『壹』 原碼反碼補碼的意義
問題一:原碼、補碼和反碼的概念??? 數在計算機中是以二進制形式表示的。
數分為有符號數和無符號數。
原碼、反碼、補碼都是有符號定點數的表示方法。
一個有符號定點數的最高位為符號位,0是正,1是副。
以下都以8位整數為例,
原碼就是這個數本身的二進制形式。
例如
0000001 就是+1
1000001 就是-1
正數的反碼和補碼都是和原碼相同。
負數的反碼是將其原碼除符號位之外的各位求反
[-3]反=[10000011]反=11111100
負數的補碼是將其原碼除符號位之外的各位求反之後在末位再加1。
[-3]補=[10000011]補=11111101
一個數和它的補碼是可逆的。
為什麼要設立補碼呢?
第一是為了能讓計算機執行減法:
[a-b]補=a補+(-b)補
第二個原因是為了統一正0和負0
正零:00000000
負零:10000000
這兩個數其實都是0,但他們的原碼卻有不同的表示。
但是他們的補碼是一樣的,都是00000000
特別注意,如果+1之後有進位的,要一直往前進位,包括符號位!(這和反碼是不同的!)
[10000000]補
=[10000000]反+1
=11111111+1
=(1)00000000
=00000000(最高位溢出了,符號位變成了0)
有人會問
10000000這個補碼表示的哪個數的補碼呢?
其實這是一個規定,這個數表示的是-128
所以n位補碼能表示的范圍是
-2^(n-1)到2^(n-1)-1
比n位原碼能表示的數多一個
又例:
1011
原碼:01011
反碼:01011 正數時,反碼=原碼
補碼:01011 正數時,補碼=原碼
-1011
原碼:11011
反碼:10100 負數時,反碼為原碼取反
補碼:10101 負數時,補碼為原碼取反+1
0.1101
原碼:0.1101
反碼:0.1101 正數時,反碼=原碼
補碼:0.1101 正數時,補碼=原碼
-0.1101
原碼:1.1101
反碼:1.0010 負數時,反碼為原碼取反
補碼:1.0011 負數時,補碼為原碼取反+1
總結:
在計算機內,定點數有3種表示法:原碼、反碼和補碼
所謂原碼就是前面所介紹的二進制定點表示法,即最高位為符號位,「0」表示正,「1」表示負,其餘位表示數值的大小。
反碼表示法規定:正數的反碼與其原碼相同;負數的反碼是對其原碼逐位取反,但符號位除外。
補碼表示法規定:正數的補碼與其原碼相同;負數的補碼是在其反碼的末位加1。
1、原碼、反碼和補碼的表示方法
(1) 原碼:在數值前直接加一符號位的表示法。
例如: 符號位 數值位
[+7]原= 0 0000111 B
[-7]原= 1 0000111 B
注意:a. 數0的原碼有兩種形式:
[+0]原=00000000B [-0]原=10000000B
b. 8位二進制原碼的表示範圍:-127~+127
2)反碼:
正數:正數的反碼與原碼相同。
負數:負數的反碼,符號位為「1」,數值部分按位取反。
......>>
問題二:補碼與反碼有什麼用處? 在現在的計算機中,用補碼表示有符號數,其計算方法,和無符號數的計算方法相同,所以可以共用一個運算器。
因此,在計算機里弧,通用的是補碼。
原碼和反碼,都是用於求補碼的中間過程,一般都是寫在紙面上,並不存入計算機。
問題三:計算機的原碼,反碼,補碼是怎麼回事?可以舉例說明嗎? 計算機以二進制補碼存儲數據
以16位機器為例:
比如83的二進制碼為:0000 0000 0101 0011
由於正數的源碼、反嗎、補碼,上面的既是源碼,也是反碼和補碼
下面通過負數講解源碼、反碼、補碼之間的關系
以-83為例
先求出-83絕對值的源碼:0000 0000 0101 0011
計算機區分正負數通過判斷最高位符號位,1為負數、0為正數
那麼-83的源碼為:1000 0000 0101 0011
反碼在源碼基礎上按位取反,符號位不變:1111 1111 1010 1100
補碼在反碼的基礎上加1:111場 1111 1010 1101
補碼轉源碼:補碼基礎上按位取反後加一,符號位在取反時不變,加一時最高位符號位有進位的,進位忽略
取反:1000 0000 0101 0010
加1:1000 0000 0101 0011
問題四:原碼,反碼和補碼表示的規則分別是什麼 一. 機器數和真值
在學習原碼, 反碼和補碼之前, 需要先了解機器數和真值的概念.
1、機器數
一個數在計算機中的二進製表示形式, 叫做這個數的機器數。機器數是帶符號的,在計算機用一個數的最高位存放符號, 正數為0, 負數為1.
