❶ 圖像分割演算法總結
圖像處理的很多任務都離不開圖像分割。因為圖像分割在cv中實在太重要(有用)了,就先把圖像分割的常用演算法做個總結。
接觸機器學習和深度學習時間已經不短了。期間看過各種相關知識但從未總結過。本文過後我會盡可能詳細的從工程角度來總結,從傳統機器學習演算法,傳統計算機視覺庫演算法到深度學習目前常用演算法和論文,以及模型在各平台的轉化,量化,服務化部署等相關知識總結。
圖像分割常用演算法大致分為下面幾類。由於圖像的能量范函,邊緣追蹤等方法的效果往往只能解決特定問題,效果並不理想,這里不再闡述。當然二值化本身也可以分割一些簡單圖像的。但是二值化演算法較多,我會專門做一個文章來總結。這里不再贅述。
1.基於邊緣的圖像分割演算法:
有利用圖像梯度的傳統演算法運算元的sobel,roberts,prewitt,拉普拉斯以及canny等。
這些演算法的基本思想都是採用合適的卷積運算元,對圖像做卷積。從而求出圖像對應的梯度圖像。(至於為什麼通過如圖1這樣的運算元卷積,即可得到圖像的梯度圖像,請讀者復習下卷積和倒數的概念自行推導)由於圖像的邊緣處往往是圖像像素差異較大,梯度較大地方。因此我們通過合適的卷積核得到圖像的梯度圖像,即得到了圖像的邊緣圖像。至於二階運算元的推導,與一階類似。優點:傳統運算元梯度檢測,只需要用合適的卷積核做卷積,即可快速得出對應的邊緣圖像。缺點:圖像邊緣不一定準確,復雜圖像的梯度不僅僅出現在圖像邊緣,可以能出現在圖像內部的色彩和紋理上。
也有基於深度學習方法hed,rcf等。由於這類網路都有同一個比較嚴重的缺陷,這里只舉例hed網路。hed是基於FCN和VGG改進,同時引出6個loss進行優化訓練,通過多個層輸出不同scale的粒度的邊緣,然後通過一個訓練權重融合各個層的邊緣結果。hed網路結構如下:
可以得到一個比較完整的梯度圖像,可參考github的hed實現。優點:圖像的梯度細節和邊緣完整性,相比傳統的邊緣運算元要好很多。但是hed對於邊緣的圖像內部的邊緣並不能很好的區分。當然我們可以自行更改loss來嘗試只擬合外部的圖像邊緣。但最致命的問題在於,基於vgg的hed的網路表達能力有限,對於圖像和背景接近,或者圖像和背景部分相融的圖片,hed似乎就有點無能為力了。
2.基於區域分割的演算法:
區域分割比較常用的如傳統的演算法結合遺傳演算法,區域生長演算法,區域分裂合並,分水嶺演算法等。這里傳統演算法的思路是比較簡單易懂的,如果有無法理解的地方,歡迎大家一起討論學習。這里不再做過多的分析。
基於區域和語意的深度學習分割演算法,是目前圖像分割成果較多和研究的主要方向。例如FCN系列的全卷積網路,以及經典的醫學圖像分割常用的unet系列,以及rcnn系列發展下的maskrcnn,以及18年底的PAnet。基於語意的圖像分割技術,無疑會成為圖像分割技術的主流。
其中,基於深度學習語意的其他相關演算法也可以間接或直接的應用到圖像分割。如經典的圖像matting問題。18年又出現了許多非常優秀的演算法和論文。如Deep-Image-Matting,以及效果非常優秀的MIT的 semantic soft segmentation(sss).
