導航:首頁 > 源碼編譯 > 智能優化演算法處理離散問題

智能優化演算法處理離散問題

發布時間:2023-02-26 21:11:36

❶ 智能優化演算法解決了哪些問題

智能優化主要是用來求最優解的,通過多次迭代計算找出穩定的收斂的最優解或近似最優解,例如復雜的單模態或多模態函數的求最值問題。

❷ 多目標智能優化演算法及其應用的序言

大多數工程和科學問題都是多目標優化問題,存在多個彼此沖突的目標,如何獲取這些問題的最優解,一直都是學術界和工程界關注的焦點問題.與單目標優化問題不同,多目標優化的本質在於,大多數情況下,某目標的改善可能引起其他目標性能的降低,同時使多個目標均達到最優是不可能的,只能在各目標之間進行協調權衡和折中處理,使所有目標函數盡可能達到最優,而且問題的最優解由數量眾多,甚至無窮大的Pareto最優解組成。
智能優化演算法是一類通過模擬某一自然現象或過程而建立起來的優化方法』這類演算法包括進化演算法、粒子群演算法、禁忌搜索、分散搜索、模擬退火、人工免疫系統和蟻群演算法等。和傳統的數學規劃法相比,智能優化演算法更適合求解多目標優化問題。首先,大多數智能優化演算法能同時處理一組解,演算法每運行一次,能獲得多個有效解。其次,智能優化演算法對Pareto最優前端的形狀和連續性不敏感,能很好地逼近非凸或不連續的最優前端。目前,智能優化演算法作為一類啟發式搜索演算法,已被成功應用於多目標優化領域,出現了一些熱門的研究方向,如進化多目標優化,同時,多目標智能優化演算法在電力系統、製造系統和控制系統等方面的應用研究也取得了很大的進展。
本書力圖全面總結作者和國內外同行在多目標智能優化演算法的理論與應用方面所取得的一系列研究成果。全書包括兩部分,共8章。第一部分為第1-4主要介紹了各種多目標智能優化演算法的理論。其中第1章為緒論,介紹各種智能優化演算法的基本思想和原理。第2章介紹多目標進化演算法,主要描述多目標進化演算法的基本原理、典型演算法和各種進化機制與策略,如混合策略、協同進化和動態進化策略等。第3章介紹多目標粒子群演算法,包括基本原理、典型演算法、混合演算法和交互粒子群演算法等。第4章描述除粒子群演算法和進化演算法之外的其他多目標智能優化演算法,主要介紹多目標模擬退火演算法、多目標蟻群演算法、多目標免疫演算法、多目標差分進化演算法和多目標分散搜索等。
第二部分為第5-8章,主要介紹了多目標智能優化演算法的應用』包括神經網路優化、生產調度、交通與物流系統優化、電力系統優化及其他。第5章描述人工神經網路的多目標優化,主要包括Pareto進化神經網路、徑向基神經網路、遞歸神經網路和模糊神經網路。第6章介紹交通與物流系統優化,主要描述了智能優化演算法在物流配送、城市公交路線網路和公共交通調度等方面的應用。

❸ 優化演算法是什麼

智能優化演算法是一種啟發式優化演算法,包括遺傳演算法、蟻群演算法、禁忌搜索演算法、模擬退火演算法、粒子群演算法等。·智能優化演算法一般是針對具體問題設計相關的演算法,理論要求弱,技術性強。一般,我們會把智能演算法與最優化演算法進行比較,相比之下,智能演算法速度快,應用性強。

群體智能優化演算法是一類基於概率的隨機搜索進化演算法,各個演算法之間存在結構、研究內容、計算方法等具有較大的相似性。

各個群體智能演算法之間最大不同在於演算法更新規則上,有基於模擬群居生物運動長更新的(如PSO,AFSA與SFLA),也有根據某種演算法機理設置更新規則(如ACO)。

(3)智能優化演算法處理離散問題擴展閱讀:

優化演算法有很多,關鍵是針對不同的優化問題,例如可行解變數的取值(連續還是離散)、目標函數和約束條件的復雜程度(線性還是非線性)等,應用不同的演算法。 對於連續和線性等較簡單的問題,可以選擇一些經典演算法,例如梯度、Hessian 矩陣、拉格朗日乘數、單純形法、梯度下降法等;而對於更復雜的問題,則可考慮用一些智能優化演算法。

❹ 什麼是智能優化演算法

群體智能優化演算法是一類基於概率的隨機搜索進化演算法,各個演算法之間存在結構、研究內容、計算方法等具有較大的相似性。因此,群體智能優化演算法可以建立一個基本的理論框架模式:

Step1:設置參數,初始化種群;

Step2:生成一組解,計算其適應值;

Step3:由個體最有適應著,通過比較得到群體最優適應值;

Step4:判斷終止條件示否滿足?如果滿足,結束迭代;否則,轉向Step2;

各個群體智能演算法之間最大不同在於演算法更新規則上,有基於模擬群居生物運動步長更新的(如PSO,AFSA與SFLA),也有根據某種演算法機理設置更新規則(如ACO)。

(4)智能優化演算法處理離散問題擴展閱讀

優化演算法有很多,經典演算法包括:有線性規劃,動態規劃等;改進型局部搜索演算法包括爬山法,最速下降法等,模擬退火、遺傳演算法以及禁忌搜索稱作指導性搜索法。而神經網路,混沌搜索則屬於系統動態演化方法。

優化思想裡面經常提到鄰域函數,它的作用是指出如何由當前解得到一個(組)新解。其具體實現方式要根據具體問題分析來定。

❺ 傳統優化演算法和現代優化演算法包括哪些.區別是什麼

1. 傳統優化演算法一般是針對結構化的問題,有較為明確的問題和條件描述,如線性規劃,二次規劃,整數規劃,混合規劃,帶約束和不帶約束條件等,即有清晰的結構信息;而智能優化演算法一般針對的是較為普適的問題描述,普遍比較缺乏結構信息。

2. 傳統優化演算法不少都屬於凸優化范疇,有唯一明確的全局最優點;而智能優化演算法針對的絕大多數是多極值問題,如何防止陷入局部最優而盡可能找到全局最優是採納智能優化演算法的根本原因:對於單極值問題,傳統演算法大部分時候已足夠好,而智能演算法沒有任何優勢;對多極值問題,智能優化演算法通過其有效設計可以在跳出局部最優和收斂到一個點之間有個較好的平衡,從而實現找到全局最優點,但有的時候局部最優也是可接受的,所以傳統演算法也有很大應用空間和針對特殊結構的改進可能。

3. 傳統優化演算法一般是確定性演算法,有固定的結構和參數,計算復雜度和收斂性可做理論分析;智能優化演算法大多屬於啟發性演算法,能定性分析卻難定量證明,且大多數演算法基於隨機特性,其收斂性一般是概率意義上的,實際性能不可控,往往收斂速度也比較慢,計算復雜度較高。

