① 聚類演算法有哪些
聚類演算法有:劃分法、層次法、密度演算法、圖論聚類法、網格演算法、模型演算法。
1、劃分法
劃分法(partitioning methods),給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。使用這個基本思想的演算法有:K-MEANS演算法、K-MEDOIDS演算法、CLARANS演算法。
2、層次法
層次法(hierarchical methods),這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。代表演算法有:BIRCH演算法、CURE演算法、CHAMELEON演算法等。
3、密度演算法
基於密度的方法(density-based methods),基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。代表演算法有:DBSCAN演算法、OPTICS演算法、DENCLUE演算法等。
4、圖論聚類法
圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。因此,每一個最小處理單元數據之間都會有一個度量表達,這就確保了數據的局部特性比較易於處理。圖論聚類法是以樣本數據的局域連接特徵作為聚類的主要信息源,因而其主要優點是易於處理局部數據的特性。
5、網格演算法
基於網格的方法(grid-based methods),這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法。
6、模型演算法
基於模型的方法(model-based methods),基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。通常有兩種嘗試方向:統計的方案和神經網路的方案。
(1)cure演算法思想擴展閱讀:
聚類分析起源於分類學,在古老的分類學中,人們主要依靠經驗和專業知識來實現分類,很少利用數學工具進行定量的分類。隨著人類科學技術的發展,對分類的要求越來越高,以致有時僅憑經驗和專業知識難以確切地進行分類,於是人們逐漸地把數學工具引用到了分類學中,形成了數值分類學,之後又將多元分析的技術引入到數值分類學形成了聚類分析。聚類分析內容非常豐富,有系統聚類法、有序樣品聚類法、動態聚類法、模糊聚類法、圖論聚類法、聚類預報法等。
在商業上,聚類可以幫助市場分析人員從消費者資料庫中區分出不同的消費群體來,並且概括出每一類消費者的消費模式或者說習慣。它作為數據挖掘中的一個模塊,可以作為一個單獨的工具以發現資料庫中分布的一些深層的信息,並且概括出每一類的特點,或者把注意力放在某一個特定的類上以作進一步的分析;並且,聚類分析也可以作為數據挖掘演算法中其他分析演算法的一個預處理步驟。
② 利用CURE演算法進行文本聚類的java實現代碼
為什麼不用kmeans呢。
by 矩網智慧
③ 數據挖掘干貨總結(四)--聚類演算法
本文共計2680字,預計閱讀時長七分鍾
聚類演算法
一 、 本質
將數據劃分到不同的類里,使相似的數據在同一類里,不相似的數據在不同類里
二 、 分類演算法用來解決什麼問題
文本聚類、圖像聚類和商品聚類,便於發現規律,以解決數據稀疏問題
三 、 聚類演算法基礎知識
1. 層次聚類 vs 非層次聚類
– 不同類之間有無包含關系
2. 硬聚類 vs 軟聚類
– 硬聚類:每個對象只屬於一個類
– 軟聚類:每個對象以某個概率屬於每個類
3. 用向量表示對象
– 每個對象用一個向量表示,可以視為高維空間的一個點
– 所有對象形成數據空間(矩陣)
– 相似度計算:Cosine、點積、質心距離
4. 用矩陣列出對象之間的距離、相似度
5. 用字典保存上述矩陣(節省空間)
D={(1,1):0,(1,2):2,(1,3):6...(5,5):0}
6. 評價方法
– 內部評價法(Internal Evalution):
• 沒有外部標准,非監督式
• 同類是否相似,跨類是否相異
DB值越小聚類效果越好,反之,越不好
– 外部評價法(External Evalution):
• 准確度(accuracy): (C11+C22) / (C11 + C12 + C21 + C22)
• 精度(Precision): C11 / (C11 + C21 )
• 召回(Recall): C11 / (C11 + C12 )
