❶ dijkstra演算法是什麼
迪傑斯特拉演算法用來解決從頂點v0出發到其餘頂點的最短路徑,該演算法按照最短路徑長度遞增的順序產生所以最短路徑。
對於圖G=(V,E),將圖中的頂點分成兩組:第一組S:已求出的最短路徑的終點集合(開始為{v0})。第二組V-S:尚未求出最短路徑的終點集合(開始為V-{v0}的全部結點)。
堆優化
思考
該演算法復雜度為n^2,我們可以發現,如果邊數遠小於n^2,對此可以考慮用堆這種數據結構進行優化,取出最短路徑的復雜度降為O(1);每次調整的復雜度降為O(elogn);e為該點的邊數,所以復雜度降為O((m+n)logn)。
實現
1、將源點加入堆,並調整堆。
2、選出堆頂元素u(即代價最小的元素),從堆中刪除,並對堆進行調整。
3、處理與u相鄰的,未被訪問過的,滿足三角不等式的頂點
1):若該點在堆里,更新距離,並調整該元素在堆中的位置。
2):若該點不在堆里,加入堆,更新堆。
4、若取到的u為終點,結束演算法;否則重復步驟2、3。
❷ dijkstra演算法是什麼
Dijkstra演算法是由荷蘭計算機科學家狄克斯特拉(Dijkstra)於1959年提出的,因此又叫狄克斯特拉演算法。是從一個頂點到其餘各頂點的最短路徑演算法,解決的是有向圖中最短路徑問題。
其基本原理是:每次新擴展一個距離最短的點,更新與其相鄰的點的距離。當所有邊權都為正時,由於不會存在一個距離更短的沒擴展過的點,所以這個點的距離永遠不會再被改變,因而保證了演算法的正確性。
不過根據這個原理,用Dijkstra求最短路的圖不能有負權邊,因為擴展到負權邊的時候會產生更短的距離,有可能就破壞了已經更新的點距離不會改變的性質。
舉例來說,如果圖中的頂點表示城市,而邊上的權重表示著城市間開車行經的距離。Dijkstra演算法可以用來找到兩個城市之間的最短路徑。
Dijkstra演算法的輸入包含了一個有權重的有向圖G,以及G中的一個來源頂點S。我們以V表示G中所有頂點的集合。每一個圖中的邊,都是兩個頂點所形成的有序元素對。(u,v)表示從頂點u到v有路徑相連。我們以E所有邊的集合,而邊的權重則由權重函數w: E→[0,∞]定義。
因此,w(u,v)就是從頂點u到頂點v的非負花費值(cost)。邊的花費可以想像成兩個頂點之間的距離。任兩點間路徑的花費值,就是該路徑上所有邊的花費值總和。
已知有V中有頂點s及t,Dijkstra演算法可以找到s到t的最低花費路徑(i.e.最短路徑)。這個演算法也可以在一個圖中,找到從一個頂點s到任何其他頂點的最短路徑。
❸ 最短路徑 | 深入淺出Dijkstra演算法(一)
上次我們介紹了神奇的只有 五行的 Floyd-Warshall 最短路演算法 ,它可以方便的求得 任意兩點的最短路徑, 這稱為 「多源最短路」。
這次來介紹 指定一個點(源點)到其餘各個頂點的最短路徑, 也叫做 「單源最短路徑」。 例如求下圖中的 1 號頂點到 2、3、4、5、6 號頂點的最短路徑。
與 Floyd-Warshall 演算法一樣,這里仍然 使用二維數組 e 來存儲頂點之間邊的關系, 初始值如下。
我們還需要用 一個一維數組 dis 來存儲 1 號頂點到其餘各個頂點的初始路程, 我們可以稱 dis 數組為 「距離表」, 如下。
我們將此時 dis 數組中的值稱為 最短路的「估計值」。
既然是 求 1 號頂點到其餘各個頂點的最短路程, 那就 先找一個離 1 號頂點最近的頂點。
通過數組 dis 可知當前離 1 號頂點最近是 2 號頂點。 當選擇了 2 號頂點後,dis[2]的值就已經從「估計值」變為了「確定值」, 即 1 號頂點到 2 號頂點的最短路程就是當前 dis[2]值。