❻ 離散粒子群優化演算法的背景和意義是什麼

定義粒子群優化演算法(Particle Swarm optimization,PSO)又翻譯為粒子群演算法、微粒群演算法、或微粒群優化演算法。是通過模擬鳥群覓食行為而發展起來的一種基於群體協作的隨機搜索演算法。通常認為它是群集智能 (Swarm intelligence, SI) 的一種。它可以被納入多主體優化系統 (Multiagent Optimization System, MAOS). 粒子群優化演算法是由Eberhart博士和kennedy博士發明。PSO模擬鳥群的捕食行為PSO模擬鳥群的捕食行為。一群鳥在隨機搜索食物,在這個區域里只有一塊食物。所有的鳥都不知道食物在那裡。但是他們知道當前的位置離食物還有多遠。那麼找到食物的最優策略是什麼呢。最簡單有效的就是搜尋目前離食物最近的鳥的周圍區域。從模型中得到的啟示PSO從這種模型中得到啟示並用於解決優化問題。PSO中,每個優化問題的解都是搜索空間中的一隻鳥。我們稱之為「粒子」。所有的粒子都有一個由被優化的函數決定的適應值(fitnessvalue),每個粒子還有一個速度決定他們飛翔的方向和距離。然後粒子們就追隨當前的最優粒子在解空間中搜索。PSO初始化PSO初始化為一群隨機粒子(隨機解),然後通過疊代找到最優解,在每一次疊代中,粒子通過跟蹤兩個「極值」來更新自己。第一個就是粒子本身所找到的最優解,這個解叫做個體極值pBest,另一個極值是整個種群目前找到的最優解,這個極值是全局極值gBest。另外也可以不用整個種群而只是用其中一部分最優粒子的鄰居,那麼在所有鄰居中的極值就是局部極值。編輯本段演算法介紹在找到這兩個最優值時, 粒子根據如下的公式來更新自己的速度和新的位置v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)present[] = persent[] + v[] (b)v[] 是粒子的速度, persent[] 是當前粒子的位置. pbest[] and gbest[] 如前定義 rand () 是介於(0, 1)之間的隨機數. c1, c2 是學習因子. 通常 c1 = c2 = 2.程序的偽代碼如下For each particle____Initialize particleENDDo____For each particle________Calculate fitness value________If the fitness value is better than the best fitness value (pBest) in history____________set current value as the new pBest____End____Choose the particle with the best fitness value of all the particles as the gBest____For each particle________Calculate particle velocity according equation (a)________Update particle position according equation (b)____EndWhile maximum iterations or minimum error criteria is not attained在每一維粒子的速度都會被限制在一個最大速度Vmax,如果某一維更新後的速度超過用戶設定的Vmax,那麼這一維的速度就被限定為Vmax。編輯本段遺傳演算法和PSO的比較共同點①種群隨機初始化。②對種群內的每一個個體計算適應值(fitness value)。適應值與最優解的距離直接有關。③種群根據適應值進行復制 。④如果終止條件滿足的話,就停止,否則轉步驟② 。從以上步驟,我們可以看到PSO和遺傳演算法有很多共同之處。兩者都隨機初始化種群,而且都使用適應值來評價系統,而且都根據適應值來進行一定的隨機搜索。兩個系統都不是保證一定找到最優解。但是,PSO沒有遺傳操作如交叉(crossover)和變異(mutation),而是根據自己的速度來決定搜索。粒子還有一個重要的特點,就是有記憶。不同點與遺傳演算法比較,PSO的信息共享機制是很不同的。在遺傳演算法中,染色體(chromosomes)互相共享信息,所以整個種群的移動是比較均勻的向最優區域移動。在PSO中, 只有gBest (orlBest) 給出信息給其他的粒子, 這是單向的信息流動。整個搜索更新過程是跟隨當前最優解的過程。與遺傳演算法比較, 在大多數的情況下,所有的粒子可能更快的收斂於最優解。編輯本段人工神經網路和PSO定義人工神經網路(ANN)是模擬大腦分析過程的簡單數學模型,反向轉播演算法是最流行的神經網路訓練演算法。進來也有很多研究開始利用演化計算(evolutionary computation)技術來研究人工神經網路的各個方面。研究方面演化計算可以用來研究神經網路的三個方面:網路連接權重,網路結構(網路拓撲結構,傳遞函數),網路學習演算法。不過大多數這方面的工作都集中在網路連接權重,和網路拓撲結構上。在GA中,網路權重和/或拓撲結構一般編碼為染色體(Chromosome),適應函數(fitness function)的選擇一般根據研究目的確定。例如在分類問題中,錯誤分類的比率可以用來作為適應值優缺點演化計算的優勢在於可以處理一些傳統方法不能處理的例子例如不可導的節點傳遞函數或者沒有梯度信息存在。但是缺點在於:1、在某些問題上性能並不是特別好。2. 網路權重的編碼而且遺傳運算元的選擇有時比較麻煩。最近已經有一些利用PSO來代替反向傳播演算法來訓練神經網路的論文。研究表明PSO 是一種很有潛力的神經網路演算法。PSO速度比較快而且可以得到比較好的結果。而且還沒有遺傳演算法碰到的問題。舉例這里用一個簡單的例子說明PSO訓練神經網路的過程。這個例子使用分類問題的基準函數 (Benchmark function)IRIS數據集。(Iris 是一種鳶尾屬植物) 在數據記錄中,每組數據包含Iris花的四種屬性:萼片長度,萼片寬度,花瓣長度,和花瓣寬度,三種不同的花各有50組數據. 這樣總共有150組數據或模式。我們用3層的神經網路來做分類。現在有四個輸入和三個輸出。所以神經網路的輸入層有4個節點,輸出層有3個節點我們也可以動態調節隱含層節點的數目,不過這里我們假定隱含層有6個節點。我們也可以訓練神經網路中其他的參數。不過這里我們只是來確定網路權重。粒子就表示神經網路的一組權重,應該是4*6+6*3=42個參數。權重的范圍設定為[-100,100] (這只是一個例子,在實際情況中可能需要試驗調整).在完成編碼以後,我們需要確定適應函數。對於分類問題,我們把所有的數據送入神經網路,網路的權重有粒子的參數決定。然後記錄所有的錯誤分類的數目作為那個粒子的適應值。現在我們就利用PSO來訓練神經網路來獲得盡可能低的錯誤分類數目。PSO本身並沒有很多的參數需要調整。所以在實驗中只需要調整隱含層的節點數目和權重的范圍以取得較好的分類效果。

