導航:首頁 > 源碼編譯 > 驗證碼識別演算法開源

驗證碼識別演算法開源

發布時間:2023-02-27 15:23:39

A. python如何識別驗證碼

我們首先識別最簡單的一種驗證碼,即圖形驗證碼。這種驗證碼最早出現,現在也很常見,一般由4位字母或者數字組成。例如,中國知網的注冊頁面有類似的驗證碼,頁面如下所示:

表單中最後一項就是圖形驗證碼,我們必須完全正確輸入圖中的字元才可以完成注冊。

更多有關驗證碼的知識,可以參考這些文章:

Python3爬蟲進階:識別圖形驗證碼

Python3爬蟲進階:識別極驗滑動驗證碼

Python3爬蟲進階:識別點觸點選驗證碼

Python3爬蟲進階:識別微博宮格驗證碼

·本節目標以知網的驗證碼為例,講解利用OCR技術識別圖形驗證碼的方法。

·准備工作識別圖形驗證碼需要庫tesserocr,以mac安裝為例:在mac下,我們首先使用Homebrew安裝ImageMagick和tesseract庫: brew install imagemagickbrew install tesseract 接下來再安裝tesserocr即可:pip3 install tesserocr pillow這樣我們就完成了 tesserocr的安裝。

·獲取驗證碼為了便於實驗,我們先將驗證碼的圖片保存到本地。打開開發者工具,找到驗證碼元素。驗證碼元素是一張圖片,它的ser屬 性是CheckCode.aspk。所以我們直接打開如下鏈接就可以看到一個驗證碼,右鍵保存即可,將其命名為code.jpg:

這樣我們就得到一張驗證碼圖片,以供測試識別使用。

相關推薦:《Python教程》

識別測試

接下來新建一個項目,將驗證碼圖片放到項目根目錄下,用tesserocr庫識別該驗證碼,代碼如下所示:

這里我們新建了一個Image對戲那個,調用了tesserocr的image_to_text( )方法。傳入該Image對象即可完成識別,實現過程非常簡單,結果如下:

我們可以看到,識別的結果和實際結果有偏差,這是因為驗證碼內的多餘線條干擾了圖片的識別。

另外,tesserocr還有一個更加簡單的方法,這個方法可以直接將圖片文件轉為字元串,代碼如下:

不過這種方法的識別效果不如上一種的好。

驗證碼處理

對於上面的圖片,我們可以看到其實並沒有完全識別正確,所以我們需要對圖像作進一步的處理,如灰度轉換、二值化等操作。

我們可以利用Image對象的convert( )方法參數傳入L,即可將圖片轉化為灰度圖像,代碼如下:

傳入1即可將圖片進行二值化處理,如下所示:

我們還可以指定二值化的閾值。上面的方法採用的是默認閾值127。不過我們不能直接轉化原圖,要將原圖先轉化為灰度圖像,然後再指定二值化閾值,代碼如下:

在這里,變數threshold代表二值化閾值,閾值設置為160,之後我們來看看我們的結果:

我們可以看到現在的二維碼就比較方便我們進行識別了;那麼對於一些有干擾的圖片,我們做一些灰度和二值化處理,這會提高圖片識別的正確率。

B. 驗證碼識別之模板匹配方法

在寫爬蟲的時候難免會遇到驗證碼識別的問題,常見的驗證碼識別的流程為:

- 圖像灰度化

- 圖像去噪(如圖像二值化)

- 切割圖片

- 提取特徵

- 訓練

但這種方法要切割圖片,而且破解驗證碼的重點和難點就在於 能否成功分割字元 。

本文要介紹的演算法 不需要進行圖片切割,也不需要進行機器訓練 ,這種方法就是模板匹配:將待識別的文字切割成一個個模板,在待識別的圖像中去匹配模板。

這篇文章將分為兩個部分:

第一部分介紹模板匹配的基本概念以及模板匹配的一種實現演算法:快速歸一化互相關匹配演算法;

第二部分是一個具體實例。

模板匹配是在圖像中尋找目標的方法之一,目的就是在一幅圖像中尋找和模板圖像最相似的區域。

模板匹配的大致過程是這樣的:通過在輸入圖像上滑動圖像塊對實際的圖像塊和輸入圖像進行匹配。

假設我們有一張100x100的輸入圖像,有一張10x10的模板圖像,查找的過程是這樣的:

從輸入圖像的左上角(0,0)開始,切割一塊(0,0)至(10,10)的臨時圖像;

