『壹』 「編譯」與「編譯器」是什麼意思
編譯是動詞
編譯器是名詞
編譯(compilation , compile)
1、利用編譯程序從源語言編寫的源程序產生目標程序的過程。
2、用編譯程序產生目標程序的動作。
編譯就是把高級語言變成計算機可以識別的2進制語言,計算機只認識1和0,編譯程序把人們熟悉的語言換成2進制的。
編譯程序把一個源程序翻譯成目標程序的工作過程分為五個階段:詞法分析;語法分析;中間代碼生成;代碼優化;目標代碼生成。主要是進行詞法分析和語法分析,又稱為源程序分析,分析過程中發現有語法錯誤,給出提示信息。
(1) 詞法分析
詞法分析的任務是對由字元組成的單詞進行處理,從左至右逐個字元地對源程序進行掃描,產生一個個的單詞符號,把作為字元串的源程序改造成為單詞符號串的中間程序。執行詞法分析的程序稱為詞法分析程序或掃描器。
源程序中的單詞符號經掃描器分析,一般產生二元式:單詞種別;單詞自身的值。單詞種別通常用整數編碼,如果一個種別只含一個單詞符號,那麼對這個單詞符號,種別編碼就完全代表它自身的值了。若一個種別含有許多個單詞符號,那麼,對於它的每個單詞符號,除了給出種別編碼以外,還應給出自身的值。
詞法分析器一般來說有兩種方法構造:手工構造和自動生成。手工構造可使用狀態圖進行工作,自動生成使用確定的有限自動機來實現。
(2) 語法分析
編譯程序的語法分析器以單詞符號作為輸入,分析單詞符號串是否形成符合語法規則的語法單位,如表達式、賦值、循環等,最後看是否構成一個符合要求的程序,按該語言使用的語法規則分析檢查每條語句是否有正確的邏輯結構,程序是最終的一個語法單位。編譯程序的語法規則可用上下文無關文法來刻畫。
語法分析的方法分為兩種:自上而下分析法和自下而上分析法。自上而下就是從文法的開始符號出發,向下推導,推出句子。而自下而上分析法採用的是移進歸約法,基本思想是:用一個寄存符號的先進後出棧,把輸入符號一個一個地移進棧里,當棧頂形成某個產生式的一個候選式時,即把棧頂的這一部分歸約成該產生式的左鄰符號。
(3) 中間代碼生成
中間代碼是源程序的一種內部表示,或稱中間語言。中間代碼的作用是可使編譯程序的結構在邏輯上更為簡單明確,特別是可使目標代碼的優化比較容易實現。中間代碼即為中間語言程序,中間語言的復雜性介於源程序語言和機器語言之間。中間語言有多種形式,常見的有逆波蘭記號、四元式、三元式和樹。
(4) 代碼優化
代碼優化是指對程序進行多種等價變換,使得從變換後的程序出發,能生成更有效的目標代碼。所謂等價,是指不改變程序的運行結果。所謂有效,主要指目標代碼運行時間較短,以及佔用的存儲空間較小。這種變換稱為優化。
有兩類優化:一類是對語法分析後的中間代碼進行優化,它不依賴於具體的計算機;另一類是在生成目標代碼時進行的,它在很大程度上依賴於具體的計算機。對於前一類優化,根據它所涉及的程序范圍可分為局部優化、循環優化和全局優化三個不同的級別。
(5) 目標代碼生成
目標代碼生成是編譯的最後一個階段。目標代碼生成器把語法分析後或優化後的中間代碼變換成目標代碼。目標代碼有三種形式:
① 可以立即執行的機器語言代碼,所有地址都重定位;
② 待裝配的機器語言模塊,當需要執行時,由連接裝入程序把它們和某些運行程序連接起來,轉換成能執行的機器語言代碼;
③ 匯編語言代碼,須經過匯編程序匯編後,成為可執行的機器語言代碼。
目標代碼生成階段應考慮直接影響到目標代碼速度的三個問題:一是如何生成較短的目標代碼;二是如何充分利用計算機中的寄存器,減少目標代碼訪問存儲單元的次數;三是如何充分利用計算機指令系統的特點,以提高目標代碼的質量。
編譯器,是將便於人編寫,閱讀,維護的高級計算機語言翻譯為計算機能解讀、運行的低階機器語言的程序。編譯器將原始程序(Source program)作為輸入,翻譯產生使用目標語言(Target language)的等價程序。源代碼一般為高階語言 (High-level language), 如 Pascal、C++、Java 等,而目標語言則是匯編語言或目標機器的目標代碼(Object code),有時也稱作機器代碼(Machine code)。
一個現代編譯器的主要工作流程如下:
源代碼 (source code) → 預處理器 (preprocessor) → 編譯器 (compiler) → 匯編程序 (assembler) → 目標代碼 (object code) → 連接器 (Linker) → 可執行程序 (executables)
工作原理
[編輯本段]
編譯是從源代碼(通常為高階語言)到能直接被計算機或虛擬機執行的目標代碼(通常為低階語言或機器語言)的翻譯過程。然而,也存在從低階語言到高階語言的編譯器,這類編譯器中用來從由高階語言生成的低階語言代碼重新生成高階語言代碼的又被叫做反編譯器。也有從一種高階語言生成另一種高階語言的編譯器,或者生成一種需要進一步處理的的中間代碼的編譯器(又叫級聯)。
典型的編譯器輸出是由包含入口點的名字和地址, 以及外部調用(到不在這個目標文件中的函數調用)的機器代碼所組成的目標文件。一組目標文件,不必是同一編譯器產生,但使用的編譯器必需採用同樣的輸出格式,可以鏈接在一起並生成可以由用戶直接執行的可執行程序。
編譯器種類
[編輯本段]
編譯器可以生成用來在與編譯器本身所在的計算機和操作系統(平台)相同的環境下運行的目標代碼,這種編譯器又叫做「本地」編譯器。另外,編譯器也可以生成用來在其它平台上運行的目標代碼,這種編譯器又叫做交叉編譯器。交叉編譯器在生成新的硬體平台時非常有用。「源碼到源碼編譯器」是指用一種高階語言作為輸入,輸出也是高階語言的編譯器。例如: 自動並行化編譯器經常採用一種高階語言作為輸入,轉換其中的代碼,並用並行代碼注釋對它進行注釋(如OpenMP)或者用語言構造進行注釋(如FORTRAN的DOALL指令)。
預處理器(preprocessor)
作用是通過代入預定義等程序段將源程序補充完整。
編譯器前端(frontend)
前端主要負責解析(parse)輸入的源代碼,由語法分析器和語意分析器協同工作。語法分析器負責把源代碼中的『單詞』(Token)找出來,語意分析器把這些分散的單詞按預先定義好的語法組裝成有意義的表達式,語句 ,函數等等。 例如「a = b + c;」前端語法分析器看到的是「a, =, b , +, c;」,語意分析器按定義的語法,先把他們組裝成表達式「b + c」,再組裝成「a = b + c」的語句。 前端還負責語義(semantic checking)的檢查,例如檢測參與運算的變數是否是同一類型的,簡單的錯誤處理。最終的結果常常是一個抽象的語法樹(abstract syntax tree,或 AST),這樣後端可以在此基礎上進一步優化,處理。
編譯器後端(backend)
編譯器後端主要負責分析,優化中間代碼(Intermediate representation)以及生成機器代碼(Code Generation)。