• F值(F-measure):
β表示對精度P的重視程度,越大越重視,默認設置為1,即變成了F值,F較高時則能說明聚類效果較好。
四 、 有哪些聚類演算法
主要分為 層次化聚類演算法 , 劃分式聚類演算法 , 基於密度的聚類演算法 , 基於網格的聚類演算法 , 基於模型的聚類演算法等 。
4.1 層次化聚類演算法
又稱樹聚類演算法,透過一種層次架構方式,反復將數據進行分裂或聚合。典型的有BIRCH演算法,CURE演算法,CHAMELEON演算法,Sequence data rough clustering演算法,Between groups average演算法,Furthest neighbor演算法,Neares neighbor演算法等。
凝聚型層次聚類 :
先將每個對象作為一個簇,然後合並這些原子簇為越來越大的簇,直到所有對象都在一個簇中,或者某個終結條件被滿足。
演算法流程:
1. 將每個對象看作一類,計算兩兩之間的最小距離;
2. 將距離最小的兩個類合並成一個新類;
3. 重新計算新類與所有類之間的距離;
4. 重復2、3,直到所有類最後合並成一類。
特點:
1. 演算法簡單
2. 層次用於概念聚類(生成概念、文檔層次樹)
3. 聚類對象的兩種表示法都適用
4. 處理大小不同的簇
5. 簇選取步驟在樹狀圖生成之後
4.2 劃分式聚類演算法
預先指定聚類數目或聚類中心,反復迭代逐步降低目標函數誤差值直至收斂,得到最終結果。K-means,K-modes-Huang,K-means-CP,MDS_CLUSTER, Feature weighted fuzzy clustering,CLARANS等
經典K-means:
演算法流程:
1. 隨機地選擇k個對象,每個對象初始地代表了一個簇的中心;
2. 對剩餘的每個對象,根據其與各簇中心的距離,將它賦給最近的簇;
3. 重新計算每個簇的平均值,更新為新的簇中心;
4. 不斷重復2、3,直到准則函數收斂。
特點:
1.K的選擇
2.中心點的選擇
– 隨機
– 多輪隨機:選擇最小的WCSS
3.優點
– 演算法簡單、有效
– 時間復雜度:O(nkt)
4.缺點
– 不適於處理球面數據
– 密度、大小不同的聚類,受K的限制,難於發現自然的聚類
4.3 基於模型的聚類演算法
為每簇假定了一個模型,尋找數據對給定模型的最佳擬合,同一」類「的數據屬於同一種概率分布,即假設數據是根據潛在的概率分布生成的。主要有基於統計學模型的方法和基於神經網路模型的方法,尤其以基於概率模型的方法居多。一個基於模型的演算法可能通過構建反應數據點空間分布的密度函數來定位聚類。基於模型的聚類試圖優化給定的數據和某些數據模型之間的適應性。
SOM 神經網路演算法 :
該演算法假設在輸入對象中存在一些拓撲結構或順序,可以實現從輸入空間(n維)到輸出平面(2維)的降維映射,其映射具有拓撲特徵保持性質,與實際的大腦處理有很強的理論聯系。
SOM網路包含輸入層和輸出層。輸入層對應一個高維的輸入向量,輸出層由一系列組織在2維網格上的有序節點構成,輸入節點與輸出節點通過權重向量連接。學習過程中,找到與之距離最短的輸出層單元,即獲勝單元,對其更新。同時,將鄰近區域的權值更新,使輸出節點保持輸入向量的拓撲特徵。
演算法流程:
1. 網路初始化,對輸出層每個節點權重賦初值;
2. 將輸入樣本中隨機選取輸入向量,找到與輸入向量距離最小的權重向量;
3. 定義獲勝單元,在獲勝單元的鄰近區域調整權重使其向輸入向量靠攏;
4. 提供新樣本、進行訓練;
5. 收縮鄰域半徑、減小學習率、重復,直到小於允許值,輸出聚類結果。
4.4 基於密度聚類演算法
只要鄰近區域的密度(對象或數據點的數目)超過某個閾值,就繼續聚類,擅於解決不規則形狀的聚類問題,廣泛應用於空間信息處理,SGC,GCHL,DBSCAN演算法、OPTICS演算法、DENCLUE演算法。
DBSCAN:
對於集中區域效果較好,為了發現任意形狀的簇,這類方法將簇看做是數據空間中被低密度區域分割開的稠密對象區域;一種基於高密度連通區域的基於密度的聚類方法,該演算法將具有足夠高密度的區域劃分為簇,並在具有雜訊的空間數據中發現任意形狀的簇。
4.5 基於網格的聚類演算法
基於網格的方法把對象空間量化為有限數目的單元,形成一個網格結構。所有的聚類操作都在這個網格結構(即量化空間)上進行。這種方法的主要優點是它的處理 速度很快,其處理速度獨立於數據對象的數目,只與量化空間中每一維的單元數目有關。但這種演算法效率的提高是以聚類結果的精確性為代價的。經常與基於密度的演算法結合使用。代表演算法有STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法等。