比如,十進制中的數 +3 ,計算機字長為8位,轉換成二進制就是00000011。如果是 -3 ,就是 10000011 。
那麼,這里的 00000011 和 10000011 就是機器數。
2、真值
因
為第一位是符號位,所以機器數的形式值就不等於真正的數值。例如上面的有符號數 10000011,其最高位1代表負,其真正數值是 -3
而不是形式值131(10000011轉換成十進制等於131)。所以,為區別起見,將帶符號位的機器數對應的真正數值稱為機器數的真值。
例:0000 0001的真值 = +000 0001 = +1,1000 0001的真值 = C000 0001 = C1
二. 原碼, 反碼, 補碼的基礎概念和計算方法.
在探求為何機器要使用補碼之前, 讓我們先了解原碼, 反碼和補碼的概念.對於一個數, 計算機要使用一定的編碼方式進行存儲. 原碼, 反碼, 補碼是機器存儲一個具體數字的編碼方式.
1. 原碼
原碼就是符號位加上真值的絕對值, 即用第一位表示符號, 其餘位表示值. 比如如果是8位二進制:
[+1]原 = 0000 0001
[-1]原 = 1000 0001
第一位是符號位. 因為第一位是符號位, 所以8位二進制數的取值范圍就是:
[1111 1111 , 0111 1111]
即
[-127 , 127]
原碼是人腦最容易理解和計算的表示方式.
2. 反碼
反碼的表示方法是:
正數的反碼是其本身
負數的反碼是在其原碼的基礎上, 符號位不變,其餘各個位取反.
[+1] = [00000001]原 = [00000001]反
[-1] = [10000001]原 = [11111110]反
可見如果一個反碼表示的是負數, 人腦無法直觀的看出來它的數值. 通常要將其轉換成原碼再計算.
3. 補碼
補碼的表示方法是:
正數的補碼就是其本身
負數的補碼是在其原碼的基礎上, 符號位不變, 其餘各位取反, 最後+1. (即在反碼的基礎上+1)
[+1] = [00000001]原 = [00000001]反 = [00000001]補
[-1] = [10000001]原 = [11111110]反 = [11111111]補
對於負數, 補碼表示方式也是人腦無法直觀看出其數值的. 通常也需要轉換成原碼在計算其數值.
問題五:原碼反碼和補碼區別 原碼就是符號位加上真值的絕對值, 即用第一位表示符號, 其餘位表示值,如
[+1]原 = 0000 0001
[-1]原 = 1000 0001
正數的反碼是其本身
負數的反碼是在其原碼的基礎上, 符號位不變,其餘各個位取反.
[+1] = [00000001]原 = [00000001]反
[-1] = [10000001]原 = [11111110]反
補碼的表示方法是:
正數的補碼就是其本身
負數的補碼是在其原碼的基礎上, 符號位不變, 其餘各位取反, 最後+1. (即在反碼的基礎上+1)
[+1] = [00000001]原 = [00000001]反 = [00000001]補
[-1] = [10000001]原 = [11111110]反 = [11111111]補
正數的源碼,反碼,補碼都一樣
問題六:相對於原碼和反碼,補碼表示法有什麼優點和缺點 原碼表示法是機器數的一種簡單的表示法。其符號位用0表示正號,用:表示負號,數值一般用二進制形式表示。
機器數的反碼可由原碼得到。如果機器數是正數,則該機器數的反碼與原碼一樣;如果機器數是負數,則該機器數的反碼是對它的原碼(符號位除外)各位取反而得到的。
機器數的補碼可由原碼得到。如果機器數是正數,則該機器數的補碼與原碼一樣;如果機器數是負數,則該機器數的補碼是對它的原碼(除符號位外)各位取反,並在未位加1而得到的。
如果是為了考試,死記即可。但我總想搞清楚為什麼計算機裡面的數要這樣子表達?意義何在?-128的補碼為什麼是10000000?為什麼補碼有這么奇怪的運算規則?計算機算減法的時候都需要從源碼到補碼的計算嗎?