一般說來所有的編譯器分析,優化,變型都可以分成兩大類: 函數內(intraproceral)還是函數之間(interproceral)進行。很明顯,函數間的分析,優化更准確,但需要更長的時間來完成。
編譯器分析(compiler analysis)的對象是前端生成並傳遞過來的中間代碼,現代的優化型編譯器(optimizing compiler)常常用好幾種層次的中間代碼來表示程序,高層的中間代碼(high level IR)接近輸入的源代碼的格式,與輸入語言相關(language dependent),包含更多的全局性的信息,和源代碼的結構;中層的中間代碼(middle level IR)與輸入語言無關,低層的中間代碼(Low level IR)與機器語言類似。 不同的分析,優化發生在最適合的那一層中間代碼上。
常見的編譯分析有函數調用樹(call tree),控制流程圖(Control flow graph),以及在此基礎上的 變數定義-使用,使用-定義鏈(define-use/use-define or u-d/d-u chain),變數別名分析(alias analysis),指針分析(pointer analysis),數據依賴分析(data dependence analysis)等等。
上述的程序分析結果是編譯器優化(compiler optimization)和程序變形(compiler transformation)的前提條件。常見的優化和變新有:函數內嵌(inlining),無用代碼刪除(Dead code elimination),標准化循環結構(loop normalization),循環體展開(loop unrolling),循環體合並,分裂(loop fusion,loop fission),數組填充(array padding),等等。 優化和變形的目標是減少代碼的長度,提高內存(memory),緩存(cache)的使用率,減少讀寫磁碟,訪問網路數據的頻率。更高級的優化甚至可以把序列化的代碼(serial code)變成並行運算,多線程的代碼(parallelized,multi-threaded code)。
機器代碼的生成是優化變型後的中間代碼轉換成機器指令的過程。現代編譯器主要採用生成匯編代碼(assembly code)的策略,而不直接生成二進制的目標代碼(binary object code)。即使在代碼生成階段,高級編譯器仍然要做很多分析,優化,變形的工作。例如如何分配寄存器(register allocatioin),如何選擇合適的機器指令(instruction selection),如何合並幾句代碼成一句等等。
編譯語言與直譯語言對比
[編輯本段]
許多人將高階程序語言分為兩類: 編譯型語言 和 直譯型語言 。然而,實際上,這些語言中的大多數既可用編譯型實現也可用直譯型實現,分類實際上反映的是那種語言常見的實現方式。(但是,某些直譯型語言,很難用編譯型實現。比如那些允許 在線代碼更改 的直譯型語言。)
歷史
[編輯本段]
上世紀50年代,IBM的John Backus帶領一個研究小組對FORTRAN語言及其編譯器進行開發。但由於當時人們對編譯理論了解不多,開發工作變得既復雜又艱苦。與此同時,Noam Chomsky開始了他對自然語言結構的研究。他的發現最終使得編譯器的結構異常簡單,甚至還帶有了一些自動化。Chomsky的研究導致了根據語言文法的難易程度以及識別它們所需要的演算法來對語言分類。正如現在所稱的Chomsky架構(Chomsky Hierarchy),它包括了文法的四個層次:0型文法、1型文法、2型文法和3型文法,且其中的每一個都是其前者的特殊情況。2型文法(或上下文無關文法)被證明是程序設計語言中最有用的,而且今天它已代表著程序設計語言結構的標准方式。分析問題(parsing problem,用於上下文無關文法識別的有效演算法)的研究是在60年代和70年代,它相當完善的解決了這個問題。現在它已是編譯原理中的一個標准部分。
有限狀態自動機(Finite Automaton)和正則表達式(Regular Expression)同上下文無關文法緊密相關,它們與Chomsky的3型文法相對應。對它們的研究與Chomsky的研究幾乎同時開始,並且引出了表示程序設計語言的單詞的符號方式。
人們接著又深化了生成有效目標代碼的方法,這就是最初的編譯器,它們被一直使用至今。人們通常將其稱為優化技術(Optimization Technique),但因其從未真正地得到過被優化了的目標代碼而僅僅改進了它的有效性,因此實際上應稱作代碼改進技術(Code Improvement Technique)。
當分析問題變得好懂起來時,人們就在開發程序上花費了很大的功夫來研究這一部分的編譯器自動構造。這些程序最初被稱為編譯器的編譯器(Compiler-compiler),但更確切地應稱為分析程序生成器(Parser Generator),這是因為它們僅僅能夠自動處理編譯的一部分。這些程序中最著名的是Yacc(Yet Another Compiler-compiler),它是由Steve Johnson在1975年為Unix系統編寫的。類似的,有限狀態自動機的研究也發展了一種稱為掃描程序生成器(Scanner Generator)的工具,Lex(與Yacc同時,由Mike Lesk為Unix系統開發)是這其中的佼佼者。
在70年代後期和80年代早期,大量的項目都貫注於編譯器其它部分的生成自動化,這其中就包括了代碼生成。這些嘗試並未取得多少成功,這大概是因為操作太復雜而人們又對其不甚了解。
編譯器設計最近的發展包括:首先,編譯器包括了更加復雜演算法的應用程序它用於推斷或簡化程序中的信息;這又與更為復雜的程序設計語言的發展結合在一起。其中典型的有用於函數語言編譯的Hindley-Milner類型檢查的統一演算法。其次,編譯器已越來越成為基於窗口的交互開發環境(Interactive Development Environment,IDE)的一部分,它包括了編輯器、連接程序、調試程序以及項目管理程序。這樣的IDE標准並沒有多少,但是對標準的窗口環境進行開發已成為方向。另一方面,盡管近年來在編譯原理領域進行了大量的研究,但是基本的編譯器設計原理在近20年中都沒有多大的改變,它現在正迅速地成為計算機科學課程中的中心環節。
在九十年代,作為GNU項目或其它開放源代碼項目標一部分,許多免費編譯器和編譯器開發工具被開發出來。這些工具可用來編譯所有的計算機程序語言。它們中的一些項目被認為是高質量的,而且對現代編譯理論感興趣的人可以很容易的得到它們的免費源代碼。
大約在1999年,SGI公布了他們的一個工業化的並行化優化編譯器Pro64的源代碼,後被全世界多個編譯器研究小組用來做研究平台,並命名為Open64。Open64的設計結構好,分析優化全面,是編譯器高級研究的理想平台。
『貳』 並行處理技術的三種形式
時間並行指時間重疊,在並行性概念中引入時間因素,讓多個處理過程在時間上相互錯開,輪流重疊地使用同一套硬體設備的各個部分,以加快硬體周轉而贏得速度。?