基於語意的圖像分割效果明顯要好於其他的傳統演算法。我在解決圖像分割的問題時,首先嘗試用了hed網路。最後的效果並不理想。雖然也參考github,做了hed的一些fine-tune,但是還是上面提到的原因,在我多次嘗試後,最終放棄。轉而適用FCN系列的網路。但是fcn也無法解決圖像和背景相融的問題。圖片相融的分割,感覺即需要大的感受野,又需要未相融部分原圖像細節,所以單原FCN的網路,很難做出准確的分割。中間還測試過很多其他相關的網路,但都效果不佳。考慮到感受野和原圖像細節,嘗試了resnet和densenet作為圖像特徵提取的底層。最終我測試了unet系列的網路:
unet的原始模型如圖所示。在自己拍照爬蟲等手段採集了將近1000張圖片。去掉了圖片質量太差的,圖片內容太過類似的。爬蟲最終收集160多張,自己拍照收集200張圖片後,又用ps手動p了邊緣圖像,採用圖像增強變換,大約有300*24張圖片。原生unet網路的表現比較一般。在將unet普通的卷積層改為resnet後,網路的表達能力明顯提升。在將resnet改為resnet101,此時,即使對於部分相融的圖像,也能較好的分割了。但是unet的模型體積已經不能接受。
在最後階段,看到maskrcnn的實例分割。maskrcnn一路由rcnn,fasterrcnn發展過來。於是用maskrcnn來加入自己的訓練數據和label圖像進行訓練。maskrcnn的結果表現並不令人滿意,對於邊緣的定位,相比於其他演算法,略顯粗糙。在產品應用中,明顯還不合適。
3.基於圖的分割演算法
基於深度學習的deepgrab,效果表現並不是十分理想。deepgrab的git作者backbone採用了deeplabv2的網路結構。並沒有完全安裝原論文來做。
論文原地址參考: https://arxiv.org/pdf/1707.00243.pdf
整體結構類似於encode和decoder。並沒有太仔細的研究,因為基於resent101的結構,在模型體積,速度以及deeplab的分割精度上,都不能滿足當前的需求。之前大致總結過計算機視覺的相關知識點,既然目前在討論移動端模型,那後面就分模塊總結下移動端模型的應用落地吧。
由於時間實在有限。這里並沒有針對每個演算法進行詳細的講解。後續我會從基礎的機器學習演算法開始總結。
❷ 我所了解的圖像分割
圖像分割是我大二2019年做的東西,這篇文章用來總結。
分語義【像素級別圖像】,實例【分割物體有進一步分類】。
基於圖像的灰度特徵來計算一個或多個灰度閾值,並將圖像中每個像素的灰度值與閾值作比較,最後將像素根據比較結果分到合適的類別中。
確定某個准則函數來求解最佳灰度閾值。【閾值法特別適用於目標和背景占據不同灰度級范圍的圖。】
值得一提的是:特徵點檢測也有此方法
直接尋找區域。有兩種基本形式:一種是區域生長,從單個像素出發,逐步合並以形成所需要的分割區域;另一種是從全局出發,逐步切割至所需的分割區域。
基於邊緣檢測的圖像分割演算法試圖通過檢測包含不同區域的邊緣來解決分割問題。它可以說是人們最先想到也是研究最多的方法之一。通常不同區域的邊界上像素的灰度值變化比較劇烈,如果將圖片從空間域通過傅里葉變換到頻率域,邊緣就對應著高頻部分,這是一種非常簡單的邊緣檢測演算法。
常規卷積
常規卷積+殘差【解決梯度消失,網路變深】
Efficient Neural Network(ENet)
ResNet-38
full-resolution resial network(FRRN)
AdapNey
由目標檢測發展而來(R-CNN、Fast R-CNN)
在Faster R-CNN的結構基礎上加上了Mask預測分支,並且改良了ROI Pooling,提出了ROI Align。
評價函數只對目標檢測的候選框進行打分,而不是分割模板
(1)ReSeg模型【FCN改進】
FCN的不足:沒有考慮到局部或者全局的上下文依賴關系,而在語義分割中這種依賴關系是非常有用的。所以在ReSeg中作者使用RNN去檢索上下文信息,以此作為分割的一部分依據。
卷積神經網路在進行采樣的時候會丟失部分細節信息,這樣的目的是得到更具特徵的價值。但是這個過程是不可逆的,有的時候會導致後面進行操作的時候圖像的 解析度太低 ,出現 細節丟失 等問題。因此我們通過上采樣在一定程度上可以不全一些丟失的信息,從而得到更加准確的分割邊界。
