導航:首頁 > 源碼編譯 > 適恰的演算法

適恰的演算法

發布時間:2023-03-01 13:44:22

㈠ 初學者如何選擇合適的機器學習演算法(附演算法

如何為分類問題選擇合適的機器學習演算法 若要達到一定的准確率,需要嘗試各種各樣的分類器,並通過交叉驗證選擇最好的一個。但是,如果你只是為你的問題尋找一個「足夠好」的演算法或者一個起點,以下准則有利於選擇合適的分類器:你的訓練集有多大?如果訓練集很小,那麼高偏差/低方差分類器(如樸素貝葉斯分類器)要優於低偏差/高方差分類器(如k近鄰分類器),因為後者容易過擬合。然而,隨著訓練集的增大,低偏差/高方差分類器將開始勝出(它們具有較低的漸近誤差),因為高偏差分類器不足以提供准確的模型。這可以認為這是生成模型與判別模型的區別。一些特定演算法比較樸素貝葉斯優點:簡單;如果樸素貝葉斯(NB)條件獨立性假設成立,相比於邏輯回歸這類的判別模型,樸素貝葉斯分類器將收斂得更快,所以你只需要較小的訓練集。而且,即使NB假設不成立,樸素貝葉斯分類器在實踐方面仍然表現很好。如果想得到簡單快捷的執行效果,這將是個好的選擇。缺點:不能學習特徵之間的相互作用(比如,它不能學習出:雖然你喜歡布拉德·皮特和湯姆·克魯斯的電影,但卻不喜歡他們一起合作的電影)。邏輯回歸優點:有許多正則化模型的方法,不需要像在樸素貝葉斯分類器中那樣擔心特徵間的相互關聯性。與決策樹和支持向量機 不同,有一個很好的概率解釋,並能容易地更新模型來吸收新數據(使用一個在線梯度下降方法)。如果你想要一個概率框架(比如,簡單地調整分類閾值,說出什麼時候是不太確定的,或者獲得置信區間),或你期望未來接收更多想要快速並入模型中的訓練數據,就選擇邏輯回歸。決策樹優點:易於說明和解釋,很容易地處理特徵間的相互作用,並且是非參數化的,不用擔心異常值或者數據是否線性可分(比如,決策樹可以很容易地某特徵x的低端是類A,中間是類B,然後高端又是類A的情況)。缺點:1)不支持在線學習,當有新樣本時需要重建決策樹。2)容易過擬合,但這也正是諸如隨機森林(或提高樹)之類的集成方法的切入點。另外,隨機森林適用於很多分類問題(通常略優於支持向量機)---快速並且可擴展,不像支持向量機那樣調一堆參數。隨機森林正漸漸開始偷走它的「王冠」。 SVMs 優點:高准確率,為過擬合提供了好的理論保證;即使數據在基礎特徵空間線性不可分,只要選定一個恰當的核函數,仍然能夠取得很好的分類效果。它們在超高維空間是常態的文本分類問題中尤其受歡迎。然而,它們內存消耗大,難於解釋,運行和調參 復雜,盡管如此,更好的數據往往勝過更好的演算法,設計好的特徵非常重要。如果有一個龐大數據集,這時使用哪種分類演算法在分類性能方面可能並不要緊;因此,要基於速度和易用性選擇演算法。

㈡ 面試必會八大排序演算法(python

一、插入排序

介紹

插入排序的基本操作就是將一個數據插入到已經排好序的有序數據中,從而得到一個新的、個數加一的有序數據。

演算法適用於少量數據的排序,時間復雜度為O(n^2)。

插入排演算法是穩定的排序方法。

步驟

①從第一個元素開始,該元素可以認為已經被排序

②取出下一個元素,在已經排序的元素序列中從後向前掃描

③如果該元素(已排序)大於新元素,將該元素移到下一位置

④重復步驟3,直到找到已排序的元素小於或者等於新元素的位置

⑤將新元素插入到該位置中

⑥重復步驟2

排序演示

演算法實現

二、冒泡排序

介紹

冒泡排序(Bubble Sort)是一種簡單的排序演算法,時間復雜度為O(n^2)。

它重復地走訪過要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該數列已經排序完成。

這個演算法的名字由來是因為越小的元素會經由交換慢慢「浮」到數列的頂端。

原理

循環遍歷列表,每次循環找出循環最大的元素排在後面;

