Ⅰ 華為方舟編譯器優化後的支付寶幾乎秒開,它為什麼這么厲害
提到華為方舟編譯器,我也是不明覺厲。其實我並不懂這個編譯器的強大,只是看到官方的報答說多麼多麼厲害,我才知道這個方舟原來是這么厲害的一個東西。據說以後使用這個編譯器做出來的APP將會更加的流暢,希望這次的改革能真正才超越蘋果IOS系統吧。
至於蘋果手機還有一個優勢,就是過度很流暢,可能安卓和蘋果打開一個軟體同樣用2秒吧,你能感覺到蘋果看著更加流暢相比安卓而言,所以說現在安卓最好的狀態也就是和蘋果打一個平手,說超越那都是虛妄。不知道這次方舟編譯器的誕生能不能改變這個局面,讓安卓的系統真正的超越蘋果,也使得很多因為系統不得不忍受蘋果手機煎熬的人能解脫出來。其實這樣的人很多,因為感覺安卓不夠流暢,所以無奈才選擇蘋果手機的人不在少數。
Ⅱ java編譯器的代碼優化問題
理論上的就不說了,你自己搜也能搜到很多。
舉個例子,你從一個方法a調用了另一個方法b。
我們知道,在a和b之中是可以創建相同名稱的變數的,比如都有int i = 0;這句話。這種現象的根本原因在於,方法的調用會產生中斷,中斷產生後,cpu會做現場保護,包括把變數等進行壓棧操作,即把方法a的相關資源進行了壓棧,而方法b的相關資源放在棧頂,只有棧頂資源可以與cpu交互(就把方法a中的變數i保護起來),當方法b結束後出棧,a就又回到了棧頂,並獲取了方法b運行的結果,然後繼續運行。
哎,有些啰嗦了。方法的調用、中斷、壓棧出棧等等這些操作你說一點不消耗資源吧,那是不可能的,多少都會消耗一些,雖然很非常十分微不足道。那麼編譯器的優化過程,我知道的其作用之一,就是會把這些做一個優化。原本方法a一共10句話,你偏要只寫1句,然後第2句寫成方法b,第3句寫成方法c。。。。。,然後依次嵌套調用。這樣的源代碼,編譯器優化後,就跟你直接寫10句是一個結果,即做了一定程度上的優化。
Ⅲ 現代C/C++編譯器有多智能能做出什麼厲害的優化
基本的循環外提,計算削弱,數據流分析合並都已經比較成熟了,可以說不考慮專用cpu優化的情況,其優化效率已經可以和一名中高級編譯專家手工優化的效果差不多。
Ⅳ C/C++的編譯器會怎樣優化
優化編譯是一個極其復雜和龐大的問題,不可能就這么說清楚。
簡單說就是凡是有辦法簡化的處理編譯器會盡可能給你簡化,凡是有辦法用SIMD並行的運算編譯器會盡量給你並行,凡是你沒用到的內容編譯器都會給你刪除。
Ⅳ 編譯器優化怎麼定義
常見的優化和變新有:函數內嵌(inlining),無用代碼刪除(Dead code elimination),標准化循環結構(loop normalization),循環體展開(loop unrolling),循環體合並,分裂(loop fusion,loop fission),數組填充(array padding),等等。 優化和變形的目的是減少代碼的長度,提高內存(memory),緩存(cache)的使用率,減少讀寫磁碟,訪問網路數據的頻率。更高級的優化甚至可以把序列化的代碼(serial code)變成並行運算,多線程的代碼(parallelized,multi-threaded code)。
機器代碼的生成是優化變型後的中間代碼轉換成機器指令的過程。現代編譯器主要採用生成匯編代碼(assembly code)策略,而不直接生成二進制的目標代碼(binary object code)。即使在代碼生成階段,高級編譯器仍然要做很多分析,優化,變形工作。例如如何分配寄存器(register allocatioin),如何選擇合適的機器指令,如何合並幾句代碼成一句等等。
Ⅵ 本科獨立用C語言完成沒有優化的C語言編譯器屬於什麼水平
我覺得水平還是很高的,但意義恐怕不大。編譯器技術是非常成熟的領域,而且由於應用場景的限
制實時,復雜的演算法已經自動出局了,你可選的東西是有限的。編譯器可能有很多實現的形
式,虛擬機/解釋器/靜態編譯器 等,也有成熟的開源實現。作為本科生,而非專門研究該分支的學生,應該合理分配自己學習的時間,如果做這個編譯器就干
掉了大半年,那計網和OS這些課程該咋辦?