卷積後進行一次上采樣,得到segment map。
優點:
FCN對圖像進行了像素級的分類,從而解決了 語義級別 的圖像分割問題;
FCN可以 接受任意尺寸的輸入圖像 ,可以保留下原始輸入圖像中的空間信息;
缺點:
得到的結果由於上采樣的原因比較模糊和平滑,對圖像中的 細節不敏感 ;
對各個像素分別進行分類,沒有充分考慮 像素與像素的關系,缺乏空間一致性。
恢復在深度卷積神經網路中下降的解析度,從而獲取更多的上下文信息。
DeepLab是結合了深度卷積神經網路和概率圖模型的方法,應用在語義分割的任務上,目的是做逐像素分類,其先進性體現在DenseCRFs(概率圖模型)和DCNN的結合。是將每個像素視為CRF節點,利用遠程依賴關系並使用CRF推理直接優化DCNN的損失函數。
在圖像分割領域,FCN的一個眾所周知的操作就是平滑以後再填充,就是先進行卷積再進行pooling,這樣在降低圖像尺寸的同時增大感受野,但是在先減小圖片尺寸(卷積)再增大尺寸(上采樣)的過程中一定有一些信息損失掉了,所以這里就有可以提高的空間。
DeepLab提出空洞卷積解決這一問題
(1)常規圖像分割
交叉熵Loss
Focal Loss【解決難易樣本不均衡】
(2)醫療影像分割
Dice Loss(該損失函數的提出有一個背景,直接優化性能度量,涉及到我的另一個課題非凸優化)
IOU(常做為評價指標)
基於以上幾個基本的Loss還有各種各樣的改進
因為相鄰臨的像素對應感受野內的圖像信息太過相似了,如果臨近的像素都屬於所需分割區域的內部,那麼這種『相似』是有利的,但是如果相鄰 像素剛好處在所需分割區域的邊界上,那麼這種相似就是有害的了。
上下文特徵是很常見的,其實上下文大概去理解就是圖像中的每一個像素點不可能是孤立的,一個像素一定和周圍像素是有一定的關系的,大量像素的互相聯系才產生了圖像中的各種物體,所以上下文特徵就指像素以及周邊像素的某種聯系。
1、對網路輸出的分割的邊界增加額外的損失,或者讓網路對邊界的特徵和區域內部的特徵分開建模學習。其本質上的思想還是讓網路同時做兩個任務:分割和邊緣檢測。另外,提高輸入圖像的輸入解析度和中間層特徵圖的解析度同樣也是簡單有效的。
2、利用loss動態加權或者在圖像二維空間上采樣來解決同一張圖像中不同語義的像素個數不均衡以及學習的難易程度不同的問題。
3、利用半監督或者弱監督學習的方法減少標注昂貴的問題。利用多個標簽有雜訊的樣本或其特徵構建虛擬的標簽干凈的虛擬樣本或特徵來減少標簽的雜訊。
4、利用合理的上下文的建模機制,幫助網路猜測遮擋部分的語義信息。
5、在網路中構建不同圖像之間損失或者特徵交互模塊。
❸ 區域生長的區域生長
它是一個迭代的過程,這里每個種子像素點都迭代生長,直到處理過每個像素,因此形成了不同的區域,這些區域它們的邊界通過閉合的多邊形定義。
在區域生長中的主要問題如下:
(1)表示區域的初始化種子的選擇:在區域生長過程中,這些不同區域點合適屬性的選擇。
(2)基於圖像具體屬性的像素生長不一定是好的分割。在區域生長過程中,不應該使用連通性或鄰接信息。
(3)相似性:相似性表示在灰度級中觀察在兩個空間鄰接像素之間或像素集合的平均灰度級間的最小差分,它們將產生不同的區域。如果這個差分比相似度閾值小,則像素屬於相同的區域。
(4)區域面積:最小面積閾值與像素中的最小區域大小有關。在分割的圖像中,沒有區域比這個閾值小,它由用戶定義。
區域生長的後處理(region growing post-processing):由於非優化參數的設置,區域生長經常會導致欠生長或過生長。人們已經開發了各種各樣的後處理。從區域生長和基於邊緣的分割中,後處理能獲得聯合分割的信息。更加簡單的後處理是根據一般啟發法,並且根據最初應用的均勻性標准,減少分割圖像中無法與任何鄰接區域合並的最小區域的數量。
區域連接圖
在場景中區域間的鄰接關系可以由區域鄰接圖(region adjacency graph, RAG)表示。在場景中的區域由在RAG的節點集合表示 N = {N1, N2, ... , Nm},這里,節點Ni表示在場景中的區域Ri ,並且區域Ri的屬性存儲在節點的數據結構Ni中。在Ni和Nj之間的邊緣Eij表示在區域Ri和Rj之間的連接。如果在區域Ri里存放一個像素與在區域Rj彼此相鄰,那麼兩個區域Ri和Rj是相鄰的。鄰接可能是4連通或8連通的。鄰接關系是自反(reflexive)和對稱(symmetric)的,但不一定是可傳遞(transitive)的。下圖顯示具有6個截然不同區域的場景鄰接圖。