用某種方法得出臨時圖像與模板的相似度c,存放到相似度矩陣中(矩陣大小為91 x91);

切割輸入圖像從(0,1)至(10,11)的臨時圖像,對比,並記錄到相似度矩陣;

重復上述步驟,直到輸入圖像的右下角。

最終得到一個相似度矩陣,找到矩陣中的最大或最小值,最大值(最小值)對應的臨時圖像即為與模板最相似的圖像。

在步驟b中,求模板與圖像的相似度有多種方法,如平均絕對差演算法(MAD)、絕對誤差和演算法(SAD)、誤差平方和演算法(SSD)、歸一化互相關演算法(NCC),本文使用的是歸一化互相關演算法。

什麼是歸一化互相關?

從幾何圖形上來看,空間中的兩個向量,同方向平行時,歸一化互相關系數為1,表示兩個向量最相似,反方向平行時歸一化互相關系數為-1,垂直時為0,表示最不相似(用互相垂直的三個向量來代表整個空間也是這個道理,垂直的向量之間不包含對方的信息,相關系數為0),存在一定夾角時處於(-1,1),是不是跟餘弦函數很像,cos(0)=1,cos(pi/2)=0,cos(pi)=-1。就是這個樣子的,相關系數可以看作是兩個向量之間夾角的cosine函數。

在數學中是這么計算cosine函數的,假設兩個n維向量X,Y,對應的坐標分別為(x1,x2,…xn), (y1,y2,…yn) 則:

(如果想要了解更多,請參考文獻【2】)

但這是一維的,在模板匹配中要再加一個維度 (具體演算法請參考文獻【3】) ,簡要說一下文獻【3】的內容:如果直接計算二維相似度的話計算復雜度會非常高,文獻【3】利用快速傅里葉變換與積分圖像快速演算法來降低計算復雜度。

接下來讓我們看一個具體的應用。

模板匹配識別驗證碼的具體步驟為:

1. 找出圖片中所有可能出現的字元,製作成模板集合

2. 圖像灰度化

3. 圖片去噪(二值化)

4. 模板匹配

5. 匹配結果優化

要識別的圖片如下,以識別圖片中的加字為例:



要從image中找到與模板最匹配的部分,Template圖像是事先從image圖像中截取的一部分。所用的為python模塊skimage中的match_template方法,match_template方法使用的是快速歸一化互相關演算法 【2】 。

遍歷模板圖像集合,與圖像匹配,如果dist大於閾值h,則認為此模板在圖像中存在,否則不存在,繼續匹配下一個模板,直到遍歷完所有模板。

以模板『加』為例,圖像大小為40x260,模板大小27x27,result是一個大小為(14,234)的矩陣,即上文提到的相似度矩陣,矩陣中的數值屬於[-1,1],找到result中最大值所處的對應位置即為與模板最匹配的圖像位置:x=66,y=11,正好對應模板圖像在image中所處的位置。 (更多內容請參閱參考文獻【4】)

但這是比較好的情況,因為在匹配時遍歷了所有的模板,而一張圖片中出現的模板數量是有限的,比如數字』四』在圖片中是沒有的,這時就要根據某種規則去掉這些在圖片中沒有出現的模板:程序中使用dist變數來過濾匹配結果,如果dist變數大於某個值則認為此模板在圖像中不存在。

最後的result_list中可能仍然存在一些圖片中不存在的模板或者匹配不精確的模板,比如數字『一』在模板中不存在,但仍然可以匹配到,因為數字『二』中可以匹配到『一』,需要進一步優化,優化方法有很多,比如當匹配到的兩個模板距離過近時,選擇較大的那個模板,其餘方法留給讀者自行考慮吧。

後續將會推出如何使用深度學習識別驗證碼,敬請期待~


參考文獻:

http://www.cnblogs.com/beer/p/5672678.html

http://www.ruanyifeng.com/blog/2013/03/cosine_similarity.html

J. P. Lewis, 「Fast Normalized Cross-Correlation」, Instrial Light and Magic.

http://scikit-image.org/docsjinhqin/dev/auto_examples/plot_template.html


本文作者 :李暉(點融黑幫),畢業於電子科技大學,現就職於點融成都Data部門,對一切新鮮事物充滿好奇,對跳舞毫無抵抗力的活力女青年一枚。

C. python tesserocr識別普通驗證碼成功後列印結果為空

和threshold=127這個有關系,變更這個數值就能看出來了,比如調成200

D. 如何利用Python做簡單的驗證碼識別

1摘要

驗證碼是目前互聯網上非常常見也是非常重要的一個事物,充當著很多系統的防火牆功能,但是隨時OCR技術的發展,驗證碼暴露出來的安全問題也越來越嚴峻。本文介紹了一套字元驗證碼識別的完整流程,對於驗證碼安全和OCR識別技術都有一定的借鑒意義。