④ 常用的聚類方法有哪幾種
聚類分析的演算法可以分為劃分法、層次法、基於密度的方法、基於網格的方法、基於模型的方法。
1、劃分法,給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。
2、層次法,這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。
3、基於密度的方法,基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。
4、圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。
5、基於網格的方法,這種方法首先將數據空間劃分成為有限個單元的網格結構,所有的處理都是以單個的單元為對象的。
6、基於模型的方法,基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。
(4)cure演算法思想擴展閱讀:
在商業上,聚類可以幫助市場分析人員從消費者資料庫中區分出不同的消費群體來,並且概括出每一類消費者的消費模式或者說習慣。
它作為數據挖掘中的一個模塊,可以作為一個單獨的工具以發現資料庫中分布的一些深層的信息,並且概括出每一類的特點,或者把注意力放在某一個特定的類上以作進一步的分析;並且,聚類分析也可以作為數據挖掘演算法中其他分析演算法的一個預處理步驟。
許多聚類演算法在小於 200 個數據對象的小數據集合上工作得很好;但是,一個大規模資料庫可能包含幾百萬個對象,在這樣的大數據集合樣本上進行聚類可能會導致有偏的結果。
許多聚類演算法在聚類分析中要求用戶輸入一定的參數,例如希望產生的簇的數目。聚類結果對於輸入參數十分敏感。參數通常很難確定,特別是對於包含高維對象的數據集來說。這樣不僅加重了用戶的負擔,也使得聚類的質量難以控制。
⑤ 對聚類中心過於依賴的聚類演算法有哪些
層次聚類分析:
是創建一個層次以分解給定的數據集。該方法可以分為自上而下(分解)和自下而上(合並)兩種操作方式。為彌補分解與合並的不足,層次合並經常要與其它聚類方法相結合,如循環定位。典型的這類方法包括:
第一個是;BIRCH(Balanced Iterative Recing and Clustering using Hierarchies) 方法,它首先利用樹的結構對對象集進行劃分;然後再利用其它聚類方法對這些聚類進行優化。
第二個是CURE(Clustering Using REprisentatives) 方法,它利用固定數目代表對象來表示相應聚類;然後對各聚類按照指定量(向聚類中心)進行收縮。
第三個是ROCK方法,它利用聚類間的連接進行聚類合並。
最後一個CHEMALOEN,它則是在層次聚類時構造動態模型。
⑥ 用於數據挖掘的聚類演算法有哪些,各有何優勢
聚類方法的分類,主要分為層次化聚類演算法,劃分式聚類演算法,基於密度的聚類演算法,基於網格的聚類演算法,基於模型的聚類演算法等。
而衡量聚類演算法優劣的標准主要是這幾個方面:處理大的數據集的能力;處理任意形狀,包括有間隙的嵌套的數據的能力;演算法處理的結果與數據輸入的順序是否相關,也就是說演算法是否獨立於數據輸入順序;處理數據雜訊的能力;是否需要預先知道聚類個數,是否需要用戶給出領域知識;演算法處理有很多屬性數據的能力,也就是對數據維數是否敏感。
.聚類演算法主要有兩種演算法,一種是自下而上法(bottom-up),一種是自上而下法(top-down)。這兩種路徑本質上各有優勢,主要看實際應用的時候要根據數據適用於哪一種,Hierarchical methods中比較新的演算法有BIRCH主要是在數據體量很大的時候使用;ROCK優勢在於異常數據抗干擾性強……
關於數據挖掘的相關學習,推薦CDA數據師的相關課程,課程以項目調動學員數據挖掘實用能力的場景式教學為主,在講師設計的業務場景下由講師不斷提出業務問題,再由學員循序漸進思考並操作解決問題的過程中,幫助學員掌握真正過硬的解決業務問題的數據挖掘能力。這種教學方式能夠引發學員的獨立思考及主觀能動性,學員掌握的技能知識可以快速轉化為自身能夠靈活應用的技能,在面對不同場景時能夠自由發揮。點擊預約免費試聽課。