當它表示區域鄰接圖(RAG)是,二進制矩陣A成為鄰接矩陣(adjacency matrix)。在RAG里,當節點Ni和Nj鄰接,在A中,aij是1。因為鄰接關系是自反的,矩陣的對角元素都是1。在上圖的多區域場景鄰接矩陣(關系)如下所示。
區域合並和分裂
由於在場景中分割單一大區域,分割演算法可能產生許多個小區域。在這種情況下,較小的區域需要根據相似性合並,並且使較小的區域更緊密。簡單的區域合並演算法如下所述。
步驟1:使用閾值集合將圖像分割為R1,R2,R,…,Rm。
步驟2:從圖像的分割描述中生成區域鄰接圖(region adjacency graphics,RAG)。
步驟3:對於每個Rj,i = 1,2,…,m,從RAG中確定所有Rj,j≠i,如Ri和Rj鄰接。
步驟4:對於所有i和j,計算在Ri和Rj之間合適的相似性度量Sij。
步驟5:如果Sij>T,那麼合並Ri和Rj
步驟6:根據相似性標准,重復步驟3~步驟5,直到沒有合並的區域為止。
合並的另一個策略是根據兩個區域之間的邊緣強度。在這個方法中,在鄰接區域之間的合並是根據兩個區域間沿標定邊界長度的邊緣強度。如果邊緣強度小,即邊緣點較弱(weak),如果合並沒有大量改變平均像素強度值,那麼可以合並兩個區域。
還有這種情況:由於錯誤的預處理分割,產生了太小的區域。這歸結於不同區域錯誤合並成一個區域。在這種情況下,在分割區域中灰度值的變化可能高於閾值(T),因此,需要將區域分裂成更小的區域,這樣每個更小的區域都有均勻小方差。
分裂和合並可能結合在一起用於復雜場景的分割,基於規則可以指導分裂和合並運算的應用。
❹ 圖像分割的分割方法
灰度閾值分割 法是一種最常用的並行區域技術,它是圖像分割中應用數量最多的一類。閾值分割方法實際上是輸入圖像f到輸出圖像g的如下變換:
其中,T為閾值,對於物體的圖像元素g(i,j)=1,對於背景的圖像元素g(i,j)=0。
由此可見,閾值分割演算法的關鍵是確定閾值,如果能確定一個合適的閾值就可准確地將圖像分割開來。閾值確定後,將閾值與像素點的灰度值逐個進行比較,而且像素分割可對各像素並行地進行,分割的結果直接給出圖像區域。
閾值分割的優點是計算簡單、運算效率較高、速度快。在重視運算效率的應用場合(如用於硬體實現),它得到了廣泛應用。
人們發展了各種各樣的閾值處理技術,包括全局閾值、自適應閾值、最佳閾值等等。
全局閾值是指整幅圖像使用同一個閾值做分割處理,適用於背景和前景有明顯對比的圖像。它是根據整幅圖像確定的:T=T(f)。但是這種方法只考慮像素本身的灰度值,一般不考慮空間特徵,因而對雜訊很敏感。常用的全局閾值選取方法有利用圖像灰度直方圖的峰谷法、最小誤差法、最大類間方差法、最大熵自動閾值法以及其它一些方法。
在許多情況下,物體和背景的對比度在圖像中的各處不是一樣的,這時很難用一個統一的閾值將物體與背景分開。這時可以根據圖像的局部特徵分別採用不同的閾值進行分割。實際處理時,需要按照具體問題將圖像分成若乾子區域分別選擇閾值,或者動態地根據一定的鄰域范圍選擇每點處的閾值,進行圖像分割。這時的閾值為自適應閾值。
閾值的選擇需要根據具體問題來確定,一般通過實驗來確定。對於給定的圖像,可以通過分析直方圖的方法確定最佳的閾值,例如當直方圖明顯呈現雙峰情況時,可以選擇兩個峰值的中點作為最佳閾值。
圖1(a)和(b)分別為用全局閾值和自適應閾值對經典的Lena圖像進行分割的結果。
區域生長和分裂合並法是兩種典型的串列區域技術,其分割過程後續步驟的處理要根據前面步驟的結果進行判斷而確定。 區域生長 區域生長的基本思想是將具有相似性質的像素集合起來構成區域。具體先對每個需要分割的區域找一個種子像素作為生長的起點,然後將種子像素周圍鄰域中與種子像素有相同或相似性質的像素(根據某種事先確定的生長或相似准則來判定)合並到種子像素所在的區域中。將這些新像素當作新的種子像素繼續進行上面的過程,直到再沒有滿足條件的像素可被包括進來。這樣一個區域就長成了。
