Ⅰ 分形演算法與程序設計 java實現 孫博文著,這本書有PDF的嗎麻煩傳一個
http://lib.tynu.e.cn/ssgpxz/jsjl1/986.%B7%D6%D0%CE%CB%E3%B7%A8%D3%EB%B3%CC%D0%F2%C9%E8%BC%C6%A1%AAJava%CA%B5%CF%D6.iso
這個地址可以,我下載呢,呵呵
Ⅱ 演算法是如何模擬大自然的什麼是分形藝術
摘要 您好親,我是椅子,很高興為您解答,您的問題已經收到啦,請耐心等候為您解答~❤️
Ⅲ 跪求《分形演算法與程序設計、java實現》 孫博文 這本書的PDF 不解釋 獎勵100 清晰的追加200
已發送,請查收。
Ⅳ 分形原理是什麼
分形是什麼
數千年以來,我們涉及的和研究的主要是歐氏幾何。歐氏幾何主要是基於中小尺度上,點線、面之間的關系,這種觀念與特定時期人類的實踐認識水平是相適應的,有什麼樣的認識水平就有什麼樣的幾何學。當人們全神貫注於機械運動時,頭腦中的圖象多是一些圓錐曲線、線段組合,受認識主客體的限制,歐氏幾何具有很強的「人為」特徵。這樣說並非要否定歐氏幾何的輝煌歷史,只是我們應當認識到歐氏幾何是人們認識、把握客觀世界的一種工具、但不是唯一的工具。
進入20世紀以後,科學的發展極為迅速。特別是二戰以後,大量的新理論、新技術以及新的研究領域不斷涌現,同以往相比,人們對物質世界以及人類社會的看法有了很大的不同。其結果是,有些研究對象已經很難用歐氏幾何來描述了,如對植物形態的描述,對晶體裂痕的研究,等等。
美國數學家B, Mandelbrot曾出這樣一個著名的問題:英格蘭的海岸線到底有多長?這個問題在數學上可以理解為:用折線段擬合任意不規則的連續曲線是否一定有效?這個問題的提出實際上是對以歐氏幾何為核心的傳統幾何的挑戰。
實際上,數學家們很早就認識到,有的曲線不能用歐式幾何與微積分研究其長度。但那時解決辦法是討論具備什麼條件的曲線有長度。而沒有長度的曲線就沒有深入研究。
此外,在湍流的研究。自然畫面的描述等方面,人們發現傳統幾何依然是無能為力的。因此就產生一種新的能夠更好地描述自然圖形的幾何學,就是分形幾何。
下面是Kohn(克赫)曲線。
謝賓斯奇 (W.Sierpinski,1882-1969)構造了謝氏曲線、地毯、海綿。
皮亞諾(peano)曲線
1975年,Mandelbrot在其《自然界中的分形幾何》一書中引入了分形(fractal)這一概念。從字面意義上講, fractal是碎塊、碎片的意思,然而這並不能概括Mandelbrot的分形概念,盡管目前還沒有一個讓各方都滿意的分形定義,但在數學上大家都認為分形有以下凡個特點:
(1)具有無限精細的結構;
(2)比例自相似性;
(3)一般它的分數維大子它的拓撲維數;
(4)可以由非常簡單的方法定義,並由遞歸、迭代產生。
據說,南非海岸線的維數是1.02,英國西岸的維數是1.25。
分形無處不在。
分形幾何學已在自然界與物理學中得到了應用。如在顯微鏡下觀察落入溶液中的一粒花粉,會看見它不間斷地作無規則運動(布朗運動),這是花粉在大量液體分子的無規則碰撞(每秒鍾多達十億億次)下表現的平均行為。布朗粒子的軌跡,由各種尺寸的折線連成。只要有足夠的解析度,就可以發現原以為是直線段的部分,其實由大量更小尺度的折線連成。這是一種處處連續,但又處處無導數的曲線。這種布朗粒子軌跡的分維是 2,大大高於它的拓撲維數 1。