需要使用嵌套循環實現:外層循環控制總循環次數,內層循環負責每輪的循環比較。

步驟

①比較相鄰的元素。如果第一個比第二個大,就交換他們兩個。

②對每一對相鄰元素作同樣的工作,從開始第一對到結尾的最後一對。在這一點,最後的元素應該會是最大的數。

③針對所有的元素重復以上的步驟,除了最後一個。

④持續每次對越來越少的元素重復上面的步驟,直到沒有任何一對數字需要比較。

演算法實現:

三、快速排序

介紹

快速排序(Quicksort)是對冒泡排序的一種改進,借用了分治的思想,由C. A. R. Hoare在1962年提出。

基本思想

快速排序的基本思想是:挖坑填數 + 分治法。

首先選出一個軸值(pivot,也有叫基準的),通過一趟排序將待排記錄分隔成獨立的兩部分,其中一部分記錄的關鍵字均比另一部分的關鍵字小,則可分別對這兩部分記錄繼續進行排序,以達到整個序列有序。

實現步驟

①從數列中挑出一個元素,稱為 「基準」(pivot);

②重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊);

③對所有兩個小數列重復第二步,直至各區間只有一個數。

排序演示

演算法實現

四、希爾排序

介紹

希爾排序(Shell Sort)是插入排序的一種,也是縮小增量排序,是直接插入排序演算法的一種更高效的改進版本。希爾排序是非穩定排序演算法,時間復雜度為:O(1.3n)。

希爾排序是基於插入排序的以下兩點性質而提出改進方法的:

·插入排序在對幾乎已經排好序的數據操作時, 效率高, 即可以達到線性排序的效率;

·但插入排序一般來說是低效的, 因為插入排序每次只能將數據移動一位。

基本思想

①希爾排序是把記錄按下標的一定量分組,對每組使用直接插入演算法排序;

②隨著增量逐漸減少,每組包1含的關鍵詞越來越多,當增量減至1時,整個文件恰被分成一組,演算法被終止。

排序演示

演算法實現

五、選擇排序

介紹

選擇排序(Selection sort)是一種簡單直觀的排序演算法,時間復雜度為Ο(n2)。

基本思想

選擇排序的基本思想:比較 + 交換。

第一趟,在待排序記錄r1 ~ r[n]中選出最小的記錄,將它與r1交換;

第二趟,在待排序記錄r2 ~ r[n]中選出最小的記錄,將它與r2交換;

以此類推,第 i 趟,在待排序記錄ri ~ r[n]中選出最小的記錄,將它與r[i]交換,使有序序列不斷增長直到全部排序完畢。

排序演示

選擇排序的示例動畫。紅色表示當前最小值,黃色表示已排序序列,藍色表示當前位置。

演算法實現

六、堆排序

介紹

堆排序(Heapsort)是指利用堆積樹(堆)這種數據結構所設計的一種排序演算法,它是選擇排序的一種。

利用數組的特點快速指定索引的元素。

基本思想

堆分為大根堆和小根堆,是完全二叉樹。

大根堆的要求是每個節點的值不大於其父節點的值,即A[PARENT[i]] >=A[i]。

在數組的非降序排序中,需要使用的就是大根堆,因為根據大根堆的要求可知,最大的值一定在堆頂。

排序演示

演算法實現

七、歸並排序

介紹

歸並排序(Merge sort)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。

基本思想

歸並排序演算法是將兩個(或兩個以上)有序表合並成一個新的有序表,即把待排序序列分為若干個子序列,每個子序列是有序的。然後再把有序子序列合並為整體有序序列。

演算法思想

自上而下遞歸法(假如序列共有n個元素)