思路
google了一下,看到了這樣一篇文章,注意到文中關於補碼來歷的描述,可以總結如下:
計算機裡面,只有加法器,沒有減法器,所有的減法運算,都必須用加法進行。
用補數代替原數,可把減法轉變為加法。出現的進位就是模,此時的進位,就應該忽略不計。
二進制下,有多少位數參加運算,模就是在 1 的後面加上多少個 0。
補碼就是按照這個要求來定義的:正數不變,負數即用模減去絕對值。
補充解釋一下「模」的概念(不準確):
考慮時鍾上時間的計算,假設現在時針指向數字3,若問「6小時前時針指向的數字是幾」,則可以:
1. 將時針逆時針撥動6格。
2. 將時針順時針撥動12 - 6 = 6格。
兩者的結果是一樣的。這里稱12為「模」。
故有 3時 - 6個小時 = 3時 + (12 - 6個小時),這里可以看到將減法轉換成加法的過程,即「加上模減去絕對值的差」。
所以,假設模是10,有效位數為1,當我們計算 9 - 7 的時候:
9 - 7 => 9 + (10 - 7) = 12,去掉最高的位後,得到2,這是正確的結果。
作者的意思是說,計算機裡面所有數都以補碼形式保存,加減運算都是補碼之間的加法運算。然後作者提出了一個我之前沒聽過的觀點:
補數 和 補碼的定義式 裡面,根本就沒有什麼符號位。這最高位的1、0是自然出現的,並不是由人來規定的。
的確,符號位在補碼運算裡面是「模」,本身並不帶符號的意義。因為計算機將加法轉換成加上一個「負數」,而負數又以補碼的形式表現。補碼比源碼多一位,從這多出來的一位可以推斷出原來數字的正負號,所以成為了符號位。也可以這樣認為,留出一位(不全部占滿)的原因是要用「模」來表示正負數。
也就是說,不是特意留出一個符號位,用1和0來表示正負號。而是補碼運算可以用最高位來表示正負,所以符號位誕生了。
那麼為什麼-128的補碼是10000000?可以這樣理解。-128是一個負數,所以它的補碼是它的「模」減去它的絕對值,即:
100000000 - 10000000 = 10000000
那麼為什麼負數補碼等於源碼的反碼加一呢?可以這樣推導:
100000000 - 10000000
= (11111111 + 00000001) - 10000000
= 11111111 - 10000000 + 1
= 01111111 + 1 反碼加一
= 10000000
由此我們得知,在計算機裡面所有的數字都以補碼形式存儲。127存成01111111,-127存成11111111,算減法就變成算加法了,盡管你看到的是「-」號。...>>
問題七:c語言中的原碼,反碼,補碼有什麼作用,是用來做什麼的 計算機中的整數類都是用補碼來存儲的。
而C語言中不需要關心原反補碼!
『貳』 計算機的原碼,反碼,補碼是怎麼回事可以舉例說明嗎
計算機的原碼,反碼,補碼是怎麼回事?
可以舉例說明嗎?
計算機中,並沒有原碼和反碼。
補碼是怎麼回事?
這得從「補數」談起。
計算機所計算的位數,是固定的,如八位機。。。
位數限定之後,就可以用「補數」代替負數,用加法實現減法運算。
如兩位十進制,-1,就可以用 +99 代替。
25 - 1 = 24
25 + 99 = (一百) 24
舍棄進位,只取兩位,這兩種演算法功能就是相同的。
99,就是-1 的補數。計算公式:補數 = 一百+負數。
一百,是兩位十進制數的計數周期。
-------------------------
計算機用二進制,補數,就改稱為:補碼。
八位二進制:0000 0000 ~ 1111 1111 (十進制 255)。
計數周期是:2^8 = 256。
所以,-1 補碼就是 256 + (-1) = 255 = 1111 1111(二進制)。
用不存在的「原碼反碼取反加一」來求,也是這個結果。
求負數補碼的計算公式: 周期 + 該負數。
正數,不用轉換。也可以說,正數自身就是補碼。
-------------------------
可以舉例說明嗎?
例如: 7-3 = 4。
用補碼的計算過程如下:
7 的補碼=0000 0111
-3的補碼=1111 1101
--相加-------------
得(1) 0000 0100 = 4 的補碼
舍棄進位,只保留八位作為結果,這就實現了 7-3。
『叄』 二進制正,負數的原碼,反碼,補碼三者之間是什麼關系
2、符號位的表示:最常用的表示方法有原碼、反碼和補碼。
(1)原碼表示法:一個機器數x由符號位和有效數值兩部分組成,設符號位為x0,x真值的絕對值|x|=x1x2x3...xn,則x的機器數原碼可表示為:
[x]原=
,當x>=0時,x0=0,當x<0時,x0=1。
例如:已知:x1=-1011B,x2=
+1001B,則x1,x2有原碼分別是
[x1]
原=11011B,[x2]原=01001B
規律:正數的原碼是它本身,負數的原碼是取絕對值後,在最高位(左端)補「1」。
(2)反碼表示法:一個負數的原碼符號位不變,其餘各位按位取反就是機器數的反碼表示法。正數的反碼與原碼相同。
按位取反的意思是該位上是1的,就變成0,該位上是0的就變成1。即1=0,0=1