❼ 智能演算法的智能演算法概述

智能優化演算法要解決的一般是最優化問題。最優化問題可以分為(1)求解一個函數中,使得函數值最小的自變數取值的函數優化問題和(2)在一個解空間裡面,尋找最優解,使目標函數值最小的組合優化問題。典型的組合優化問題有:旅行商問題(Traveling Salesman Problem,TSP),加工調度問題(Scheling Problem),0-1背包問題(Knapsack Problem),以及裝箱問題(Bin Packing Problem)等。
優化演算法有很多,經典演算法包括:有線性規劃,動態規劃等;改進型局部搜索演算法包括爬山法,最速下降法等,本文介紹的模擬退火、遺傳演算法以及禁忌搜索稱作指導性搜索法。而神經網路,混沌搜索則屬於系統動態演化方法。
優化思想裡面經常提到鄰域函數,它的作用是指出如何由當前解得到一個(組)新解。其具體實現方式要根據具體問題分析來定。
一般而言,局部搜索就是基於貪婪思想利用鄰域函數進行搜索,若找到一個比現有值更優的解就棄前者而取後者。但是,它一般只可以得到「局部極小解」,就是說,可能這只兔子登「登泰山而小天下」,但是卻沒有找到珠穆朗瑪峰。而模擬退火,遺傳演算法,禁忌搜索,神經網路等從不同的角度和策略實現了改進,取得較好的「全局最小解」。