時間並行性概念的實現方式就是採用流水處理部件。這是一種非常經濟而實用的並行技術,能保證計算機系統具有較高的性能價格比。目前的高性能微型機幾乎無一例外地使用了流水技術。 資源共享也是在並行性概念中引入時間因素,它是通過軟體的方法實現的。即多個用戶按一定的時間順序輪流使用同一套硬體設備;既可以是按一定的時間順序共享CPU,也可以是CPU與外圍設備在工作時間上的重疊。這種並行措施表現在多道程序和分時系統中,而分布式處理系統和計算機網路則是更高層次的資源共享。
從第一台電子計算機發明,電子計算機已經經歷了五代。計算機發展到第四代時,出現了用共享存儲器、分布存儲器或向量硬體選件的不同結構的並行計算機,開發了用於並行處理的多處理操作系統專用語言和編譯器,同時產生了用於並行處理或分布計算的軟體工具和環境。到出現的計算機稱為第五代計算機,它們的主要特點是進行大規模並行處理。並行處理技術是在微電子、印刷電路、高密度封裝技術、高性能處理機、存儲系統、外圍設備、通信通道、語言開發、編譯技術、操作系統、程序設計環境和應用問題等研究和工業發展的產物。
並行計算機具有代表性的應用領域有:天氣預報建摸、VLSI電路的計算機輔助設計、大型資料庫管理、人工智慧、犯罪控制和國防戰略研究等,而且它的應用范圍還在不斷地擴大。並行處理技術主要是以演算法為核心,並行語言為描述,軟硬體作為實現工具的相互聯系而又相互制約的一種結構技術。本文就並行處理技術的演算法策略、描述性定義及軟硬體方面的實現做一個簡單的介紹。
『叄』 並行處理的並行演算法的基本策略
在並行處理技術中所使用的演算法主要遵循三種策略:
1.分而治之法:也就是把多個任務分解到多個處理器或多個計算機中,然後再按照一定的拓撲結構來進行求解。
2.重新排序法:分別採用靜態或動態的指令詞度方式。
3.顯式/隱式並行性結合:顯式指的是並行語言通過編譯形成並行程序,隱式指的是串列語言通過編譯形成並行程序,顯式/隱式並行性結合的關鍵就在於並行編譯,而並行編譯涉及到語句、程序段、進程以及各級程序的並行性。
二、並行性描述定義
利用計算機語言進行並行性描述的時候主要有三種方案:
1.語言擴展方案:也就是利用各種語言的庫函數來進行並行性功能的擴展。
2.編譯制導法:也稱為智能編譯,它是隱式並行策略的體現,主要是由並行編譯系統進行程序表示、控制流的分析、相關分析、優化分析和並行化劃分,由相關分析得到方法庫管理方案,由優化分析得到知識庫管理方案,由並行化劃分得到程序重構,從而形成並行程序。
3.新的語言結構法:這是顯式並行策略的體現。也就是建立一種全新的並行語言的體系,而這種並行語言通過編譯就能直接形成並行程序。
三、並行軟體
並行軟體可分成並行系統軟體和並行應用軟體兩大類,並行系統軟體主要指並行編譯系統和並行操作系統,並行應用軟體主要指各種軟體工具和應用軟體包。在軟體中所牽涉到的程序的並行性主要是指程序的相關性和網路互連兩方面。
1.程序的相關性:程序的相關性主要分為數據相關、控制相關和資源相關三類。
數據相關說明的是語句之間的有序關系,主要有流相關、反相關、輸出相關、I/O相關和求知相關等,這種關系在程序運行前就可以通過分析程序確定下來。數據相關是一種偏序關系,程序中並不是每一對語句的成員都是相關聯的。可以通過分析程序的數據相關,把程序中一些不存在相關性的指令並行地執行,以提高程序運行的速度。
控制相關指的是語句執行次序在運行前不能確定的情況。它一般是由轉移指令引起的,只有在程序執行到一定的語句時才能判斷出語句的相關性。控制相關常使正在開發的並行性中止,為了開發更多的並行性,必須用編譯技術克服控制相關。
而資源相關則與系統進行的工作無關,而與並行事件利用整數部件、浮點部件、寄存器和存儲區等共享資源時發生的沖突有關。軟體的並行性主要是由程序的控制相關和數據相關性決定的。在並行性開發時往往把程序劃分成許多的程序段——顆粒。顆粒的規模也稱為粒度,它是衡量軟體進程所含計算量的尺度,一般用細、中、粗來描述。劃分的粒度越細,各子系統間的通信時延也越低,並行性就越高,但系統開銷也越大。因此,我們在進行程序組合優化的時候應該選擇適當的粒度,並且把通訊時延盡可能放在程序段中進行,還可以通過軟硬體適配和編譯優化的手段來提高程序的並行度。
2.網路互連:將計算機子系統互連在一起或構造多處理機或多計算機時可使用靜態或動態拓撲結構的網路。靜態網路由點一點直接相連而成,這種連接方式在程序執行過程中不會改變,常用來實現集中式系統的子系統之間或分布式系統的多個計算結點之間的固定連接。動態網路是用開關通道實現的,它可動態地改變結構,使之與用戶程序中的通信要求匹配。動態網路包括匯流排、交叉開關和多級網路,常用於共享存儲型多處理機中。在網路上的消息傳遞主要通過尋徑來實現。常見的尋徑方式有存儲轉發尋徑和蟲蝕尋徑等。在存儲轉發網路中以長度固定的包作為信息流的基本單位,每個結點有一個包緩沖區,包從源結點經過一系列中間結點到達目的結點。存儲轉發網路的時延與源和目的之間的距離(段數)成正比。而在新型的計算機系統中採用蟲蝕尋徑,把包進一步分成一些固定長度的片,與結點相連的硬體尋徑器中有片緩沖區。消息從源傳送到目的結點要經過一系列尋徑器。同一個包中所有的片以流水方式順序傳送,不同的包可交替地傳送,但不同包的片不能交叉,以免被送到錯誤的目的地。蟲蝕尋徑的時延幾乎與源和目的之間的距離無關。在尋徑中產生的死鎖問題可以由虛擬通道來解決。虛擬通道是兩個結點間的邏輯鏈,它由源結點的片緩沖區、結點間的物理通道以及接收結點的片緩沖區組成。物理通道由所有的虛擬通道分時地共享。虛擬通道雖然可以避免死鎖,但可能會使每個請求可用的有效通道頻寬降低。因此,在確定虛擬通道數目時,需要對網路吞吐量和通信時延折衷考慮。
四、硬體技術在硬體技術方面主要從處理機、存儲器和流水線三個方面來實現並行。