區域生長需要選擇一組能正確代表所需區域的種子像素,確定在生長過程中的相似性准則,制定讓生長停止的條件或准則。相似性准則可以是灰度級、彩色、紋理、梯度等特性。選取的種子像素可以是單個像素,也可以是包含若干個像素的小區域。大部分區域生長准則使用圖像的局部性質。生長准則可根據不同原則制定,而使用不同的生長准則會影響區域生長的過程。區域生長法的優點是計算簡單,對於較均勻的連通目標有較好的分割效果。它的缺點是需要人為確定種子點,對雜訊敏感,可能導致區域內有空洞。另外,它是一種串列演算法,當目標較大時,分割速度較慢,因此在設計演算法時,要盡量提高效率。
區域分裂合並
區域生長是從某個或者某些像素點出發,最後得到整個區域,進而實現目標提取。分裂合並差不多是區域生長的逆過程:從整個圖像出發,不斷分裂得到各個子區域,然後再把前景區域合並,實現目標提取。分裂合並的假設是對於一幅圖像,前景區域由一些相互連通的像素組成的,因此,如果把一幅圖像分裂到像素級,那麼就可以判定該像素是否為前景像素。當所有像素點或者子區域完成判斷以後,把前景區域或者像素合並就可得到前景目標。
在這類方法中,最常用的方法是四叉樹分解法(如圖3所示)。設R代表整個正方形圖像區域,P代表邏輯謂詞。基本分裂合並演算法步驟如下:(1)對任一個區域,如果H(Ri)=FALSE就將其分裂成不重疊的四等份;
(2)對相鄰的兩個區域Ri和Rj,它們也可以大小不同(即不在同一層),如果條件H(Ri∪Rj)=TRUE滿足,就將它們合並起來。
(3)如果進一步的分裂或合並都不可能,則結束。
分裂合並法的關鍵是分裂合並准則的設計。這種方法對復雜圖像的分割效果較好,但演算法較復雜,計算量大,分裂還可能破壞區域的邊界。 圖像分割的一種重要途徑是通過邊緣檢測,即檢測灰度級或者結構具有突變的地方,表明一個區域的終結,也是另一個區域開始的地方。這種不連續性稱為邊緣。不同的圖像灰度不同,邊界處一般有明顯的邊緣,利用此特徵可以分割圖像。
圖像中邊緣處像素的灰度值不連續,這種不連續性可通過求導數來檢測到。對於階躍狀邊緣,其位置對應一階導數的極值點,對應二階導數的過零點(零交叉點)。因此常用微分運算元進行邊緣檢測。常用的一階微分運算元有Roberts運算元、Prewitt運算元和Sobel運算元,二階微分運算元有Laplace運算元和Kirsh運算元等。在實際中各種微分運算元常用小區域模板來表示,微分運算是利用模板和圖像卷積來實現。這些運算元對雜訊敏感,只適合於雜訊較小不太復雜的圖像。
由於邊緣和雜訊都是灰度不連續點,在頻域均為高頻分量,直接採用微分運算難以克服雜訊的影響。因此用微分運算元檢測邊緣前要對圖像進行平滑濾波。LoG運算元和Canny運算元是具有平滑功能的二階和一階微分運算元,邊緣檢測效果較好,如圖4所示。其中loG運算元是採用Laplacian運算元求高斯函數的二階導數,Canny運算元是高斯函數的一階導數,它在雜訊抑制和邊緣檢測之間取得了較好的平衡。關於微分運算元的邊緣檢測的詳細內容可參考文獻 。 與其他圖像分割方法相比,基於直方圖的方法是非常有效的圖像分割方法,因為他們通常只需要一個通過像素。在這種方法中,直方圖是從圖像中的像素的計算,並在直方圖的波峰和波谷是用於定點陣圖像中的簇。顏色和強度可以作為衡量。
這種技術的一種改進是遞歸應用直方圖求法的集群中的形象以分成更小的簇。重復此操作,使用更小的簇直到沒有更多的集群的形成。
基於直方圖的方法也能很快適應於多個幀,同時保持他們的單通效率。直方圖可以在多個幀被考慮的時候採取多種方式。同樣的方法是採取一個框架可以應用到多個,和之後的結果合並,山峰和山谷在以前很難識別,但現在更容易區分。直方圖也可以應用於每一個像素的基礎上,將得到的信息被用來確定的像素點的位置最常見的顏色。這種方法部分基於主動對象和一個靜態的環境,導致在不同類型的視頻分割提供跟蹤。
❺ 圖像分割
圖像閾值化分割是一種傳統的最常用的圖像分割方法,因其實現簡單、計算量小、性能較穩定而成為圖像分割中最基本和應用最廣泛的分割技術。它特別適用於目標和背景占據不同灰度級范圍的圖像。它不僅可以極大的壓縮數據量,而且也大大簡化了分析和處理步驟,因此在很多情況下,是進行圖像分析、特徵提取與模式識別之前的必要的圖像預處理過程。
圖像閾值化的目的是要按照灰度級,對像素集合進行一個劃分,得到的每個子集形成一個與現實景物相對應的區域,各個區域內部具有一致的屬性,而相鄰區域不具有這種一致屬性。這樣的劃分可以通過從灰度級出發選取一個或多個閾值來實現。
基本原理是:通過設定不同的特徵閾值,把圖像象素點分為若干類。
常用的特徵包括:直接來自原始圖像的灰度或彩色特徵;由原始灰度或彩色值變換得到的特徵。