在某些電化學反應中,電極附近成績的固態物質,以不規則的樹枝形狀向外增長。受到污染的一些流水中,粘在藻類植物上的顆粒和膠狀物,不斷因新的沉積而生長,成為帶有許多須須毛毛的枝條狀,就可以用分維。
自然界中更大的尺度上也存在分形對象。一枝粗干可以分出不規則的枝杈,每個枝杈繼續分為細杈……,至少有十幾次分支的層次,可以用分形幾何學去測量。
有人研究了某些雲彩邊界的幾何性質,發現存在從 1公里到1000公里的無標度區。小於 1公里的雲朵,更受地形概貌影響,大於1000公里時,地球曲率開始起作用。大小兩端都受到一定特徵尺度的限制,中間有三個數量級的無標度區,這已經足夠了。分形存在於這中間區域。
近幾年在流體力學不穩定性、光學雙穩定器件、化學震盪反映等試驗中,都實際測得了混沌吸引子,並從實驗數據中計算出它們的分維。學會從實驗數據測算分維是最近的一大進展。分形幾何學在物理學、生物學上的應用也正在成為有充實內容的研究領域。
計算Kohn每次迭代所得圖形的面積與周長。
設第k次迭代後邊數是N(k),邊長是A(k),周長是L(k),面積是S(k)。有
N(0)=3,A(0)=Sgr(3),L(0)=3*Sgr(3),S(0)=3*Sgr(3)/4,
每次迭代,邊數是原來的4倍,即,N(k)=N(k)*4。
邊長是原來的1/3,A(k)=A(k-1)/3,
周長是原來的4/3倍,即L(k)=L(k-1)*4/3,
面積S(k)=S(k-1)+N(k-1)*A(k)*A(k)*Sgr(3)/4。
Ⅳ 基於分形的人臉識別演算法
要論文嗎還是什麼?
Ⅵ 分形演算法與程序設計—VISUAL C++實現
偶看到了一個,看看是你要的嗎?
看我的參考資料。。
Ⅶ 分形幾何學只是理論還是已有一些具體運算公式
近幾年在流體力學不穩定性、光學雙穩定器件、化學震盪反映等試驗中,都實際測得了混沌吸引子,並從實驗數據中計算出它們的分維。學會從實驗數據測算分維是最近的一大進展。分形幾何學在物理學、生物學上的應用也正在成為有充實內容的研究領域。
Ⅷ 誰有孫博文的<<分形演算法與程序設計>>(VC版)和光碟
我在分形藝術網幫你找到《分形演算法與程序設計——Java實現【源碼下載】》的下載地址
VC的沒有找到
Ⅸ 分形維數的計算方法有那些能具體說一下嗎
它與動力系統的混沌理論交叉結合,相輔相成。它承認世界的局部可能在一定條件下。過程中,在某一方面(形態,結構,信息,功能,時間,能量等)表現出與整體的相似性,它承認空間維數的變化既可以是離散的也可以是連續的,因而拓展了視野。 分形幾何的概念是美籍法國數學家曼德爾布羅特(B.B.Mandelbrot)1975年首先提出的,但最早的工作可追朔到1875年,德國數學家維爾斯特拉斯(K.Weierestrass)構造了處處連續但處處不可微的函數,集合論創始人康托(G.Cantor,德國數學家)構造了有許多奇異性質的三分康托集。1890年,義大利數學家皮亞諾(G.Peano)構造了填充空間的曲線。1904年,瑞典數學家科赫(H.von Koch)設計出類似雪花和島嶼邊緣的一類曲線。1915年,波蘭數學家謝爾賓斯基(W.Sierpinski)設計了象地毯和海綿一樣的幾何圖形。這些都是為解決分析與拓樸學中的問題而提出的反例,但它們正是分形幾何思想的源泉。1910年,德國數學家豪斯道夫(F.Hausdorff)開始了奇異集合性質與量的研究,提出分數維概念。1928年布利干(G.Bouligand)將閔可夫斯基容度應用於非整數維,由此能將螺線作很好的分類。1932年龐特里亞金(L.S.Pontryagin)等引入盒維數。