1.處理機:主要的處理機系列包括CISC、RISC、超標量、VL1W、超流水線、向量以及符號處理機。
傳統的處理機屬於復雜指令系統計算(CISC)結構。指令系統大,指令格式可變,通用寄存器個數較少,基本上使用合一的指令與數據高速緩存,時鍾頻率較低,CPI較高,大多數利用ROM 實現微碼控制CPU,而當今的精簡指令系統計算(RISC)處理機指令格式簡單規范,面向寄存器堆,採用重疊寄存器窗口技術,具有多級Cache,多種流水線結構,強調編譯優化技術,時鍾頻率快,CPI低,大多數用硬連線控制CPU。
CISC或RISC標量處理機都可以採用超標量或向量結構來改善性能。標量處理機在每個周期內只發射一條指令並要求周期只完成從流水線來的一條指令。而在超標量處理機中,使用了多指令流水線,每個周期要發射多條指令並產生多個結果。由於希望程序中有許多的指令級並行性,因此超標量處理機更要依靠優化編譯器去開發並行性。
VL1W 結構是將水平微碼和超標量處理這兩種普遍採用的概念結合起來產生的。典型的超長指令字VL1W 機器指令字長度有數百位。在VLlW 處理機中,多個功能部件是並發工作的,所有的功能部件共享使用公用大型寄存器堆,由功能部件同時執行的各種操作是用VL1W 指令來同步的,每條指令可指定多個操作。VL1W 指令解碼比超標量指令容易,但在開發不同數量的並行性時總是需要不同的指令系統。VL1W 主要是開發標量操作之間的並行性,它的成功與否很大程度取決於代碼壓縮的效率,其結構和任何傳統的通用處理機完全不兼容。即使同一結構的不同實現也不大可能做到彼此二進制兼容。VL1W 的主要優點在於它的硬體結構和指令系統簡單,在科學應用領域可以發揮良好作用,但在一般應用場合可能並不很好用。
向量處理機對數組執行向量指令,每條指令都包含一串重復的操作。它是專門設計用來完成向量運算的協處理機,通常用於多流水線超級計算機中。向量處理機可以利用循環級展開所得的並行性,它可以附屬於任何標量處理機。專用的向量流水線可以在循環控制中消除某些軟體開銷,它的效果與優化編譯器將順序代碼向量化的性能很有關系。從理論上說,向量機可以具有和超標量處理機同樣的性能,因此可以說向量機的並行性與超標量機相同。
符號處理機是為AI應用而研製的,已用於定理證明、模式識別、專家系統、知識工程、文本檢索、科學以及機器智能等許多應用領域。在這些應用中,數據和知識表達式、原語操作、演算法特性、存儲器、I/0和通信以及專用的結構特性與數值計算是不一樣的,符號處理機也稱為邏輯程序設計語言處理機、表處理語言處理機或符號變換器。符號處理並不和數值數據打交道,它處理的是邏輯程序、符號表、對象、劇本、黑板、產生式系統、語義網路、框架以及人工神經網路等問題。這些操作需要專門的指令系統,通常不使用浮點操作。
2.存儲器:存儲設備按容量和存取時間從低到高可分為寄存器、高速緩存、主存儲器、磁碟設備和磁帶機五個層次。較低層存儲設備與較高層的相比,存取速度較快、容量較小,每位元組成本較高、帶寬較寬、傳輸單位較小。
存放在存儲器層次結構中的信息滿足三個重要特性:包含性、一致性和局部性。所謂包含性,指的是一個信息字的復製品可以在比它高的所有層中找到,而如果在高層中丟失了一個信息,則在比它低的所有層中此信息也將丟失。CPU 和高速緩存之間的信息傳送是按字進行的,高速緩存和主存儲器間用塊作為數據傳送的基本單位,主存和磁碟之間又是以頁面為基本單位來傳送信息的,而在磁碟和磁帶機之間的數據傳送則是按文件級處理的。所謂一致性要求的是同一個信息項與後繼存儲器層次上的副本是一致的。也就是說,如果在高速緩存中的一個字被修改過,那麼在所有更高層上該字的副本也必須立即或最後加以修改。為了盡量減少存儲器層次結構的有效存取時間,通常把頻繁使用的信息放在較低層次。維護存儲器層次結構一致性一般有兩種策略,一種是寫直達策略,也就是如果,則立即在所有高層存儲器中進行同樣的修改;另一種是寫回策略,也就是在較低層中對信息進行修改後並不立即在高層存儲器中進行相應的修改,而是等到該信息將被替換或將從低層中消失時才在所有高層存儲器中進行同樣的修改。甚至可以將寫直達和寫回策略的優點結合起來,形成寫一次協議來維護存儲器的一致性。
存儲器的層次結構是在一種程序行為——訪問的局部性基礎上開發出來的。主要有時間局部性、空間局部性和順序局部性。時間局部性指的是最近的訪問項很可能在不久的將來再次被訪問。它往往會引起對最近使用區域的集中訪問。空間局部性表示一種趨勢,指的是一個進程訪問的各項其地址彼此很近。順序局部性指的是在典型程序中,除非是轉移指令,一般指令都是順序執行的。
在多處理機系統中一般使用共享存儲器。對共享存儲器的組織一般採用低位交叉、高位交叉、高低位交叉三種方法。低位交叉又稱並發存取,它是把相鄰的地址放在相鄰的存儲器模塊中,在訪問時不容易產生沖突,並行性較好,但可靠性容錯能力和擴展性均較差。高位交叉又稱允許同時存取,它是把相鄰地址分配到同一個存儲器模塊中,可靠性、容錯能力和擴展性均較強,但訪問時易產生沖突,帶寬較窄,並行性較差。高低位交叉存取又稱C—s存取,它是結合了高位交叉和低位交叉兩種方法的優點,既解決了沖突問題,又能有效地提高容錯能力和並行性,最適合於向量處理機結構。
3.流水線:流水線技術主要有指令流水線技術和運算流水線技術兩種。
指令流水線技術主要目的是要提高計算機的運行效率和吞吐率。它主要通過設置預取指令緩沖區、設置多功能部件、進行內部數據定向、採取適當的指令調度策略來實現。指令調度的策略主要有靜態和動態兩種,靜態詞度是基於軟體的,主要由編譯器完成,動態詞度是基於硬體的,主要是通過硬體技術進行。