為什麼呢?你想啊, 目前離 1 號頂點最近的是 2 號頂點,並且這個圖所有的邊都是正數,那麼肯定不可能通過第三個頂點中轉,使得 1 號頂點到 2 號頂點的路程進一步縮短了。 因此 1 號頂點到其它頂點的路程肯定沒有 1 號到 2 號頂點短,對吧 O(∩_∩)O~
既然選了 2 號頂點,接下來再來看 2 號頂點 有哪些 出邊 呢。有 2->3 和 2->4 這兩條邊。
先討論 通過 2->3 這條邊能否讓 1 號頂點到 3 號頂點的路程變短。 也就是說現在來比較 dis[3] 和 dis[2]+e[2][3] 的大小。其中 dis[3]表示 1 號頂點到 3 號頂點的路程,dis[2]+e[2][3]中 dis[2]表示 1 號頂點到 2 號頂點的路程,e[2][3]表示 2->3 這條邊。所以 dis[2]+e[2][3]就表示從 1 號頂點先到 2 號頂點,再通過 2->3 這條邊,到達 3 號頂點的路程。
我們發現 dis[3]=12,dis[2]+e[2][3]=1+9=10,dis[3]>dis[2]+e[2][3],因此 dis[3]要更新為 10。這個過程有個專業術語叫做 「鬆弛」 。即 1 號頂點到 3 號頂點的路程即 dis[3],通過 2->3 這條邊 鬆弛成功。 這便是 Dijkstra 演算法的主要思想: 通過 「邊」 來鬆弛 1 號頂點到其餘各個頂點的路程。
同理通過 2->4(e[2][4]),可以將 dis[4]的值從 ∞ 鬆弛為 4(dis[4]初始為 ∞,dis[2]+e[2][4]=1+3=4,dis[4]>dis[2]+e[2][4],因此 dis[4]要更新為 4)。
剛才我們對 2 號頂點所有的出邊進行了鬆弛。鬆弛完畢之後 dis 數組為:
接下來,繼續在剩下的 3、4、5 和 6 號頂點中,選出離 1 號頂點最近的頂點。通過上面更新過 dis 數組,當前離 1 號頂點最近是 4 號頂點。此時,dis[4]的值已經從「估計值」變為了「確定值」。下面繼續對 4 號頂點的所有出邊(4->3,4->5 和 4->6)用剛才的方法進行鬆弛。鬆弛完畢之後 dis 數組為:
繼續在剩下的 3、5 和 6 號頂點中,選出離 1 號頂點最近的頂點,這次選擇 3 號頂點。此時,dis[3]的值已經從「估計值」變為了「確定值」。對 3 號頂點的所有出邊(3->5)進行鬆弛。鬆弛完畢之後 dis 數組為:
繼續在剩下的 5 和 6 號頂點中,選出離 1 號頂點最近的頂點,這次選擇 5 號頂點。此時,dis[5]的值已經從「估計值」變為了「確定值」。對5號頂點的所有出邊(5->4)進行鬆弛。鬆弛完畢之後 dis 數組為:
最後對 6 號頂點的所有出邊進行鬆弛。因為這個例子中 6 號頂點沒有出邊,因此不用處理。 到此,dis 數組中所有的值都已經從「估計值」變為了「確定值」。
最終 dis 數組如下,這便是 1 號頂點到其餘各個頂點的最短路徑。
OK,現在來總結一下剛才的演算法。 Dijkstra演算法的基本思想是:每次找到離源點(上面例子的源點就是 1 號頂點)最近的一個頂點,然後以該頂點為中心進行擴展,最終得到源點到其餘所有點的最短路徑。
基本步驟如下:
在 博客 中看到兩個比較有趣的問題,也是在學習Dijkstra時,可能會有疑問的問題。
當我們看到上面這個圖的時候,憑借多年對平面幾何的學習,會發現在「三角形ABC」中,滿足不了 構成三角形的條件(任意兩邊之和大於第三邊)。 納尼,那為什麼圖中能那樣子畫?
還是「三角形ABC」,以A為起點,B為終點,如果按照平面幾何的知識, 「兩點之間線段最短」, 那麼,A到B的最短距離就應該是6(線段AB),但是,實際上A到B的最短距離卻是3+2=5。這又怎麼解釋?