1934年,貝塞考維奇(A.S.Besicovitch)更深刻地提示了豪斯道夫測度的性質和奇異集的分數維,他在豪斯道夫測度及其幾何的研究領域中作出了主要貢獻,從而產生了豪斯道夫-貝塞考維奇維數概念。以後,這一領域的研究工作沒有引起更多人的注意,先驅們的工作只是作為分析與拓撲學教科書中的反例而流傳開來。二1960年,曼德爾布羅特在研究棉價變化的長期性態時,發現了價格在大小尺度間的對稱性。同年在研究信號的傳輸誤差時,發現誤差傳輸與無誤差傳輸在時間上按康托集排列。在對尼羅河水位和英國海岸線的數學分析中,發現類似規律。他總結自然界中很多現象從標度變換角度表現出的對稱性。他將這類集合稱作自相似集,其嚴格定義可由相似映射給出。他認為,歐氏測度不能刻劃這類集的本質,轉向維數的研究,發現維數是尺度變換下的不變數,主張用維數來刻劃這類集合。1975年,曼德爾布羅特用法文出版了分形幾何第一部著作《分開:形狀、機遇和維數》。1977年該書再次用英文出版。它集中了1975年以前曼德爾布羅特關於分形幾何的主要思想,它將分形定義為豪斯道夫維數嚴格大於其拓樸維數的集合,總結了根據自相似性計算實驗維數的方法,由於相似維數只對嚴格自相似這一小類集有意義,豪斯道夫維數雖然廣泛,但在很多情形下難以用計算方法求得,因此分形幾何的應用受到局限。1982年,曼德爾布羅特的新著《自然界的分形幾何》出版,將分形定義為局部以某種方式與整體相似的集,重新討論盒維數,它比豪斯道夫維數容易計算,但是稠密可列集盒維數與集所在空間維數相等。為避免這一缺陷,1982年特里科特(C.Tricot)引入填充維數,1983年格拉斯伯格(P.Grassberger)和普羅克西婭(I.Procaccia)提出根據觀測記錄的時間數據列直接計算動力系統吸引子維數的演算法。1985年,曼德爾布羅特提出並研究自然界中廣泛存在的自仿射集,它包括自相似集並可通過仿射映射嚴格定義。1982年德金(F.M.Dekking)研究遞歸集,這類分形集由迭代過程和嵌入方法生成,范圍更廣泛,但維數研究非常困難。德金獲得維數上界。1989年,鍾紅柳等人解決了德金猜想,確定了一大類遞歸集的維數。隨著分形理論的發展和維數計算方法的逐步提出與改進,1982年以後,分形理論逐漸在很多領域得到應用並越來越廣泛。建立簡便盛行的維數計算方法,以滿足應用發展的需要,還是一項艱巨的任務。 自然界中的分形,與概率統計、隨機過程關系密切。確定性的古典分形集加入隨機性,就會產生出隨機康托集、隨機科契曲線等各種隨機分形。1968年,曼德爾布羅特研究布朗運動這一隨機過程時,將其推廣到與分形有關的分數布朗運動。1974年他又提出了分形滲流模型。1988年,柴葉斯(j.T.Chayes)給出了詳細的數學分析。1984年,扎樂(U.Zahle)通過隨機刪除而得到十分有趣的分形構造,隨機分形能更真實地描述和模擬自然現象。三動力系統中的分形集是近年分形幾何中最活躍和引人入勝的一個研究領域。動力系統的奇異吸引子通常都是分形集,它們產生於非線性函數的迭代和非線性微分方程中。1963年,氣象學家洛倫茲(E.N.Lorenz)在研究流體的對流運動時,發現了以他的名字命名的第一個奇異吸引子,它是一個典型的分形集。1976年,法國天文學家伊儂(M.Henon)考慮標准二次映射迭代系統時獲得伊儂吸引子。它具有某種自相似性和分形性質。1986年勞威爾(H.A.Lauwerier)將斯梅爾的馬蹄映射變形成勞威爾映射,其迭代下不穩定流形的極限集成為典型的奇異吸引子,它與水平線的截面為康托集。