運算流水線主要有單功能流水線和多功能流水線兩種。其中多功能流水線又可分為靜態流水線和動態流水線。靜態流水線技術只用來實現確定的功能,而動態流水線可以在不同時間重新組合,實現不同的功能,它除流線連接外,還允許前饋和反饋連接,因此也稱為非線性流水線。這些前饋和反饋連接使得進入流水線的相繼事件的詞度變得很不簡單。由於這些連接,流水線不一定從最後一段輸出。根據不同的數據流動模式,人們可以用同一條流水線求得不同功能的值。
並行計算機發展簡述
40 年代開始的現代計算機發展歷程可以分為兩個明顯的發展時代:串列計算時代、並行計算時代。每一個計算時代都從體系結構發展開始,接著是系統軟體(特別是編譯器與操作系統)、應用軟體,最後隨著問題求解環境的發展而達到頂峰。創建和使用並行計算機的主要原因是因為並行計算機是解決單處理器速度瓶頸的最好方法之一。
並行計算機是由一組處理單元組成的,這組處理單元通過相互之間的通信與協作,以更快的速度共同完成一項大規模的計算任務。因此,並行計算機的兩個最主要的組成部分是計算節點和節點間的通信與協作機制。並行計算機體系結構的發展也主要體現在計算節點性能的提高以及節點間通信技術的改進兩方面。
60 年代初期,由於晶體管以及磁芯存儲器的出現,處理單元變得越來越小,存儲器也更加小巧和廉價。這些技術發展的結果導致了並行計算機的出現,這一時期的並行計算機多是規模不大的共享存儲多處理器系統,即所謂大型主機(Mainframe)。IBM360 是這一時期的典型代表。
到了60 年代末期,同一個處理器開始設置多個功能相同的功能單元,流水線技術也出現了。與單純提高時鍾頻率相比,這些並行特性在處理器內部的應用大大提高了並行計算機系統的性能。伊利諾依大學和Burroughs 公司此時開始實施IlliacIV 計劃,研製一台64 個CPU 的SIMD 主機系統,它涉及到硬體技術、體系結構、I/O 設備、操作系統、程序設計語言直至應用程序在內的眾多研究課題。不過,當一台規模大大縮小了的16CPU 系統終於在1975 年面世時,整個計算機界已經發生了巨大變化。
首先是存儲系統概念的革新,提出虛擬存儲和緩存的思想。IBM360/85 系統與360/91是屬於同一系列的兩個機型,360/91 的主頻高於360/85,所選用的內存速度也較快,並且採用了動態調度的指令流水線;但是,360/85 的整體性能卻高於360/91,唯一的原因就是前者採用了緩存技術,而後者則沒有。
其次是半導體存儲器開始代替磁芯存儲器。最初,半導體存儲器只是在某些機器被用作緩存,而CDC7600 則率先全面採用這種體積更小、速度更快、可以直接定址的半導體存儲器,磁芯存儲器從此退出了歷史舞台。與此同時,集成電路也出現了,並迅速應用到了計算機中。元器件技術的這兩大革命性突破,使得IlliacIV 的設計者們在底層硬體以及並行體系結構方面提出的種種改進都大為遜色。
1976 年CRAY-1 問世以後,向量計算機從此牢牢地控制著整個高性能計算機市場15 年。CRAY-1 對所使用的邏輯電路進行了精心的設計,採用了我們如今稱為RISC 的精簡指令集,還引入了向量寄存器,以完成向量運算。這一系列全新技術手段的使用,使CRAY-1 的主頻達到了80MHz。
微處理器隨著機器的字長從4 位、8 位、16 位一直增加到32 位,其性能也隨之顯著提高。正是因為看到了微處理器的這種潛力,卡內基- 梅隆大學開始在當時流行的DECPDP11 小型計算機的基礎上研製成功一台由16 個PDP11/40 處理機通過交叉開關與16 個共享存儲器模塊相連接而成的共享存儲多處理器系統C.mmp。
從80 年代開始,微處理器技術一直在高速前進。稍後又出現了非常適合於SMP 方式的匯流排協議,而伯克利加州大學則對匯流排協議進行了擴展,提出了Cache 一致性問題的處理方案。從此,C.mmp 開創出的共享存儲多處理器之路越走越寬;現在,這種體系結構已經基本上統治了伺服器和桌面工作站市場。
同一時期,基於消息傳遞機制的並行計算機也開始不斷涌現。80 年代中期,加州理工成功地將64 個i8086/i8087 處理器通過超立方體互連結構連結起來。此後,便先後出現了Intel iPSC 系列、INMOS Transputer 系列,Intel Paragon 以及IBM SP 的前身Vulcan 等基於消息傳遞機制的並行計算機。
80 年代末到90 年代初,共享存儲器方式的大規模並行計算機又獲得了新的發展。IBM將大量早期RISC 微處理器通過蝶形互連網路連結起來。人們開始考慮如何才能在實現共享存儲器緩存一致的同時,使系統具有一定的可擴展性(Scalability)。90 年代初期,斯坦福大學提出了DASH 計劃,它通過維護一個保存有每一緩存塊位置信息的目錄結構來實現分布式共享存儲器的緩存一致性。後來,IEEE 在此基礎上提出了緩存一致性協議的標准。
90 年代以來,主要的幾種體系結構開始走向融合。屬於數據並行類型的CM-5 除大量採用商品化的微處理器以外,也允許用戶層的程序傳遞一些簡單的消息;CRAY T3D是一台NUMA 結構的共享存儲型並行計算機,但是它也提供了全局同步機制、消息隊列機制,並採取了一些減少消息傳遞延遲的技術。
隨著商品化微處理器、網路設備的發展,以及MPI/PVM 等並行編程標準的發布,機群架構的並行計算機出現。IBM SP2 系列機群系統就是其中的典型代表。在這些系統中,各個節點採用的都是標準的商品化計算機,它們之間通過高速網路連接起來。
今天,越來越多的並行計算機系統採用商品化的微處理器加上商品化的互連網路構造,這種分布存儲的並行計算機系統稱為機群。國內幾乎所有的高性能計算機廠商都生產這種具有極高性能價格比的高性能計算機,並行計算機就進入了一個新的時代,並行計算的應用達到了前所未有的廣度和深度。