其實,之所以會有上面的疑問,是因為 對邊的權值和邊的長度這兩個概念的混淆, 。之所以這樣畫,也只是為了方便理解(每個人寫草稿的方式不同,你完全可以用別的方式表示,只要便於你理解即可)。
PS:數組實現鄰接表可能較難理解,可以看一下 這里
參考資料:
Dijkstra演算法是一種基於貪心策略的演算法。每次新擴展一個路程最短的點,更新與其相鄰的點的路程。當所有邊權都為正時,由於不會存在一個路程更短的沒擴展過的點,所以這個點的路程永遠不會再被改變,因而保證了演算法的正確性。
根據這個原理, 用Dijkstra演算法求最短路徑的圖不能有負權邊, 因為擴展到負權邊的時候會產生更短的路徑,有可能破壞了已經更新的點路徑不會發生改變的性質。
那麼,有沒有可以求帶負權邊的指定頂點到其餘各個頂點的最短路徑演算法(即「單源最短路徑」問題)呢?答案是有的, Bellman-Ford演算法 就是一種。(我們已經知道了 Floyd-Warshall 可以解決「多源最短路」問題,也要求圖的邊權均為正)
通過 鄰接矩陣 的Dijkstra時間復雜度是 。其中每次找到離 1 號頂點最近的頂點的時間復雜度是 O(N),這里我們可以用 優先隊列(堆) 來優化,使得這一部分的時間復雜度降低到 。這個我們將在後面討論。
❹ 圖遍歷演算法之最短路徑Dijkstra演算法
最短路徑問題是圖論研究中一個經典演算法問題,旨在尋找圖中兩節點或單個節點到其他節點之間的最短路徑。根據問題的不同,演算法的具體形式包括:
常用的最短路徑演算法包括:Dijkstra演算法,A 演算法,Bellman-Ford演算法,SPFA演算法(Bellman-Ford演算法的改進版本),Floyd-Warshall演算法,Johnson演算法以及Bi-direction BFS演算法。本文將重點介紹Dijkstra演算法的原理以及實現。
Dijkstra演算法,翻譯作戴克斯特拉演算法或迪傑斯特拉演算法,於1956年由荷蘭計算機科學家艾茲赫爾.戴克斯特拉提出,用於解決賦權有向圖的 單源最短路徑問題 。所謂單源最短路徑問題是指確定起點,尋找該節點到圖中任意節點的最短路徑,演算法可用於尋找兩個城市中的最短路徑或是解決著名的旅行商問題。
問題描述 :在無向圖 中, 為圖節點的集合, 為節點之間連線邊的集合。假設每條邊 的權重為 ,找到由頂點 到其餘各個節點的最短路徑(單源最短路徑)。
為帶權無向圖,圖中頂點 分為兩組,第一組為已求出最短路徑的頂點集合(用 表示)。初始時 只有源點,當求得一條最短路徑時,便將新增頂點添加進 ,直到所有頂點加入 中,演算法結束。第二組為未確定最短路徑頂點集合(用 表示),隨著 中頂點增加, 中頂點逐漸減少。
以下圖為例,對Dijkstra演算法的工作流程進行演示(以頂點 為起點):
註:
01) 是已計算出最短路徑的頂點集合;
02) 是未計算出最短路徑的頂點集合;
03) 表示頂點 到頂點 的最短距離為3
第1步 :選取頂點 添加進
第2步 :選取頂點 添加進 ,更新 中頂點最短距離
第3步 :選取頂點 添加進 ,更新 中頂點最短距離
第4步 :選取頂點 添加進 ,更新 中頂點最短距離
第5步 :選取頂點 添加進 ,更新 中頂點最短距離
第6步 :選取頂點 添加進 ,更新 中頂點最短距離
第7步 :選取頂點 添加進 ,更新 中頂點最短距離
示例:node編號1-7分別代表A,B,C,D,E,F,G
(s.paths <- shortest.paths(g, algorithm = "dijkstra"))輸出結果:
(s.paths <- shortest.paths(g,4, algorithm = "dijkstra"))輸出結果:
示例:
找到D(4)到G(7)的最短路徑:
[1] 維基網路,最短路徑問題: https://zh.wikipedia.org/wiki/%E6%9C%80%E7%9F%AD%E8%B7%AF%E9%97%AE%E9%A2%98 ;
[2]CSDN,Dijkstra演算法原理: https://blog.csdn.net/yalishadaa/article/details/55827681 ;
[3]RDocumentation: https://www.rdocumentation.org/packages/RNeo4j/versions/1.6.4/topics/dijkstra ;
[4]RDocumentation: https://www.rdocumentation.org/packages/igraph/versions/0.1.1/topics/shortest.paths ;
[5]Pypi: https://pypi.org/project/Dijkstar/
❺ dijkstra演算法是什麼
dijkstra演算法最短路徑演算法。
Dijkstra是典型最短路徑演算法,用於計算一個節點到其他節點的最短路徑。該演算法使用的是貪心策略:每次都找出剩餘頂點中與源點距離最近的一個頂點。
給定一帶權圖,圖中每條邊的權值是非負的,代表著兩頂點之間的距離。指定圖中的一頂點為源點,找出源點到其它頂點的最短路徑和其長度的問題,即是單源最短路徑問題。
Dijkstra的原理
(1)初始化時,S只含有源節點。
(2)從U中選取一個距離v最小的頂點k加入S中(該選定的距離就是v到k的最短路徑長度)。
(3)以k為新考慮的中間點,修改U中各頂點的距離;若從源節點v到頂點u的距離(經過頂點k)比原來距離(不經過頂點k)短,則修改頂點u的距離值,修改後的距離值是頂點k的距離加上k到u的距離。