1985年,格雷波基(C.Grebogi)等構造了一個二維迭代函數系統,其吸附界是維爾斯特拉斯函數,並得到盒維數。1985年,邁克多納(S.M.MacDonald)和格雷波基等得到分形吸附界的三種類型:(!)局部不連通的分形集;(2)局部連通的分形擬圓周;(3)既不局部連能又不是擬圓周。前兩者具有擬自相似性。 動力系統中另一類分形集來源於復平面上解析映射的迭代。朱利亞(G.Julia)和法圖(P.Fatou)於1918-1919年間開創這一研究。他們發現,解析映射的迭代把復平面劃分成兩部分,一部分為法圖集,另一部分為朱利亞集(J集)。他們在處理這一問題時還沒有計算機,完全依賴於他們自身固有的想像力,因此他們的智力成就受到局限。隨後50年間,這方面的研究沒有得到什麼進展。隨著可用機算機來做實驗,這一研究課題才又獲得生機。1980年,曼德爾布羅特用計算機繪出用他名字命名的曼德爾布羅特集(M集)的第一張圖來。1982道迪(A.Douady)構造了含參二次復映射fc ,其朱利亞集J(fc)隨參數C的變化呈現各種各樣的分形圖象,著名的有道迪免子,聖馬科吸引子等。同年,茹厄勒(D.Ruelle)得到J集與映射系數的關系,解新局面了解析映射擊集豪斯道夫維數的計算問題。茄勒特(L.Garnett)得到J(fc)集豪斯道夫維數的數值解法。1983年,韋當(M.Widom)進一步推廣了部分結果 。法圖1926年就就開始整函數迭代的研究。1981年密休威茨(M.Misiuterwicz)證明指數映射的J集為復平面,解決了法圖提出的問題,引起研究者極大興趣。發現超越整函數的J集與有理映射J的性質差異,1984年德萬尼(R.L.Devanney)證明指數映射Eλ的J(Eλ)集是康托束或復平面而J(fc)是康托塵或連通集。 復平面上使J(fc)成為連通集的點C組成M集即曼德爾布羅特集,尤更斯(H.Jurgens)和培特根(H-O.Peitgen)認為,M集的性質過去一直是並且將來繼續是數學研究的一個巨大難題。通過將數學理論與計算機圖形學實驗加以融合,及道迪、扈巴德(H.Hubbard)等人在這方面進行的基礎性研究工作,在解決這一難題方面已取得重大進展,使人們加深了對M集的了解。道迪和扈巴德1982年證明M集是連通的和單連通的,人們猜測M集是局部連通的,目前每一張計算機圖形都證實了這一猜測,但至今還沒有人能給予證明。M是否為弧連通,目前尚不清楚。M集邊界的維數也是值得研究的問題之一。 M集除了將J集分成連通與非連通的兩類之外,還起著無窮個J集的圖解目錄表作用,即把M集C點周圍的圖形放大就是與C點有關的J集的組成部分。但這一發現的數學密性至今仍未確定,譚磊(Tan Lei)1985年證明了在每一個密休威茨點鄰近M集與相關的J集之間存在著相似性。尤金斯等在M集的靜電位研究中獲得與自然形貌相似的分形圖象。目前包括尤金斯等在內的很多研究人員都致力於藉助計算機活動錄象探索M集。其它一些分形集的研究工作正在取得進展。1990年德萬尼通過數值實驗觀察到M集的復雜圖形由許多不同周期的周期軌道的穩定區域共同構成。1991年黃永念運用他提出的代數分析法證明了這一事實,研究了M集及其廣義情況周期軌道整體解析特性。 巴斯萊(B.M.Barnsley)和德門科(S.Demko)1985年引入迭代函數系統,J集及其其它很多分形集都是某些迭代函數的吸引集,用其它方法產生的分形集也可用迭代函數系逼近。