並行計算機隨著微處理晶元的發展,已經進入了一個新時代。目前並行計算機的性能已經突破20PFLOPS,正在向百億億次發展。我國並行計算機的研製已經走在世界前列。2003年由聯想公司生產的深騰6800 在2003 年11 月世界TOP500 排名中位列第14 名,2004 年曙光公司生產的曙光4000A 在2004 年6 月的世界TOP500 排名中位列第10 名,這是我國公開發布的高性能計算機在世界TOP500 中首次進入前十名,這標志著我國在並行計算機系統的研製和生產中已經趕上了國際先進水平,為提高我國的科學研究水平奠定了物質基礎。2013年國際超級計算機大會最新發布的世界超級計算機500強排名中,國防科技大學研製的天河二號超級計算機系統,以峰值計算速度每秒5.49億億次、持續計算速度每秒3.39億億次雙精度浮點運算的優異性能位居榜首。
從TOP500 的前10 名來看,美國仍然是超級計算機的最大擁有者。按照世界TOP500 的統計數據來分析,美國在計算能力上佔有近全世界的一半,在TOP500 中的所有計算機中擁有的數量超過50%。
『肆』 畢業設計 我想闡述一下並行計算的發展
從20世紀40年代開始的現代計算機發展歷程可以分為兩個明顯的發展時代:串列計算時代、並行計算時代。每一個計算時代都從體系結構發展開始,接著是系統軟體(特別是編譯器與操作系統)、應用軟體,最後隨著問題求解環境的發展而達到頂峰。
並行計算機是由一組處理單元組成的。這組處理單元通過相互之間的通信與協作,以更快的速度共同完成一項大規模的計算任務。因此,並行計算機的兩個最主要的組成部分是計算節點和節點間的通信與協作機制。並行計算機體系結構的發展也主要體現在計算節點性能的提高以及節點間通信技術的改進兩方面。
節點性能不斷進步
20世紀60年代初期,由於晶體管以及磁芯存儲器的出現,處理單元變得越來越小,存儲器也更加小巧和廉價。這些技術發展的結果導致了並行計算機的出現。這一時期的並行計算機多是規模不大的共享存儲多處理器系統,即所謂大型主機。IBM 360是這一時期的典型代表。
到了20世紀60年代末期,同一個處理器開始設置多個功能相同的功能單元,流水線技術也出現了。與單純提高時鍾頻率相比,這些並行特性在處理器內部的應用大大提高了並行計算機系統的性能。伊利諾依大學和Burroughs公司此時開始實施Illiac Ⅳ計劃,研製一台64顆CPU的SIMD主機系統,它涉及到硬體技術、體系結構、I/O設備、操作系統、程序設計語言直至應用程序在內的眾多研究課題。不過,當一台規模大大縮小的原型系統(僅使用了16顆CPU)終於在1975年面世時,整個計算機界已經發生了巨大變化。
首先是存儲系統概念的革新,提出虛擬存儲和緩存的思想。以IBM 360/85和IBM 360/91為例,兩者是屬於同一系列的兩個機型,IBM 360/91的主頻高於IBM 360/85,所選用的內存速度也較快,並且採用了動態調度的指令流水線。但是,IBM 360/85的整體性能卻高於IBM 360/91,惟一的原因就是前者採用了緩存技術,而後者則沒有。
其次是半導體存儲器開始代替磁芯存儲器。最初,半導體存儲器只是在某些機器中被用作緩存,而CDC7600則率先全面採用這種體積更小、速度更快、可以直接定址的半導體存儲器,磁芯存儲器從此退出了歷史舞台。與此同時,集成電路也出現了,並迅速應用到計算機中。元器件技術的這兩大革命性突破,使得Illiac Ⅳ的設計者們在底層硬體以及並行體系結構方面提出的種種改進都大為遜色。
處理器高速發展
1976年Cray-1問世以後,向量計算機從此牢牢地控制著整個高性能計算機市場15年。Cray-1對所使用的邏輯電路進行了精心的設計,採用了我們如今稱為RISC的精簡指令集,還引入了向量寄存器,以完成向量運算。這一系列技術手段的使用,使Cray-1的主頻達到了80MHz。
微處理器隨著機器的字長從4位、8位、16位一直增加到32位,其性能也隨之顯著提高。正是因為看到了微處理器的這種潛力,卡內基·梅隆大學開始在當時流行的DEC PDP-11小型計算機的基礎上研製一台由16台PDP-11/40處理機通過交叉開關與16個共享存儲器模塊相連接而成的共享存儲多處理器系統C.mmp。
從20世紀80年代開始,微處理器技術一直在高速前進。稍後又出現了非常適合於SMP方式的匯流排協議。而伯克利加州大學則對匯流排協議進行了擴展,提出了Cache一致性問題的處理方案。從此,C.mmp開創出的共享存儲多處理器之路越走越寬。現在,這種體系結構已經基本上統治了伺服器和桌面工作站市場。
通信機制穩步前進
同一時期,基於消息傳遞機制的並行計算機也開始不斷涌現。20世紀80年代中期,加州理工學院成功地將64個i8086/i8087處理器通過超立方體互連結構連結起來。此後,便先後出現了Intel iPSC系列、INMOS Transputer系列,Intel Paragon以及IBM SP的前身Vulcan等基於消息傳遞機制的並行計算機。
20世紀80年代末到90年代初,共享存儲器方式的大規模並行計算機又獲得了新的發展。IBM將大量早期RISC微處理器通過蝶形互連網路連結起來。人們開始考慮如何才能在實現共享存儲器緩存一致的同時,使系統具有一定的可擴展性。20世紀90年代初期,斯坦福大學提出了DASH計劃,它通過維護一個保存有每一緩存塊位置信息的目錄結構來實現分布式共享存儲器的緩存一致性。後來,IEEE在此基礎上提出了緩存一致性協議的標准。
20世紀90年代至今,主要的幾種體系結構開始走向融合。
屬於數據並行類型的CM-5除大量採用商品化的微處理器以外,也允許用戶層的程序傳遞一些簡單的消息。
Cray T3D是一台NUMA結構的共享存儲型並行計算機,但是它也提供了全局同步機制、消息隊列機制,並採取了一些減少消息傳遞延遲的技術。