然後經過了一年的時間,筆者又研究和get到了一種更強大的基於CNN卷積神經網路的直接端到端的驗證識別技術(文章不是我的,然後我把源碼整理了下,介紹和源碼在這裡面):

基於python語言的tensorflow的『端到端』的字元型驗證碼識別源碼整理(github源碼分享)

2關鍵詞

關鍵詞:安全,字元圖片,驗證碼識別,OCR,Python,SVM,PIL

3免責聲明

本文研究所用素材來自於某舊Web框架的網站完全對外公開的公共圖片資源。

本文只做了該網站對外公開的公共圖片資源進行了爬取,並未越權做任何多餘操作。

本文在書寫相關報告的時候已經隱去漏洞網站的身份信息。

本文作者已經通知網站相關人員此系統漏洞,並積極向新系統轉移。

本報告的主要目的也僅是用於OCR交流學習和引起大家對驗證安全的警覺。

4引言

關於驗證碼的非技術部分的介紹,可以參考以前寫的一篇科普類的文章:

互聯網安全防火牆(1)--網路驗證碼的科普

裡面對驗證碼的種類,使用場景,作用,主要的識別技術等等進行了講解,然而並沒有涉及到任何技術內容。本章內容則作為它的技術補充來給出相應的識別的解決方案,讓讀者對驗證碼的功能及安全性問題有更深刻的認識。

5基本工具

要達到本文的目的,只需要簡單的編程知識即可,因為現在的機器學習領域的蓬勃發展,已經有很多封裝好的開源解決方案來進行機器學習。普通程序員已經不需要了解復雜的數學原理,即可以實現對這些工具的應用了。

主要開發環境:

E. 如何快速學習神經網路演算法識別驗證碼

驗證碼都是伺服器生成的圖片,如果是動態的,就是調用servlet生成的,怎麼提取我還不太清楚,不過我想網路上應該會有很多資料。

我現在看的是識別驗證碼的東西,在截取到驗證碼圖片之後,針對這個黑白背景,只有干擾線的驗證碼。

機器學習之識別簡單驗證碼
時間 2016-10-15 22:46:31 隨風'S Blog

主題 數據挖掘
關於驗證碼識別的文章網上很多圖像識別的大神教程也比較多,不過大多數專業性太強了,對非專業人士讀起來簡直是天書,不過隨著機器學習的普及,一大批機器學習的開源工具出現了,這也算對大多數像我一樣的學渣的福音,由於最近項目中牽扯到了一些機器學習相關的東西,所以自己最近也一直在學習機器相關的東西,這篇驗證碼的識別也算是練手了,本文也算是學習中的筆記,所以文章中難免有一些錯誤,歡迎各路大神指點。
由於本人不是相關專業的,對於文中相關演算法就不會具體去討論了,主要以實戰為目的。
准備工作
主要是用到了一些機器學習開源的框架以及一些輔助工具。
Scikit-Learn 比較有名的Python機器學習模塊,主要是操作簡單。
Pybrain Python機器學習模塊,主要以神經網路為核心,所有的訓練方法都以神經網路為一個實例。
pytesseract 圖像識別小工具,本文主要是用來預處理訓練樣本的。
PIL Python圖像處理庫。
問題分析
首先在進行具體工作之前,我們得看看我們需要解決的是什麼問題,那麼對於驗證碼識別來說,可以看作一個分類問題,對於數字的圖片驗證碼來說的話,其實就是0-9數字分類的問題,驗證碼識別最難的部分在於怎麼去將驗證碼進行切割成單個字元圖片,當然對於圖片裁剪也就是特徵提取有很多辦法,例如垂直投影法,等距切割法等等,其中等距切割也是比較簡單的,但是對於稍微復雜一點的驗證碼識別時准確率非常低,因為等距切割時將驗證碼按照相同的寬度進行裁剪,對於那些字元寬度大小不一的,就算裁剪出來也不能很好的表示字元的特徵,所以有時候需要先對圖片進行一系列的預處理,例如字元矯正等等,然後再用垂直投影法在x軸和y軸上按照投影的大小進行裁剪。
對於垂直投影法來說的話,最後我們還得考慮訓練集在維度上都同意,由於是非等級切割,所以每個圖片的像素肯定不一樣,所以為了維度統一還得進行填充,總之稍微麻煩一點。
這里主要是以等距切割為例子,因為在操作起來比較簡單,那麼掩碼也是選用0-9的純數字驗證碼來進行識別,驗證碼如下

