1. 在原碼、反碼、補碼中,對真值0表示形式唯一的機器數是__________。
在原碼、反碼、補碼中,對真值0表示形式唯一的機器數是:__補__碼__。
-------------------
假定碼長是八位。
在原碼中,對真值0表示形式,有兩種:0000 0000 和 1000 0000。
在反碼中,對真值0表示形式,也有兩種:0111 1111 和 1111 1111。
在補碼中,對真值0表示形式,只有一種:0000 0000。
2. 0的原碼,補碼,反碼是什麼
0在計算機種分+0與-0,它們的原碼,補碼,反碼如下:
1、[+0]原碼=0000 0000, [-0]原碼=1000 0000;
2、[+0]反碼=0000 0000, [-0]反碼=1111 1111;
3、[+0]補碼=0000 0000, [-0]補碼=0000 0000。
在這里你會發現,+0和-0的補碼是一樣的,即0的補碼只有一種表示。
在計算機內,符號數有3種表示法:原碼、反碼和補碼。
(2)真值0的源碼是唯一的擴展閱讀:
原碼、補碼、反碼的轉換規則:
1、原碼的求法:
(1)對於正數,轉化為二進制數,在最前面添加一符號位(這是規定的),用1表示負數,0表示正數,如:0000 0000是一個位元組,其中左邊第一個0,0為符號位,表示是正數,其它七位表示二進制的值。
(2)正數的原碼、反碼、補碼是同一個數。
(3)對於負數,轉化為二進制數,前面符號位為1,1表示是負數。
2、計算原碼只要在轉化的二進制數前面加上相應的符號位就行了。
3、反碼的求法:
對於負數,將原碼各位取反,符號位不變。
4、補碼的求法:
對於負數,將反碼加上二進制的1即可,也就是反碼在最後一位上加上1就是補碼了。
3. 為什麼「對於真值0,源碼有兩種不同的表現形式,而補碼卻只有唯一的一種表現形式.」
0可以是+0,也可以是-0
0的原碼為:10000(-0),00000(+0)
+0的補碼和原碼相同,為00000
-0的補碼是在-0的原碼(10000)的基礎上,符號位不變,其它位按位取反再在低位加1(11111+1=00000),進而得到-0的補碼00000
所以補碼表示0隻有一種情況00000.而原碼則表示了兩次,分別為10000和00000.
希望可以幫到你,謝謝!
4. 0的補碼是唯一的嗎
對。0的源碼、反碼各有2個,補碼唯一,為全0.
5. 請問計算機的補碼總為什麼0有唯一的補碼,即[+0]=[-0]=00000000[-0]不應該不是這樣嗎
貌似是因為計算機中沒有+0和-0的區別。拿8位機舉例:如果有正零和負零的區別的話計算機一位的長度只能表示-127~+127共255個數,但是如果把1000,0000即我們認為的-0判斷成+128就能多表示一個數。為了功能更強大,所以設計人員讓計算機內部就不區別+0,-0所以也就不存在-0這個東東,所以0的補碼是唯一的也就是+0的補碼.
6. +0或者-0的源碼、反碼、補碼
[+0]原碼=0000 0000, [-0]原碼=1000 0000
[+0]反碼=0000 0000, [-0]反碼=1111 1111
[+0]補碼=0000 0000, [-0]補碼=0000 0000
補碼沒有正0與負0之分。正數的反碼、補碼和其源碼相同,負數的反碼是其源碼,除符號位外其他位取反負數的補碼是取其反碼後加1。
詳細釋義:
所謂原碼就是二進制定點表示法,即最高位為符號位,「0」表示正,「1」表示負,其餘位表示數值的大小。
(一)反碼表示法規定:
1、正數的反碼與其原碼相同;
2、負數的反碼是對正數逐位取反,符號位保持為1;
(二)對於二進制原碼10010求反碼:
((10010)原)反=對正數(00010)原含符號位取反= 反碼11101 (10010,1為符號碼,故為負)
(11101) 二進制= -2 十進制
(三)對於八進制:
舉例 某linux平台設置了默認的目錄許可權為755(rwxr-xr-x),八進製表示為0755,那麼,umask是許可權位755的反碼,計算得到umask為0022的過程如下:
原碼0755= 反碼 0022 (逐位解釋:0為符號位,0為7-7,2為7-5,2為7-5)
(四)補碼表示法規定:正數的補碼與其原碼相同;負數的補碼是在其反碼的末位加1。
(6)真值0的源碼是唯一的擴展閱讀
轉換方法
由於正數的原碼、補碼、反碼表示方法均相同,不需轉換。在此,僅以負數情況分析。
(1) 已知原碼,求補碼。
例:已知某數X的原碼為10110100B,試求X的補碼和反碼。
解:由[X]原=10110100B知,X為負數。求其反碼時,符號位不變,數值部分按位求反;求其補碼時,再在其反碼的末位加1。
1 0 1 1 0 1 0 0 原碼
1 1 0 0 1 0 1 1 反碼,符號位不變,數值位取反
1 +1
1 1 0 0 1 1 00 補碼
故:[X]補=11001100B,[X]反=11001011B。
(2) 已知補碼,求原碼。
分析:按照求負數補碼的逆過程,數值部分應是最低位減1,然後取反。但是對二進制數來說,先減1後取反和先取反後加1得到的結果是一樣的,故仍可採用取反加1 有方法。
例:已知某數X的補碼11101110B,試求其原碼。
解:由[X]補=11101110B知,X為負數。
採用逆推法
1 1 1 0 1 1 1 0 補碼
1 1 1 0 1 1 0 1 反碼(末位減1)
1 0 0 1 0 0 1 0 原碼(符號位不變,數值位取反)