(3)補碼表示法:
首先分析兩個十進制數的運算:78-38=41,79+62=141
如果使用兩位數的運算器,做79+62時,多餘的100因為超出了運算器兩位數的范圍而自動丟棄,這樣在做78-38的減法時,用79+62的加法同樣可以得到正確結果。
模是批一個計量系統的測量范圍,其大小以計量進位制的基數為底數,位數為指數的冪。如兩位十進制數的測量范圍是1——9,溢出量是100,模就是102=100,上述運算稱為模運算,可以寫作:
79+(-38)=79+62
(mod
100)
進一步寫為
-38=62,此時就說
–38的補法(對模100而言)是62。計算機是一種有限字長的數字系統,因此它的運算都是有模運算,超出模的運算結果都將溢出。n位二進制的模是2n,
一個數的補碼記作[x]補,設模是M,x是真值,則補碼的定義如下:
例:設字長n=8位,x=-1011011B,求[x]補。
解:因為
n=8,所以模
M=28=100000000B,x<0,所以
[x]補=M+x=100000000B-1011011B=10100101B
注意:這個x的補碼的最高位是「1」,表明它是一個負數。對於二進制數還有一種更加簡單的方法由原碼求出補碼:
(1)正數的補碼表示與原碼相同;
(2)負數的補碼是將原碼符號位保持「1」之後,其餘各位按位取反,末位再加1便得到補碼,即取其原碼的反碼再加「1」:[x]補=[x]反+1。
下表列出
的8位二進制原碼,反碼和補碼並將補碼用十六進製表示。
真值
原碼(B)
反碼(B)
補碼(B)
補碼(H)
+127
0
111
1111
0
111
1111
0
111
1111
7F
+39
0
010
0111
0
010
0111
0
010
0111
27
+0
0
000
0000
0
000
0000
0
000
0000
00
-0
1
000
0000
1
111
1111
0
000
0000
00
-39
1
010
0111
1
101
1000
1
101
1001
D9
-127
1
111
1111
1
000
0000
1
000
0001
81
-128
無法表示
無法表示
1
000
0000
80
從上可看出,真值+0和-0的補碼表示是一致的,但在原碼和反碼表示中具有不同形式。8位補碼機器數可以表示-128,但不存在+128的補碼與之對應,由此可知,8位二進制補碼能表示數的范圍是-128——+127。還要注意,不存在-128的8位原碼和反碼形式。
『肆』 電腦中原碼和補碼是什麼關系
原碼,反碼,補碼是機器存儲一個具體數字的編碼方式。原碼跟補碼之間的關系是:正數的補碼與原碼相同,負數的補碼為 其原碼除符號位外所有位取反(得到反碼了),然後最低位加1。
在計算機系統中,數值一律用補碼來表示和存儲。使用補碼,可以將符號位和數值域統一處理;同時,加法和減法也可以統一處理。
原碼不能直接參加運算,可能會出錯。例如數學上,1+(-1)=0,而在二進制中00000001+
10000001=10000010,換算成十進制為-2。
(4)復數源碼反碼補碼的關系擴展閱讀
原碼是有符號數的最簡單的編碼方式,便於輸入輸出,但作為代碼加減運算時較為復雜。一個字長為n的機器數能表示不同的數字的個數是固定的2^n個,n=8時2^n=256;
用來表示有符號數,數的范圍就是 -2^(n-1) ~ 2^(n-1)-1,n=8時,這個范圍就是 -128 ~ +127。但是在不需要考慮數的正負時,就不需要用一位來表示符號位,n位機器數全部用來表示是數值,這時表示數的范圍就是0~2^n-1,n=8時這個范圍就是0~255.沒有符號位的數,稱為無符號數。
『伍』 計算機源碼,反碼,補碼之間怎麼計算
轉換方法:
如果是正數或零,則首位為 0,補碼=原碼=反碼。
否則,首位為 1,數值位取反加一,即可實現「補碼與原碼」互換。
例如:
對 1111 1001 取反,為 1000 0110,再加一,得:1000 0111。
對 1000 0111 取反,為 1111 1000,再加一,得:1111 1001。
這說明,補碼 ←→ 原碼,方法是相同的。
『陸』 二進制正,負數的原碼,反碼,補碼三者之間是什麼關系
以8位二進制為例,
正數的原碼、反碼、補碼相同,
負數的反碼為:除符號位外,原碼各位取反,反碼加1,得負數的反碼.
下面就對於原碼,反碼,補碼詳細分析一下:
原碼:將一個整數,轉換成二進制,就是其原碼。如單位元組的5的原碼為:0000
0101;-5的原碼為1000
0101。
反碼:正數的反碼就是其原碼;負數的反碼是將原碼中,除符號位以外,每一位取反。如單位元組的5的反碼為:0000
0101;-5的反碼為1111
1010。
補碼:正數的補碼就是其原碼;負數的反碼+1就是補碼。如單位元組的5的補碼為:0000
0101;-5的原碼為1111
1011。
在計算機中,正數是直接用原碼表示的,如單位元組5,在計算機中就表示為:0000
0101。
負數用補碼表示,如單位元組-5,在計算機中表示為1111
1011。