❽ 智能優化演算法及其應用的目錄

第1章緒論1
1.1最優化問題及其分類1
1.1.1函數優化問題1
1.1.2組合優化問題10
1.2優化演算法及其分類12
1.3鄰域函數與局部搜索13
1.4計算復雜性與NP完全問題14
1.4.1計算復雜性的基本概念14
1.4.2P,NP,NP?C和NP?hard14
第2章模擬退火演算法17
2.1模擬退火演算法17
2.1.1物理退火過程和Metropolis准則17
2.1.2組合優化與物理退火的相似性18
2.1.3模擬退火演算法的基本思想和步驟19
2.2模擬退火演算法的馬氏鏈描述20
2.3模擬退火演算法的收斂性21
2.3.1時齊演算法的收斂性21
2.3.2非時齊演算法的收斂性26
2.3.3SA演算法漸進性能的逼近26
2.4模擬退火演算法關鍵參數和操作的設計27
2.5模擬退火演算法的改進29
2.6並行模擬退火演算法31
2.7演算法實現與應用32
2.7.1組合優化問題的求解32
2.7.2函數優化問題的求解33
第3章遺傳演算法36
3.1遺傳演算法的基本流程36
3.2模式定理和隱含並行性38
3.3遺傳演算法的馬氏鏈描述及其收斂性40
3.3.1預備知識40
3.3.2標准遺傳演算法的馬氏鏈描述41
3.3.3標准遺傳演算法的收斂性42
3.4一般可測狀態空間上遺傳演算法的收斂性44
3.4.1問題描述45
3.4.2演算法及其馬氏鏈描述45
3.4.3收斂性分析和收斂速度估計45
3.5演算法關鍵參數與操作的設計47
3.6遺傳演算法的改進50
3.7免疫遺傳演算法51
3.7.1引言51
3.7.2免疫遺傳演算法及其收斂性52
3.7.3免疫運算元的機理與構造54
3.7.4TSP問題的免疫遺傳演算法56
3.8並行遺傳演算法58
3.9演算法實現與應用59
第4章禁忌搜索演算法62
4?1禁忌搜索62
4?1?1引言62
4?1?2禁忌搜索示例63
4?1?3禁忌搜索演算法流程67
4?2禁忌搜索的收斂性68
4?3禁忌搜索的關鍵參數和操作70
4?4並行禁忌搜索演算法75
4?5禁忌搜索的實現與應用77
4?5?1基於禁忌搜索的組合優化77
4?5?2基於禁忌搜索的函數優化78
第5章神經網路與神經網路優化演算法83
5.1神經網路簡介83
5.1.1神經網路發展回顧83
5.1.2神經網路的模型84
5.2基於Hopfield反饋網路的優化策略89
5.2.1基於Hopfield模型優化的一般流程89
5.2.2基於Hopfield模型優化的缺陷90
5.2.3基於Hopfield模型優化的改進研究90
5.3動態反饋神經網路的穩定性研究94
5.3.1動態反饋網路的穩定性分析94
5.3.1.1離散對稱動態反饋網路的漸近穩定性分析95
5.3.1.2非對稱動態反饋網路的全局漸近穩定性分析99
5.3.1.3時延動態反饋網路的全局漸近穩定性分析101
5.3.2動態反饋神經網路的收斂域估計103
5.4基於混沌動態的優化研究概述105
5.4.1基於混沌神經網路的組合優化概述106
5.4.2基於混沌序列的函數優化研究概述108
5.4.3混沌優化的發展性研究109
5.5一類基於混沌神經網路的優化策略110
5.5.1ACNN模型的描述110