我知道很多人會認為沒有做編譯器優化特指中段優化,不考慮機器碼上的優化比較劃水。但編
譯器優化是一個很復雜的東西:首先它和你用的IR表示有關而且是強烈耦合,SSA IR基本還
好,有開源代碼和文獻記載,你想要的都能在網上挖到但這怎麼體現你的水平是吧。你
要考慮編譯器的性能,盡管編譯器的後端優化基本上可以納入到某種PEabstract interpretation的
范疇中。
要不然你可以通過編寫插件的方式白嫖例如visual studio code這類軟
件的強大編輯功能,如果你寫的不是c compiler,你也可以盡量把語法設計得很像c,這樣你又能進一步
白嫖其強大的intellisense code,當然仍然有不少人或者應該說團隊達到了這一步,到這里,應該卷死
了99.99%的同行應該毫無問題。
Ⅶ 通過編譯器對程序優化來改進cache性能的方法有哪幾種
你的程序可能太短,看不出區別來,你比對一下她們生成的匯編碼就知道了
CPU 緩存是為了提高程序運行的性能,CPU 在很多處理上內部架構做了很多調整,比如 CPU 高速緩存,大家都知道因為硬碟很慢,可以通過緩存把數據載入到內存裡面,提高訪問速度,而 CPU 處理也有這個機制,盡可能把處理器訪問主內存時間開銷放在 CPU 高速緩存上面,CPU 訪問速度相比內存訪問速度又要快好多倍,這就是目前大多數處理器都會去利用的機制,利用處理器的緩存以提高性能。
就算優化帶來的效果非常有限,但是經過長年累月的持續優化,效果也是非常明顯的,比如當年的Chrome瀏覽器就是靠打開網頁非常快從而打敗微軟系統自帶的IE瀏覽器。電腦手機等硬體的性能是有限的,不同的演算法會產生不同的效率,今天我們就簡單說一個選擇問題,開發程序時是節省內存還是節省計算量。
Ⅷ 也談「C++編譯器到底能幫我們把代碼優化到什麼程度
也談「C++編譯器到底能幫我們把代碼優化到什麼程度
這個取決於編譯器廠家了,不同的編譯器優化有異同,編譯器優化對性能影響很大,有時會有驚喜
Ⅸ 編譯器的編譯器優化
應用程序之所以復雜, 是由於它們具有處理多種問題以及相關數據集的能力。實際上, 一個復雜的應用程序就象許多不同功能的應用程序「 粘貼」 在一起。源文件中大部分復雜性來自於處理初始化和問題設置代碼。這些文件雖然通常占源文件的很大一部分, 具有很大難度, 但基本上不花費C PU 執行周期。
盡管存在上述情況, 大多數Makefile文件只有一套編譯器選項來編譯項目中所有的文件。因此, 標準的優化方法只是簡單地提升優化選項的強度, 一般從O 2 到O 3。這樣一來, 就需要投人大量 精力來調試, 以確定哪些文件不能被優化, 並為這些文件建立特殊的make規則。
一個更簡單但更有效的方法是通過一個性能分析器, 來運行最初的代碼, 為那些佔用了85 一95 % CPU 的源文件生成一個列表。通常情況下, 這些文件大約只佔所有文件的1%。如果開發人員立刻為每一個列表中的文件建立其各自的規則, 則會處於更靈活有效的位置。這樣一來改變優化只會引起一小部分文件被重新編譯。進而,由於時間不會浪費在優化不費時的函數上, 重編譯全部文件將會大大地加快。