隨著微處理器商品化、網路設備的發展以及MPI/PVM等並行編程標準的發布,集群架構的並行計算機出現開始。IBM SP2系列集群系統就是其中的典型代表。在這些系統中,各個節點採用的都是標準的商品化計算機,它們之間通過高速網路連接起來。
1.2 有限元並行計算的發展和現狀
目前,在計算力學領域內,圍繞著基於變分原理的有限元法
和基於邊界積分方程的邊界元法,以及基於現在問世的各種並行
計算機,逐漸形成了一個新的學科分支——有限元並行計算。它
是高效能的,使得許多現在應用串列計算機和串列演算法不能解決
或求解不好的大型的、復雜的力學問題能得到滿意的解答,故其
發展速度十分驚人。在國際上已經掀起了利用並行機進行工程分
析和研究的高潮。從1975到1995年的二十年間,有關有限元方法
和相應的數值並行計算的文章已發表1000餘篇。
有限元並行計算正在向兩個方向發展。一是對系統方程組實
施並行求解的各種演算法。二是並行分析方法,包括有限元並行算
法和邊界元並行演算法,前者趨向成熟,而後者的研究較少。對這
一方面的研究,是為了挖掘有限元計算自身潛在的並行性,是有
限元並行計算的根本問題。
1.2.1國內
並行演算法的設計和有效實現強烈地依賴於並行機的硬軟體環
境。國內僅極少數單位擁有並行機,且機型雜亂,因此研究人員
少,起步晚,而且局限於特定的硬體環境。從有限元分析方法的
內容來看,發表的幾十篇研究論文(報告)還未顯示出較強的系
統性。
1)南京航空航天大學周樹荃教授等在YH-1向量機上實現了剛度
矩陣計算、對稱帶狀矩陣的Cholesky分解和線性方程組的求解等
並行處理。針對不規則結構工程分析問題,他們還採用了變帶寬
存貯方法,並實現了剛度矩陣的並行計算以及求解變帶寬稀疏線
性方程組的並行直接解法【20】。
2)中國科學院計算中心王藎賢研究員等在基於Transputer晶元
的分布式MIMD系統上,提出了有限元分析中變帶寬線性方程組的
並行直接解法,初步完成了一個靜力分析程序【21】。
3)重慶大學張汝清教授等藉助於ELXSI-6400共享存貯器型MIMD
系統,先後開展了范圍比較廣泛的並行演算法研究,主要成果有:
a)提出了靜力分析中子結構解法的並行演算法,以及動力分析中模
態綜合子結構法的並行演算法;
b)從波前法出發,發展了多波前並行演算法以求解大型結構分析
問題;
c)從Jacobi塊迭代法和加權殘差法出發,導出了基於非同步控制的
有限元方程並行解法和有限元並行迭代的基本格式;
d)利用圖論中的著色理論,實現了剛度矩陣的並行計算;
e)實現了基於有色線剖分的SOR並行迭代解法;
f)實現了子空間迭代法、Lanczos法以及利用多項式割線迭代法
和矢量迭代法求解結構固有頻率和模態的並行演算法;
g)針對彈塑性分析,提出了一種多波前子結構並行演算法;
h)針對彈性接觸問題,提出了一種基於參數變分原理的並行解法;
i)實現了一步積分法的並行處理【22】。
4)南京航空航天大學喬新教授等藉助於Transputer晶元的分布式
MIMD系統實現了有限元方程組的並行直接解法,並提出了基於子結
構的預處理共軛梯度法的並行計算方法【23】。
此外,浙江大學姚堅【24】、中國科學院西南計算中心馬寅國、
東北工學院張鐵以及國防科技大學六系也曾對有限元分析的並行計
算開展了一些研究。
上述研究結果表明,國內並行計算方法的研究,在硬體上基於
向量機、分布式並行機和共享存貯式並行機;在內容上,似乎面很
廣,但系統性和深度還很不夠,軟體開發距實際應用和商品化還有
很大距離,對不依賴並行機具體環境的通用並行演算法研究還很少,
同樣對旨在進行結構有限元分析的並行計算的硬體研究也很少。
1.2.2國外
自從美國國家宇航局(NASA)的A.K.Noor於1975年發表第一篇
有限元並行計算的文章以來,有限元並行處理技術幾乎與並行計算
機同步發展。距不完全統計,到1992年,國外已發表了400餘篇這方
面的論文,其中後5年的文章篇數是前12年的總和。在研究內容上也
由過去的演算法研究發展到了演算法、軟體和硬體相結合的研究,並針對
一些機型開發了一些實用的大型結構分析軟體。
1)有限元機器FEM【25】(Finite Element Machine)。早在70年
代末,就有人發表了有關FEM的論文,1982年美國國家宇航局Langley
研究中心的O.O.Storaasli等撰文詳細地介紹了該中心設計的供研究
用的FEM。該機器由1個處理器陣列、1台作為控制器的微機和1個並行
操作系統及一些模塊化了的通用並行演算法程序組成,用戶使用系統的
文本編輯器和控制器的其它特殊功能,能建立有限元計算模型並進行
分析。10多年來,又有一些人在這一方面進行了不懈的努力,但FEM
的發展前景仍然不太令人樂觀。
2)心動陣列並行機【26】。心動陣列並行機主要應用於信號和圖象
的並行處理,但由於其高效的矩陣計算功能,近年來有人把它應用於
有限元分析,並作了一些有益的嘗試。
3)巨型向量機【27】。在有限元分析中越來越顯示出巨大的威力,
處於領先的是美國思維公司的CM-2。許多結構分析家把這個具有65536
個處理器的巨型向量機應用於有限元計算,如T.Belyschko等人採用顯
式方法,完成了具有32768個單元的殼的非線性有限元計算,並行效率
極高,速度幾乎比CRAY X-MP/14並行機高出1個數量級。
4)並行機網路和工作站網路【28】。日本東京大學矢川等藉助高速網
絡把3台CRAY Y-MP機聯成網路進行有限元分析,有限元方程求解採用
的是基於區域分裂技術的共軛梯度法(CGM), 在求解三維彈性問題
時自由度個數超過了100萬,系統平均運行速度高達1.74GFLOPS。另外,
他們還基於一個工程工作站網路,在並行環境下進行了類似的研究,
求解問題的自由度數高達20萬個。
--
我左看右看前看後看可還是看不過來
這個....那個....我越看越奇怪....