5.5.2ACNN模型的優化機制111
5.5.3計算機模擬研究與分析112
5.5.4模型參數對演算法性能影響的幾點結論116
第6章廣義鄰域搜索演算法及其統一結構118
6.1廣義鄰域搜索演算法118
6.2廣義鄰域搜索演算法的要素119
6.3廣義鄰域搜索演算法的統一結構120
6?4優化演算法的性能評價指標123
6?5廣義鄰域搜索演算法研究進展125
6.5.1理論研究概述125
6.5.2應用研究概述128
6.5.3發展性研究129
第7章混合優化策略130
7.1引言130
7.2基於統一結構設計混合優化策略的關鍵問題131
7.3一類GASA混合優化策略132
7.3.1GASA混合優化策略的構造出發點132
7.3.2GASA混合優化策略的流程和特點133
7.3.3GASA混合優化策略的馬氏鏈描述135
7.3.4GASA混合優化策略的收斂性136
7.3.5GASA混合優化策略的效率定性分析141
第8章混合優化策略的應用143
8.1基於模擬退火?單純形演算法的函數優化143
8.1.1單純形演算法簡介143
8.1.2SMSA混合優化策略144
8.1.3演算法操作與參數設計145
8.1.4數值模擬與分析146
8.2基於混合策略的控制器參數整定和模型參數估計研究149
8.2.1引言149
8.2.2模型參數估計和PID參數整定149
8.2.3混合策略的操作與參數設計150
8.2.4數值模擬與分析151
8.3基於混合策略的TSP優化研究154
8.3.1TSP的混合優化策略設計154
8.3.2基於典型算例的模擬研究156
8.3.3對TSP的進一步討論158
8.4基於混合策略的加工調度研究159
8.4.1基於混合策略的Job?shop優化研究159
8.4.1.1引言159
8.4.1.2JSP的析取圖描述和編碼161
8.4.1.3JSP的混合優化策略設計163
8.4.1.4基於典型算例的模擬研究166
8.4.2基於混合策略的置換Flow?shop優化研究170
8.4.2.1混合優化策略170
8.4.2.2演算法操作與參數設計172
8.4.2.3數值模擬與分析172
8.4.3基於混合策略的一類批量可變流水線調度問題的優化研究174
8.4.3.1問題描述及其性質174
8.4.3.2混合優化策略的設計175
8.4.3.3模擬結果和分析177
8.5基於混合策略的神經網路權值學習研究177
8.5.1BPSA混合學習策略178
8.5.2GASA混合學習策略178
8.5.3GATS混合學習策略179
8.5.4編碼和優化操作設計180
8.5.5模擬結果與分析180
8.6基於混合策略的神經網路結構學習研究184
8.6.1RBF網路簡介184
8.6.2RBF網路結構優化的編碼和操作設計184
8.6.3RBF網路結構的混合優化策略186
8.6.4計算機模擬與分析187
8.7基於混合策略的光學儀器設計研究189
8.7.1引言189
8.7.2模型設計190
8.7.3模擬研究和設計結果191
附錄Benchmark問題193
A:TSP Benchmark問題193
B: 置換Flow?shop Benchmark問題195
C:Job?shop Benchmark問題211
參考文獻217