1988年,勞威爾通過數值研究發現畢達哥拉斯樹花是一迭代函數系的J集。1985年巴斯萊等研究含參數的函數系迭代動力系統,得到M集D並D與M在連通性上的差異。在一線性映射系迭代下,可以產生著名的分形曲線——雙生龍曲線。1986年水谷(M.Mitzutani)等對其動力系統進行了研究。 一般動力系統中的分形集,其豪斯道夫維數dH難以通過理論方法或計算方法求得。對於有迭式構造的分形集,貝德浮德(T.Bedford)等在1986年已給出卓有成效的演算法,但對一般非線性映射迭代動力系統產生的分形集,這些結果都難以應用,其豪斯道夫維數dH的結論與演算法實際上沒有。卡普蘭(j.L.Kaplan)和約克(J.A.York) 1979年引入李雅普洛夫維數dL並猜測dL=dH。1981年勒拉皮爾證明dH≤dL。楊(L.S.Young)1982年證明二維情況下dH=dL。艾茄瓦(A.K.Agarwal)等1986年給出例子說明高維情形卡普蘭-約克猜測不成立。這一猜測力圖從動力學特徵推斷幾何結構,其反問題是由吸引子維數推斷混沌力學,這是值得研究的問題。但目前工作甚少且主要限於計算機研究。此外,含參動力系統在混沌臨界態或突變處的分形集維數也有待進一步研究。 多重分形(multifractals)是與動力系統奇異吸引子有關的另一類重要分形集,其概念首先由曼德布羅特和倫依(A.Renyi)引入。法默(J.D.Farmer)等在1983年定義了多重分形廣義維數。1988年博爾(T.Bohr)等人將拓撲熵引入多重分形的動力學描述與熱力學類比。1988年,阿內多(A.Arneodo)等人將子波變換用於多重分形研究。費德(J.Feder)、特爾(T.Tel)等人進行了多重分形子集及標度指數的研究。阿姆特里卡等研究了多重分形的逆問題,提出廣義配分函數,給出廣義超越維數,對過去的維數進行了修正。李(J.Lee)等發現了多重分形熱力學形式上的相變。1990年,伯克(C.Beck)得到廣義維數的上下界和極限並研究了多重分形的均勻性量度。曼德布羅特研究了隨機多重分形及負分維。1991年科維克(Z.Kov.acs)等引入雙變數迭代系統,最大特徵值和吉布斯勢導出維數、熵、李雅普洛夫指數,提供了對多重分形相變分類的一般方案。對於多重分形相變分類的一般方案。對於多重分形目前雖已提出不少處理方法,但從數學的觀點上看,還不夠嚴格,部分問題的數學處理難度也較大。四分形理論真正發展起來才十餘年,並且方興未艾,很多方面的理論還有待進一步研究。值得注意的是,近年分形理論的應用發展遠遠超過了理論的發展,並且給分形的數學理論提出了更新更高的要求。各種分形維數計算方法和實驗方法的建立、改進和完善,使之理論簡便,可操作性強,是喁喁分形的科學家們普遍關注的問題。而在理論研究上,維數的理論計算、估計、分形重構(即求一動力系統,使其吸引集為給定分形集)、J集和M集及其推廣形式的性質、動力學特徵及維數研究將會成為數學工作者們十分活躍的研究領域。多重分形理論的完善、嚴格以及如何用這些理論來解決實際問題可能會引起科學家們廣泛的興趣,而動力學特徵、相變和子波變換可能會成為其中的幾個熱點。 在哲學方面,人們的興趣在於自相似性的普適性,M集和J集表現出的簡單性與復雜性,復數與實數的統一性,多重分形相變與突變論的關系,自組織臨界(SOC)現象的刻畫以及分形體系內部的各種矛盾的轉化等。可以預言,一場關於分形科學哲學問題的討論即將在國內展開。
Ⅹ 分形圖 龍形圖演算法 PUDN下載
在我給你的郵箱里