這樣的圖片看起來的話間距基本上都差不多大,所以在分割時也比較容易,將圖片切成四塊後,就可以拿每一塊去進行訓練識別了。
使用機器學習來進行訓練和識別的話,我們就得考慮特徵選取了,一般驗證碼識別有一套標準的流程,圖片

對於驗證碼識別來說我們關注的不是驗證碼的顏色,而是字元代表的含義,所以在圖片處理時進行灰度化和二值化以及去噪,比如說去掉干擾線,那麼去噪也有相應的演算法來實現,這里不做具體討論,二值化其實就是將圖片呈現出兩種顏色,即非黑即白,這樣的好處是在特徵處理時可以使用0和1來代表黑色和白色,0和1代表什麼顏色取決於個人喜好。
這樣的話將二值化和其它步驟處理後的圖片進行特徵提取,將黑色像素點標記成1,白色像素點標記成0,這樣就可以得到圖片的數值表示,那麼特徵維度就等於圖片像素的大小,最終將圖片按照X軸或者Y軸表示,即將像素的所標記的值合並到一行,例如
1111100000000000010
1110000000000000000
表示成,這樣每張圖片就可以使用一行0和1的數值來表示。
進行特徵提取之後,我們得到了圖片在數學上的表示,那麼下一步就需要進行模型訓練了,由於如上文所述,圖片識別是一個分類問題,所以在機器學習中,我主要採用了兩種模型來進行訓練, SVM支持向量機 和 BP神經網路 來進行模型訓練,SVM使用scikit-learn機器學習包裡面的實現來做,神經網路使用Pybrain來進行實現。
有關SVM和BP神經網路的演算法部分,大家最好還是去網上搜下相關的Paper,這樣你才能知道什麼演算法能解決什麼問題,以及它大概的原理是什麼樣子的,有能力的同學可以去對推導下這兩個演算法。
實踐
在問題分析部分我們已經對驗證碼識別的大概思路有了一個了解,那麼這部分則主要正對上面所述部分進行具體實現。
首先,我們應該明白SVM和神經網路模型演算法是屬於有監督學習,即需要對樣本進行標注,也就是標記每張圖片表示的是那個數字,但是實際遇到的問題是,如果數據量小的話,我們可以進行人工標注,那麼在數據量比較大的情況下,人工標注可能就不太現實了,所以對於圖片來說的話也一樣,你進行切割完成之後你必須得標注這個數字是幾,所以我們需要對切割的圖片進行預處理,也就是打標記,我比較懶,所以我也不會一個個去打標簽,所以這里使用ocr來對切割的圖片進行預分類,ocr在單文字識別上的效果正確率還是可以的,在ocr進行預分類之後,我們只需要去糾正那些分類錯誤的圖片即可,這樣就能大大的減少工作量。
這里實現主要有以下幾個步驟:
圖片採集
圖片預處理(包括圖片切割,二值化以及圖像增強)
圖片的預分類標注以及手動糾錯標注
特徵提取
模型訓練以及預測
圖片採集
圖片採集就比較簡單,不過多的闡述,如下圖代碼所示