設原始圖像為f(x,y),按照一定的准則f(x,y)中找到特徵值T,將圖像分割為兩個部分,分割後的圖像為:
若取:b0=0(黑),b1=1(白),即為我們通常所說的圖像二值化。
閾值分割方法實際上是輸入圖像f到輸出圖像g的如下變換:
其中,T為閾值,對於物體的圖像元素g(i,j)=1,對於背景的圖像元素g(i,j)=0。
由此可見,閾值分割演算法的關鍵是確定閾值,如果能確定一個合適的閾值就可准確地將圖像分割開來。閾值確定後,將閾值與像素點的灰度值逐個進行比較,而且像素分割可對各像素並行地進行,分割的結果直接給出圖像區域。
閾值分割的優點是計算簡單、運算效率較高、速度快。有著各種各樣的閾值處理技術,包括全局閾值、自適應閾值、最佳閾值等等。
閾值處理技術參看:
區域分割是講圖像按照相似性准則分成不同的區域,主要包括區域增長,區域分裂合並和分水嶺等幾種類型。
區域生長是一種串列區域分割的圖像分割方法。區域生長是指從某個像素出發,按照一定的准則,逐步加入鄰近像素,當滿足一定的條件時,區域生長終止。區域生長的好壞決定於1. 初始點(種子點)的選取。 2. 生長准則。 3. 終止條件 。區域生長是從某個或者某些像素點出發,最後得到整個區域,進而實現目標的提取。
區域生長的基本思想是將具有相似性質的像素集合起來構成區域。具體先對每個需要分割的區域找一個種子像素作為生長的起點,然後將種子像素周圍鄰域中與種子像素有相同或相似性質的像素(根據某種事先確定的生長或相似准則來判定)合並到種子像素所在的區域中。將這些新像素當作新的種子像素繼續進行上面的過程,直到再沒有滿足條件的像素可被包括進來。這樣一個區域就長成了。
區域生長需要選擇一組能正確代表所需區域的種子像素,確定在生長過程中的相似性准則,制定讓生長停止的條件或准則。相似性准則可以是灰度級、彩色、紋理、梯度等特性。選取的種子像素可以是單個像素,也可以是包含若干個像素的小區域。大部分區域生長准則使用圖像的局部性質。生長准則可根據不同原則制定,而使用不同的生長准則會影響區域生長的過程。
圖1是區域增長的示例。
區域生長是一種古老的圖像分割方法,最早的區域生長圖像分割方法是由Levine等人提出的。該方法一般有兩種方式,一種是先給定圖像中要分割的目標物體內的一個小塊或者說種子區域(seed point),再在種子區域基礎上不斷將其周圍的像素點以一定的規則加入其中,達到最終將代表該物體的所有像素點結合成一個區域的目的;另一種是先將圖像分割成很多的一致性較強,如區域內像素灰度值相同的小區域,再按一定的規則將小區域融合成大區域,達到分割圖像的目的,典型的區域生長法如T. C. Pong等人提出的基於小面(facet)模型的區域生長法,區域生長法固有的缺點是往往會造成過度分割,即將圖像分割成過多的區域
區域生長實現的步驟如下:
區域分裂合並演算法的基本思想是先確定一個分裂合並的准則,即區域特徵一致性的測度,當圖像中某個區域的特徵不一致時就將該區域分裂成4個相等的子區域,當相鄰的子區域滿足一致性特徵時則將它們合成一個大區域,直至所有區域不再滿足分裂合並的條件為止。當分裂到不能再分的情況時,分裂結束,然後它將查找相鄰區域有沒有相似的特徵,如果有就將相似區域進行合並,最後達到分割的作用。在一定程度上區域生長和區域分裂合並演算法有異曲同工之妙,互相促進相輔相成的,區域分裂到極致就是分割成單一像素點,然後按照一定的測量准則進行合並,在一定程度上可以認為是單一像素點的區域生長方法。區域生長比區域分裂合並的方法節省了分裂的過程,而區域分裂合並的方法可以在較大的一個相似區域基礎上再進行相似合並,而區域生長只能從單一像素點出發進行生長(合並)。
反復進行拆分和聚合以滿足限制條件的演算法。
令R表示整幅圖像區域並選擇一個謂詞P。對R進行分割的一種方法是反復將分割得到的結果圖像再次分為四個區域,直到對任何區域Ri,有P(Ri)=TRUE。這里是從整幅圖像開始。如果P(R)=FALSE,就將圖像分割為4個區域。對任何區域如果P的值是FALSE.就將這4個區域的每個區域再次分別分為4個區域,如此不斷繼續下去。這種特殊的分割技術用所謂的四叉樹形式表示最為方便(就是說,每個非葉子節點正好有4個子樹),這正如圖10.42中說明的樹那樣。注意,樹的根對應於整幅圖像,每個節點對應於劃分的子部分。此時,只有R4進行了進一步的再細分。