❾ pso的離散演算法

很多優化問題涉及到離散或二值的變數,典型的例子包括調度問題或路由問題。而PSO演算法的更新公式和過程是面向連續空間並為其設計的,因此需要做一些修改使之適應離散空間的情況。編碼的修改可能很簡單,難點在於定義速度的意義和確定軌跡的變化。
Kennedy定義了第一個離散二進製版本的PSO演算法。微粒使用二進制字元串進行編碼。通過使用sigmoid函數,速度被限制在[0, 1]區間之內,並被解釋為「概率的變化」。Yang對該方法在量子空間進行了擴展。
Mohan提出了幾種二進制方法(直接方法、量子方法、正則方法、偏差向量方法以及混合方法),但是從有限的實驗中沒有得出什麼結論。Clerc對一些專用於某些約束優化問題如TSP問題的PSO演算法變種進行了試驗,結果顯示該方法比較有前途。Pang使用模糊矩陣來表示微粒的位置和速度,對PSO演算法的算符進行了重定義,並將其應用到TSP問題的求解。Pampara將PSO演算法與信號處理中的角調制技術結合起來,將高維二進制問題降維為一個在連續空間中定義的四維問題,並通過求解該四維問題來獲得原問題的解。Afshinmanesh重新定義了離散PSO演算法中的加法與乘法,並使用人工免疫系統中的陰性選擇來實現速度限制Vmax。
Hu提出了一種改進PSO演算法來處理排列問題。微粒被定義為一組特定值的排列,速度基於兩個微粒的相似度重新定義,微粒根據由它們的速度所定義的隨機率來變換到一個新的排列。引入了一個變異因子來防止當前的pBest陷入局部最小。在n皇後問題上的初步研究顯示改進的PSO演算法在解決約束滿意問題方面很有前途。
Migliore對原始的二進制PSO演算法進行了一些改進,提出了可變行為二進制微粒群演算法(VB-BPSO)和可變動態特性二進制微粒群演算法(VD-BPSO)。VB-BPSO演算法按照連續PSO演算法的速度更新公式的思想設計了一個新的速度更新公式,用來確定微粒位置向量每一位為1的概率。而VD-BPSO演算法則是根據一定規則在兩組不同參數確定的VB-BPSO演算法之間切換。Migliore應用該演算法設計出一種簡單魯棒的自適應無源天線。
Parsopoulos以標准函數為例測試微粒群優化演算法解決整數規劃問題的能力。Salman將任務分配問題抽象為整數規劃模型並提出基於微粒群優化演算法的解決方法。兩者對迭代產生的連續解均進行舍尾取整後評價其質量。但是PSO演算法生成的連續解與整數規劃問題的目標函數評價值之間存在多對一的映射,以整型變數表示的目標函數不能准確反映演算法中連續解的質量,而由此導致的冗餘解空間與相應的冗餘搜索降低了演算法的收斂效率。
高尚採用交叉策略和變異策略,將PSO演算法用來解決集合劃分問題。趙傳信重新定義了微粒群位置和速度的加法與乘法操作,並將PSO演算法應用到0/1背包問題求解中。EL-Gallad在PSO演算法中引入探索和勘探兩個運算元,用於求解排序問題。Firpi提出了BPSO演算法的一種保證收斂的版本(但是並未證明其保證收斂性),並將其應用到特徵選擇問題。
上述離散PSO演算法都是間接的優化策略,根據概率而非演算法本身確定二進制變數,未能充分利用PSO演算法的性能。在處理整數變數時,PSO演算法有時候很容易陷入局部最小。原始PSO演算法的思想是從個體和同伴的經驗進行學習,離散PSO演算法也應該借鑒該思想。高海兵基於傳統演算法的速度—位移更新操作,在分析微粒群優化機理的基礎上提出了廣義微粒群優化模型(GPSO),使其適用於解決離散及組合優化問題。GPSO 模型本質仍然符合微粒群優化機理,但是其微粒更新策略既可根據優化問題的特點設計,也可實現與已有方法的融合。基於類似的想法,Goldbarg將局部搜索和路徑重連過程定義為速度運算元,來求解TSP問題。

❿ 群智能演算法及其應用的介紹

群智能演算法作為一種新興的演化計算技術,已成為越來越多研究者的關注焦點,它與人工生命,特別是進化策略以及遺傳演算法有著極為特殊的聯系。群智能理論研究領域主要有兩種演算法:蟻群演算法和粒子群優化演算法。蟻群演算法是對螞蟻群落食物採集過程的模擬,已成功應用於許多離散優化問題。粒子群優化演算法也是起源於對簡單社會系統的模擬,最初是模擬鳥群覓食的過程,但後來發現它是一種很好的優化工具。

閱讀全文

與智能優化演算法處理離散問題相關的資料

熱點內容
奶粉源箱源碼什麼意思 瀏覽:165
台州程序員兼職一般去哪些網站 瀏覽:386
舊版本怎麼下載到新的安卓 瀏覽:964
flash個人網站源碼下載 瀏覽:723
javasocketbyte 瀏覽:264
素描基礎教程pdf 瀏覽:541
香港商報pdf版 瀏覽:426
安卓手機怎麼錄制吉他彈奏 瀏覽:382
ie文件夾緩存在哪裡 瀏覽:264
圍棋排名演算法 瀏覽:963
zigbee加密演算法 瀏覽:464
柏楊版資治通鑒pdf 瀏覽:395
事業編程序員下班時間 瀏覽:10
linux中命令大全 瀏覽:38
pic單片機學習網站 瀏覽:163
843除6的演算法 瀏覽:377
arduino編程視頻 瀏覽:744
pdf背景綠色 瀏覽:612
記事本dos命令 瀏覽:275
伺服器如何搭建多個節點 瀏覽:328