將下載到了圖片按照時間戳存到指定位置

圖片預處理以及圖片裁剪
對圖片進行預處理後採用等距切割法對圖片進行切割

裁剪後的圖片如下

圖片預分類
圖片預分類採用pytesseract來對分割的圖片進行預分類,減輕工作量。
具體代碼如下

ocr的分類效果正確率應該在50%以上,剩下的就是對預分類的圖片進行人工糾錯了。
ocr的分類效果圖

人工糾錯和標記後的結果

每個目錄表示一個類別標簽。
特徵提取
特徵提取的具體內容請參考問題分析中,裡面有詳細的說明。
關鍵代碼如下

最終圖片的數學上表示會以記錄在 /Users/iswin/Downloads/yzm/traindata/train_data.txt 中,數據的格式如下圖所示

紅色線框表示一張圖片數值上的表示,最後一個數字0表示該圖片的類型,我是為了方便把標簽追加到最後一行。
SVM模型分類
這里svm的實現使用了scikit-learn來實現,關於scikit-learn的使用去官網看Tutorial就好了,這里需要說一下SVM關於參數選擇的問題,我們都知道SVM支持多個核函數,例如高斯核、線性核、poly以及sgmoid核函數,但是選擇那麼核函數一開始對於不太熟悉的同學怎麼選擇的確是個問題,所以這里使用了scikit-learn的GridSearchCV來對參數進行最優化選擇,經過參數尋優,這里高斯核的最終效果還是不錯的,所以訓練的時候直接使用高斯核來進行訓練。
為了方便預測時的使用,這里對訓練結果使用了joblib模塊來進行持久化。為了簡單對評價模型進行,這里使用了5折交叉驗證來對結果進行檢驗。
最終結果的准確率在:Accuracy: 0.96 (+/- 0.09)
具體代碼如下:

舉個預測的例子,看看效果

BP神經網路模型分類
BP神經網路也稱負反饋神經網路,即按誤差逆傳播演算法訓練的多層前饋網路,是目前應用最廣泛的神經網路模型之一,在BP神經網路之後,又出現了在深度學習中應用最廣泛的CNN即卷積神經網路,這幾天也正在學習。
本文使用了三層BP神經網路來對訓練集進行訓練,即輸入層+2層隱含層+輸出層,關於BP神經網路本身這里需要注意的是激活函數的選擇以及對於多分類問題輸出層函數選擇的問題,激活函數主要有sigmod、tanh以及relu,關於怎麼選取激活函數,這塊沒有進行深入了解,一般都是每個激活函數都跑一次,看最終效果。
這里的神經網路模型分類主要是對Pybrain用法的學習以及BP神經網路的基本認識,輸入層使用了LinearLayer即線性輸入層,隱含層使用了SigmoidLayer即激活函數為sigmod的隱含層,輸出層由於是多分類問題,所以使用了SoftmaxLayer,最終在神經網路計算的結果中選取數值最大的那個索引位置就是預測的驗證碼類別,也就是0-9之間的數值。
關於Pybrain的資料除了官方文檔不是特別多,關於構建神經網路的方式提供了兩種方式,一種是 buildNetwork 函數來進行構建,另外一種就是使用 FeedForwardNetwork 函數來進行構建,這里需要注意的是如果使用 FeedForwardNetwork 來進行構建的話,注意要手動給各層加上Bias偏置項,否則結果可能可能非常差,當時我實驗時沒加,半天計算結果不對,最後看了下buildNetwork函數的源代碼才發現沒加Bias項,還有就是需要注意迭代至收斂的步數即函數中的 *maxEpochs=500 ,這個根據情況調整,Pybrain有自己的數據集格式,所以在使用時必須按照它的格式來進行數據的初始化。
這里除了輸入層的維度(即驗證碼的訓練集維度)和輸出是固定的之外,其中隱含層的神經元個數也是可以調整的,具體的感興趣的同學自己去調然後再看下結果。
對模型使用10折交叉驗證進行了簡單評估,錯誤率在Total error: 0.062左右,效果比SVM的差一點,應該通參數調優應該可以提高准確率,不過重在學習。
訓練集樣本: /Users/iswin/Downloads/yzm/traindata/train_data_uniq.txt
主要代碼如下:

舉個例子,來看看預測效果

總結
通過這個小實驗,至少讓我對機器學習和相關演算法大致有了一個了解,同時作為安全人員來說至少知道了如何使用開源的機器學習框架來構架自己的模型,筆記中難免會有錯誤之處,歡迎大家提出意見。