如果只使用拆分,最後的分區可能會包含具有相同性質的相鄰區域。這種缺陷可以通過進行拆分的同時也允許進行區域聚合來得到矯正。就是說,只有在P(Rj∪Rk)=TRUE時,兩個相鄰的區域Rj和Rk才能聚合。
前面的討論可以總結為如下過程。在反復操作的每一步,我們需要做:
可以對前面講述的基本思想進行幾種變化。例如,一種可能的變化是開始時將圖像拆分為一組圖象塊。然後對每個塊進一步進行上述拆分,但聚合操作開始時受只能將4個塊並為一組的限制。這4個塊是四叉樹表示法中節點的後代且都滿足謂詞P。當不能再進行此類聚合時,這個過程終止於滿足步驟2的最後的區域聚合。在這種情況下,聚合的區域可能會大小不同。這種方法的主要優點是對於拆分和聚合都使用同樣的四叉樹,直到聚合的最後一步。
分水嶺分割方法,是一種基於拓撲理論的數學形態學的分割方法,其基本思想是把圖像看作是測地學上的拓撲地貌,圖像中每一點像素的灰度值表示該點的海拔高度,每一個局部極小值及其影響區域稱為集水盆,而集水盆的邊界則形成分水嶺。分水嶺的概念和形成可以通過模擬浸入過程來說明。在每一個局部極小值表面,刺穿一個小孔,然後把整個模型慢慢浸入水中,隨著浸入的加深,每一個局部極小值的影響域慢慢向外擴展,在兩個集水盆匯合處構築大壩,即形成分水嶺。
分水嶺的計算過程是一個迭代標注過程。分水嶺比較經典的計算方法是L. Vincent提出的。在該演算法中,分水嶺計算分兩個步驟,一個是排序過程,一個是淹沒過程。首先對每個像素的灰度級進行從低到高排序,然後在從低到高實現淹沒過程中,對每一個局部極小值在h階高度的影響域採用先進先出(FIFO)結構進行判斷及標注。
分水嶺變換得到的是輸入圖像的集水盆圖像,集水盆之間的邊界點,即為分水嶺。顯然,分水嶺表示的是輸入圖像極大值點。因此,為得到圖像的邊緣信息,通常把梯度圖像作為輸入圖像,即
分水嶺演算法對微弱邊緣具有良好的響應,圖像中的雜訊、物體表面細微的灰度變化,都會產生過度分割的現象。但同時應當看出,分水嶺演算法對微弱邊緣具有良好的響應,是得到封閉連續邊緣的保證的。另外,分水嶺演算法所得到的封閉的集水盆,為分析圖像的區域特徵提供了可能。
為消除分水嶺演算法產生的過度分割,通常可以採用兩種處理方法,一是利用先驗知識去除無關邊緣信息。二是修改梯度函數使得集水盆只響應想要探測的目標。
為降低分水嶺演算法產生的過度分割,通常要對梯度函數進行修改,一個簡單的方法是對梯度圖像進行閾值處理,以消除灰度的微小變化產生的過度分割。即
程序可採用方法:用閾值限制梯度圖像以達到消除灰度值的微小變化產生的過度分割,獲得適量的區域,再對這些區域的邊緣點的灰度級進行從低到高排序,然後在從低到高實現淹沒的過程,梯度圖像用Sobel運算元計算獲得。對梯度圖像進行閾值處理時,選取合適的閾值對最終分割的圖像有很大影響,因此閾值的選取是圖像分割效果好壞的一個關鍵。缺點:實際圖像中可能含有微弱的邊緣,灰度變化的數值差別不是特別明顯,選取閾值過大可能會消去這些微弱邊緣。
參考文章:
圖像分割的一種重要途徑是通過邊緣檢測,即檢測灰度級或者結構具有突變的地方,表明一個區域的終結,也是另一個區域開始的地方。這種不連續性稱為邊緣。不同的圖像灰度不同,邊界處一般有明顯的邊緣,利用此特徵可以分割圖像。
圖像中邊緣處像素的灰度值不連續,這種不連續性可通過求導數來檢測到。對於階躍狀邊緣,其位置對應一階導數的極值點,對應二階導數的過零點(零交叉點)。因此常用微分運算元進行邊緣檢測。常用的一階微分運算元有Roberts運算元、Prewitt運算元和Sobel運算元,二階微分運算元有Laplace運算元和Kirsh運算元等。在實際中各種微分運算元常用小區域模板來表示,微分運算是利用模板和圖像卷積來實現。這些運算元對雜訊敏感,只適合於雜訊較小不太復雜的圖像。
由於邊緣和雜訊都是灰度不連續點,在頻域均為高頻分量,直接採用微分運算難以克服雜訊的影響。因此用微分運算元檢測邊緣前要對圖像進行平滑濾波。LoG運算元和Canny運算元是具有平滑功能的二階和一階微分運算元,邊緣檢測效果較好,
在邊緣檢測演算法中,前三個步驟用得十分普遍。這是因為大多數場合下,僅僅需要邊緣檢測器指出邊緣出現在圖像某一像素點的附近,而沒有必要指出邊緣的精確位置或方向.邊緣檢測誤差通常是指邊緣誤分類誤差,即把假邊緣判別成邊緣而保留,而把真邊緣判別成假邊緣而去掉.邊緣估計誤差是用概率統計模型來描述邊緣的位置和方向誤差的.我們將邊緣檢測誤差和邊緣估計誤差區分開,是因為它們的計算方法完全不同,其誤差模型也完全不同.
