstPt[0]=pSrcPt[0];
pDstPt[1]=buffer[0][0];
pDstPt[2]=buffer[1][0];
pDstPt[3]=buffer[2][0];
pDstPt[4]=buffer[1][1];
pDstPt[5]=buffer[0][2];
pDstPt[6]=pSrcPt[3];
return true;
}
//拆分一組貝賽爾曲線段
bool BezierToPoly(CPoint *pSrcPts,CPtArray &polyPt,int precision)
{
polyPt.RemoveAll();
polyPt.SetSize(4);
polyPt[0] = pSrcPts[0];
polyPt[1] = pSrcPts[1];
polyPt[2] = pSrcPts[2];
polyPt[3] = pSrcPts[3];
CPoint ptBuffer[7];
int i,j,count =4;
bool bExit;
while(true){
bExit = true;
for(i=0;i<count-1;i+=3){
// if(GetBezierGap(&polyPt)>precision){
if(!EndBezierCut(&polyPt, precision)){
bExit = false;
InciseBezier(&polyPt, ptBuffer);
polyPt.RemoveAt(i+1,2);
polyPt.InsertAt(i+1,ptBuffer[1],5);
for(j=0;j<4;j++)
polyPt[i+2+j] = ptBuffer[2+j];
i += 3;
count += 3;
}
}
if(bExit)
break;
}
count = polyPt.GetSize();
i=0;
while(i<count-1){
if(polyPt ==polyPt[i+1]){
polyPt.RemoveAt(i+1);
count--;
continue;
}
i++;
}
return true;
}
/計算貝賽爾曲線兩個頂點的縱向和橫向的最大距離
int GetBezierGap(CPoint *p)
{
int gap = 0;
for(int i=1;i<4;i++){
if(abs(p.x-p[i-1].x)>gap)
gap=abs(p.x-p[i-1].x);
if(abs(p.y-p[i-1].y)>gap)
gap=abs(p.y-p[i-1].y);
}
return gap;
}
//判斷是否可以終止更精細得拆分
bool EndBezierCut(CPoint *ptBezier, int nExtent)
{
double C,dx,dy,delt,delt1,delt2;
if (nExtent<2)
nExtent = 2;
dx = (double)(ptBezier[3].x - ptBezier[0].x);
dy = (double)(ptBezier[3].y - ptBezier[0].y);
C = dx * ptBezier[0].y - dy * ptBezier[0].x;
delt = (double)nExtent*nExtent*(dy*dy+dx*dx);
delt1 = dy * ptBezier[1].x - dx * ptBezier[1].y + C;
delt2 = dy * ptBezier[2].x - dx * ptBezier[2].y + C;
delt1 = delt1 * delt1;
delt2 = delt2 * delt2;
if (delt1 > delt || delt2 > delt)
return FALSE;
else
return TRUE;
}

2. 有沒有什麼演算法可以區分圖中的兩種曲線,一種粗但穩,另一種細但波動大

ethod = lm 和method = rlm :這兩種演算法擬合的是線性模型,默認條件下回生成一條直線。可以通過添加二項式改變自由度使曲線波動變大

閱讀全文

與曲線識別演算法相關的資料

熱點內容
廣東加密貨幣 瀏覽:210
利用python批量查詢系統 瀏覽:491
什麼app看左右臉 瀏覽:302
台灣小公主s解壓密碼 瀏覽:568
易語言鎖機軟體源碼 瀏覽:156
迅雷下載完成無法解壓 瀏覽:592
硬碟分區命令圖解 瀏覽:443
當前雲伺服器如何關閉 瀏覽:78
mac下python在哪 瀏覽:641
廣東惠州DNS伺服器地址 瀏覽:357
編譯影片時軟體渲染錯誤 瀏覽:625
流星蝴蝶劍解壓失敗 瀏覽:294
如何確認方舟編譯器 瀏覽:664
奶粉源箱源碼什麼意思 瀏覽:178
台州程序員兼職一般去哪些網站 瀏覽:388
舊版本怎麼下載到新的安卓 瀏覽:966
flash個人網站源碼下載 瀏覽:724
javasocketbyte 瀏覽:266
素描基礎教程pdf 瀏覽:542
香港商報pdf版 瀏覽:427