不是我不明白,這世界變化快
『伍』 什麼是計算機體系結構中的並行性
並行處理(Parallel Processing)是計算機系統中能同時執行兩個或更多個處理機的一種計算方法。處理機可同時工作於同一程序的不同方面。並行處理的主要目的是節省大型和復雜問題的解決時間。為使用並行處理,首先需要對程序進行並行化處理,也就是說將工作各部分分配到不同處理機中。而主要問題是並行是一個相互依靠性問題,而不能自動實現。此外,並行也不能保證加速。但是一個在 n 個處理機上執行的程序速度可能會是在單一處理機上執行的速度的 n 倍。
計算機體系結構(ComputerArchitecture)是程序員所看到的計算機的屬性,即概念性結構與功能特性。按照計算機系統的多級層次結構,不同級程序員所看到的計算機具有不同的屬性。一般來說,低級機器的屬性對於高層機器程序員基本是透明的,通常所說的計算機體系結構主要指機器語言級機器的系統結構。經典的關於"計算機體系結構(computerarchitecture)"的定義是1964年C.M.Amdahl在介紹IBM360系統時提出的,其具體描述為"計算機體系結構是程序員所看到的計算機的屬性,即概念性結構與功能特性" 。
利用計算機語言進行並行性描述的時候主要有三種方案:
1.語言擴展方案:也就是利用各種語言的庫函數來進行並行性功能的擴展。
2.編譯制導法:也稱為智能編譯,它是隱式並行策略的體現,主要是由並行編譯系統進行程序表示、控制流的分析、相關分析、優化分析和並行化劃分,由相關分析得到方法庫管理方案,由優化分析得到知識庫管理方案,由並行化劃分得到程序重構,從而形成並行程序。
3.新的語言結構法:這是顯式並行策略的體現。也就是建立一種全新的並行語言的體系,而這種並行語言通過編譯就能直接形成並行程序。
『陸』 計算機的體系結構,組成和實現各自處理哪些方面的問題
電腦的體系結構分為硬體系統和軟體系統兩個部分。
多媒體技術個人電腦的硬體設備包括:
主機:主機是整個電腦的主體,可以說用電腦來工作的時候,工作是在它內部完成的。主機外觀上分為立式和卧式兩種。立式機箱的結構更利於散熱,更受人們歡迎一些。
鍵盤:是電腦中不可缺少的輸入設備,用戶可以通過鍵盤輸入命令和數據,並可通過它控制電腦的運行。常見的鍵盤大多是101或104鍵的,一些較為新穎的104鍵盤往往帶有兩個Windows鍵和一個應用程序鍵,以提高在Win7操作系統上操作電腦的效率。這些鍵可以分為大鍵盤區、編輯鍵區、功能鍵區和小鍵盤區。
顯示器:是電腦基本的輸出設備,是整個電腦硬體系統中不可缺少的部分。我們現在常用的是液晶顯示器,與傳統的陰極射線管顯示器相比,輻射比較低、體積小,耗電少。它利用液晶的特性,通電時排列變得有秩序,使光線容易通過,不通電時排列混亂,阻止光線通過,通過電路控制,顯示圖像。
列印機也是一種常用的輸出設備。因為顯示器上顯示的內容一旦關機就看不見了,也不方便把顯示器搬來搬去給別人閱讀,所以我們還是需要用列印機把自己的工作成果列印出來。
滑鼠:電腦中重要的輸入設備,它能方便地把滑鼠指針准確定位在我們指定的屏幕位置,很方便地完成各種操作。按其工作原理,滑鼠分為機械滑鼠、光電滑鼠和光機滑鼠。目前我們常常用的滑鼠是光電滑鼠。光電滑鼠的下面是兩個平行放置的小光源,這種滑鼠只能在特定的滑鼠墊上移動,光源發出的光經過滑鼠墊反射後由滑鼠接收為移動信號,送入電腦,使屏幕上的滑鼠指針隨之移動。滑鼠指針和滑鼠的移動方向是一致的,移動距離也成比例。光電滑鼠使用時比較靈活,故障率比較低。
音箱:相當於電腦的嘴巴和喉嚨,有了它電腦才能發出悅耳的聲音。音箱的外殼有木質和塑料兩種,兩只音箱一左一右擺放在電腦兩側,與顯示器有一定距離,才能得到立體聲效果。
麥克風:相當於電腦的耳朵,有了它電腦才能把外部的聲音傳送到電腦中,變換成數字波形,輸入到文件或多媒體圖像中。
攝像頭:可以分為數字攝像頭和模擬攝像頭兩大類,數字攝像頭可以直接捕捉影像,通過串口、並口或USB介面傳到電腦里。根據攝像頭的形態,可以分為桌面底座式、高桿式和液晶掛式。攝像頭還可以分為有驅動和無驅動型的攝像頭。
軟體分為系統軟體、應用軟體。
系統軟體是負責管理計算機系統中各種獨立的硬體,使得它們可以協調工作。系統軟體使得計算機使用者和其他軟體將計算機當作一個整體而不需要顧及到底層每個硬體是如何工作的。
操作系統是一管理計算機硬體與軟體資源的程序,同時也是計算機系統的內核與基石。操作系統身負諸如管理與配置內存、決定系統資源供需的優先次序、控制輸入與輸出設備、操作網路與管理文件系統等基本事務。操作系統也提供一個讓使用者與系統交互的操作介面。目前多媒體個人電腦的主要操作系統是Windows 7。
應用軟體是為了某種特定的用途而被開發的軟體。它可以是一個特定的程序,比如一個圖像瀏覽器。也可以是一組功能聯系緊密,可以互相協作的程序的集合,比如微軟的Office軟體。也可以是一個由眾多獨立程序組成的龐大的軟體系統,比如資料庫管理系統。多媒體個人電腦的應用軟體主要有酷狗音樂、騰訊視頻、PPTV、Office 2007等。