F. 如何用php做驗證碼的識別 求大師賜教不勝感激。。。。。。

驗證碼識別 沒什麼好的方法目前 谷歌那個 也不太准確。。指的是圖片那種的驗證碼

G. 識別驗證碼的演算法

一、驗證碼的基本知識
1. 驗證碼的主要目的是強制人機交互來抵禦機器自動化攻擊的。
2. 大部分的驗證碼設計者並不得要領,不了解圖像處理,機器視覺,模式識別,人工智慧
的基本概念。
3. 利用驗證碼,可以發財,當然要犯罪:比如招商銀行密碼只有6位,驗證碼形同虛設,計
算機很快就能破解一個有錢的賬戶,很多帳戶是可以網上交易的。
4. 也有設計的比較好的,比如Yahoo,Google,Microsoft等。而國內Tencent的中文驗證
碼雖然難,但算不上好。
二、人工智慧,模式識別,機器視覺,圖像處理的基本知識
1)主要流程:
比如我們要從一副圖片中,識別出驗證碼;比如我們要從一副圖片中,檢測並識別出一張
人臉。 大概有哪些步驟呢?
1.圖像採集:驗證碼呢,就直接通過HTTP抓HTML,然後分析出圖片的url,然後下載保存就
可以了。 如果是人臉檢測識別,一般要通過視屏採集設備,採集回來,通過A/D轉操作,存為
數字圖片或者視頻頻。
2.預處理:檢測是正確的圖像格式,轉換到合適的格式,壓縮,剪切出ROI,去除噪音,灰度
化,轉換色彩空間這些。
3.檢測:車牌檢測識別系統要先找到車牌的大概位置,人臉檢測系統要找出圖片中所有
的人臉(包括疑似人臉);驗證碼識別呢,主要是找出文字所在的主要區域。
4.前處理:人臉檢測和識別,會對人臉在識別前作一些校正,比如面內面外的旋轉,扭曲
等。我這里的驗證碼識別,「一般」要做文字的切割
5.訓練:通過各種模式識別,機器學習演算法,來挑選和訓練合適數量的訓練集。不是訓練
的樣本越多越好。過學習,泛化能力差的問題可能在這里出現。這一步不是必須的,有些識
別演算法是不需要訓練的。
6.識別:輸入待識別的處理後的圖片,轉換成分類器需要的輸入格式,然後通過輸出的類
和置信度,來判斷大概可能是哪個字母。識別本質上就是分類。
2)關鍵概念:
圖像處理:一般指針對數字圖像的某種數學處理。比如投影,鈍化,銳化,細化,邊緣檢測,
二值化,壓縮,各種數據變換等等。
1.二值化:一般圖片都是彩色的,按照逼真程度,可能很多級別。為了降低計算復雜度,
方便後續的處理,如果在不損失關鍵信息的情況下,能將圖片處理成黑白兩種顏色,那就最好
不過了。
2.細化:找出圖像的骨架,圖像線條可能是很寬的,通過細化將寬度將為1,某些地方可能
大於1。不同的細化演算法,可能有不同的差異,比如是否更靠近線條中間,比如是否保持聯通
行等。
3.邊緣檢測:主要是理解邊緣的概念。邊緣實際上是圖像中圖像像素屬性變化劇烈的地
方。可能通過一個固定的門限值來判斷,也可能是自適應的。門限可能是圖像全局的,也可
能是局部的。不能說那個就一定好,不過大部分時候,自適應的局部的門限可能要好點。被
分析的,可能是顏色,也可能是灰度圖像的灰度。
機器視覺:利用計算機來模式實現人的視覺。 比如物體檢測,定位,識別。按照對圖像
理解的層次的差別,分高階和低階的理解。
模式識別:對事物或者現象的某種表示方式(數值,文字,我們這里主要想說的是數值),
通過一些處理和分析,來描述,歸類,理解,解釋這些事物,現象及其某種抽象。
人工智慧:這種概念比較寬,上面這些都屬於人工智慧這個大的方向。簡單點不要過分
學院派的理解就是,把人類的很「智能」的東西給模擬出來協助生物的人來處理問題,特別是
在計算機裡面。

閱讀全文

與驗證碼識別演算法開源相關的資料

熱點內容
pic單片機學習網站 瀏覽:161
843除6的演算法 瀏覽:374
arduino編程視頻 瀏覽:742
pdf背景綠色 瀏覽:610
記事本dos命令 瀏覽:274
伺服器如何搭建多個節點 瀏覽:326
acx演算法 瀏覽:258
幽冥詭匠漫畫全集用什麼app可以看 瀏覽:1001
租用伺服器為什麼越來越慢 瀏覽:960
演算法創新就業方向 瀏覽:423
演算法最優解作者 瀏覽:868
通達信紅綠寶塔線指標源碼 瀏覽:667
app是什麼東西合法嗎 瀏覽:232
怎麼鎖app視頻教程 瀏覽:841
迅捷pdf注冊碼生成器 瀏覽:750
androidsdkosx 瀏覽:304
壓縮面膜紙熒光 瀏覽:841
app怎麼分身三個 瀏覽:745
電影bt下載源碼 瀏覽:423
iwatch屏幕加密晶元 瀏覽:570