Roberts運算元 :邊緣定位準,但是對雜訊敏感。適用於邊緣明顯且雜訊較少的圖像分割。Roberts邊緣檢測運算元是一種利用局部差分運算元尋找邊緣的運算元,Robert運算元圖像處理後結果邊緣不是很平滑。經分析,由於Robert運算元通常會在圖像邊緣附近的區域內產生較寬的響應,故採用上述運算元檢測的邊緣圖像常需做細化處理,邊緣定位的精度不是很高。
Prewitt運算元 :對雜訊有抑製作用,抑制雜訊的原理是通過像素平均,但是像素平均相當於對圖像的低通濾波,所以Prewitt運算元對邊緣的定位不如Roberts運算元。
Sobel運算元 :Sobel運算元和Prewitt運算元都是加權平均,但是Sobel運算元認為,鄰域的像素對當前像素產生的影響不是等價的,所以距離不同的像素具有不同的權值,對運算元結果產生的影響也不同。一般來說,距離越遠,產生的影響越小。
Isotropic Sobel運算元 :加權平均運算元,權值反比於鄰點與中心點的距離,當沿不同方向檢測邊緣時梯度幅度一致,就是通常所說的各向同性。
在邊沿檢測中,常用的一種模板是Sobel 運算元。Sobel 運算元有兩個,一個是檢測水平邊沿的;另一個是檢測垂直平邊沿的 。Sobel運算元另一種形式是各向同性Sobel(Isotropic Sobel)運算元,也有兩個,一個是檢測水平邊沿的,另一個是檢測垂直平邊沿的 。各向同性Sobel運算元和普通Sobel運算元相比,它的位置加權系數更為准確,在檢測不同方向的邊沿時梯度的幅度一致。由於建築物圖像的特殊性,我們可以發現,處理該類型圖像輪廓時,並不需要對梯度方向進行運算,所以程序並沒有給出各向同性Sobel運算元的處理方法。
1971年,R.Kirsch[34]提出了一種能檢測邊緣方向的Kirsch運算元新方法:它使用了8個模板來確定梯度幅度值和梯度的方向。
圖像中的每個點都用8個掩模進行卷積,每個掩模對某個特定邊緣方向作出最大響應。所有8個方向中的最大值作為邊緣幅度圖像的輸出。最大響應掩模的序號構成了對邊緣方向的編碼。
Kirsch運算元的梯度幅度值用如下公式:
不同檢測運算元的對比:
參考文章:
文章引用於 木夜溯
編輯 Lornatang
校準 Lornatang
❻ 圖像分割最好方法
1.基於閾值的分割方法
閾值法的基本思想是基於圖像的灰度特徵來計算一個或多個灰度閾值,並將圖像中每個像素的灰度值與閾值作比較,最後將像素根據比較結果分到合適的類別中。因此,該方法最為關鍵的一步就是按照某個准則函數來求解最佳灰度閾值。
閾值法特別適用於目標和背景占據不同灰度級范圍的圖。圖像若只有目標和背景兩大類,那麼只需要選取一個閾值進行分割,此方法成為單閾值分割;但是如果圖像中有多個目標需要提取,單一閾值的分割就會出現作物,在這種情況下就需要選取多個閾值將每個目標分隔開,這種分割方法相應的成為多閾值分割。
2.基於區域的圖像分割方法
基於區域的分割方法是以直接尋找區域為基礎的分割技術,基於區域提取方法有兩種基本形式:一種是區域生長,從單個像素出發,逐步合並以形成所需要的分割區域;另一種是從全局出發,逐步切割至所需的分割區域。
分水嶺演算法
分水嶺演算法是一個非常好理解的演算法,它根據分水嶺的構成來考慮圖像的分割,現實中我們可以想像成有山和湖的景象,那麼一定是水繞山山圍水的景象。
分水嶺分割方法,是一種基於拓撲理論的數學形態學的分割方法,其基本思想是把圖像看作是測地學上的拓撲地貌,圖像中每一點像素的灰度值表示該點的海拔高度,每一個局部極小值及其影響區域稱為集水盆,而集水盆的邊界則形成分水嶺。分水嶺的概念和形成可以通過模擬浸入過程來說明。在每一個局部極小值表面,刺穿一個小孔,然後把整個模型慢慢浸入水中,隨著浸入的加深,每一個局部極小值的影響域慢慢向外擴展,在兩個集水盆匯合處構築大壩,即形成分水嶺。
❼ 圖象分割有哪三種不同的途徑
圖象分割有三種不同的途徑,其一是將各象素劃歸到相應物體或區域的象素聚類方法即區域法,其二是通過直接確定區域間的邊界來實現分割的邊界方法,其三是首先檢測邊緣象素再將邊緣象素連接起來構成邊界形成分割。早期的圖像分割方法可以分為兩大類。一類是邊界方法,這種方法假設圖像分割結果的某個子區域在原來圖像中一定會有邊緣存在;一類是區域方法,這種方法假設圖像分割結果的某個子區域一定會有相同的性質,而不同區域的像素則沒有共同的性質。這兩種方法都有優點和缺點,有的學者考慮把兩者結合起來進行研究。現在,隨著計算機處理能力的提高,很多方法不斷涌現,如基於彩色分量分割、紋理圖像分割。所使用的數學工具和分析手段也是不斷的擴展,從時域信號到頻域信號處理,小波變換等等。
圖像分割主要包括4種技術:並行邊界分割技術、串列邊界分割技術、並行區域分割技術和串列區域分割技術。下面是分別對每一項做簡單的介紹。