① 將序列每相鄰兩個數字進行歸並操作,形成 floor(n/2)個序列,排序後每個序列包含兩個元素;

② 將上述序列再次歸並,形成 floor(n/4)個序列,每個序列包含四個元素;

③ 重復步驟②,直到所有元素排序完畢。

自下而上迭代法

① 申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合並後的序列;

② 設定兩個指針,最初位置分別為兩個已經排序序列的起始位置;

③ 比較兩個指針所指向的元素,選擇相對小的元素放入到合並空間,並移動指針到下一位置;

④ 重復步驟③直到某一指針達到序列尾;

⑤ 將另一序列剩下的所有元素直接復制到合並序列尾。

排序演示

演算法實現

八、基數排序

介紹

基數排序(Radix Sort)屬於「分配式排序」,又稱為「桶子法」。

基數排序法是屬於穩定性的排序,其時間復雜度為O (nlog(r)m) ,其中 r 為採取的基數,而m為堆數。

在某些時候,基數排序法的效率高於其他的穩定性排序法。

基本思想

將所有待比較數值(正整數)統一為同樣的數位長度,數位較短的數前面補零。然後,從最低位開始,依次進行一次排序。這樣從最低位排序一直到最高位排序完成以後,數列就變成一個有序序列。

基數排序按照優先從高位或低位來排序有兩種實現方案:

MSD(Most significant digital) 從最左側高位開始進行排序。先按k1排序分組, 同一組中記錄, 關鍵碼k1相等,再對各組按k2排序分成子組, 之後, 對後面的關鍵碼繼續這樣的排序分組, 直到按最次位關鍵碼kd對各子組排序後. 再將各組連接起來,便得到一個有序序列。MSD方式適用於位數多的序列。

LSD (Least significant digital)從最右側低位開始進行排序。先從kd開始排序,再對kd-1進行排序,依次重復,直到對k1排序後便得到一個有序序列。LSD方式適用於位數少的序列。

排序效果

演算法實現

九、總結

各種排序的穩定性、時間復雜度、空間復雜度的總結:

平方階O(n²)排序:各類簡單排序:直接插入、直接選擇和冒泡排序;

從時間復雜度來說:

線性對數階O(nlog₂n)排序:快速排序、堆排序和歸並排序;

O(n1+§))排序,§是介於0和1之間的常數:希爾排序 ;

線性階O(n)排序:基數排序,此外還有桶、箱排序。

㈢ 常用優化器演算法歸納介紹

優化器是神經網路訓練過程中,進行梯度下降以尋找最優解的優化方法。不同方法通過不同方式(如附加動量項,學習率自適應變化等)側重於解決不同的問題,但最終大都是為了加快訓練速度。

這里就介紹幾種常見的優化器,包括其原理、數學公式、核心思想及其性能;

核心思想: 即針對每次輸入的訓練數據,計算輸出預測與真值的Loss的梯度;

從表達式來看,網路中參數的更新,是不斷向著最小化Loss函數的方向移動的:

優點:
簡單易懂,即對於相應的最優解(這里認為是Loss的最小函數),每次變數更新都是沿著局部梯度下降最快的方向,從而最小化損失函數。

缺點:

不同於標准梯度下降法(Gradient Descent)一次計算所有數據樣本的Loss並計算相應的梯度,批量梯度下降法(BGD, Batch Gradient Descent)每次只取一個小批次的數據及其真實標簽進行訓練,稱這個批次為mini-batch;

優點:

缺點:
隨機梯度下降法的 batch size 選擇不當可能導致模型難以收斂;由於這種方法是在一次更新中,就對整個數據集計算梯度,所以計算起來非常慢,遇到很大量的數據集也會非常棘手,而且不能投入新數據實時更新模型。

我們會事先定義一個迭代次數 epoch,首先計算梯度向量 params_grad,然後沿著梯度的方向更新參數 params,learning rate 決定了我們每一步邁多大。

Batch gradient descent 對於凸函數可以收斂到全局極小值,對於非凸函數可以收斂到局部極小值。

和 BGD 的一次用所有數據計算梯度相比,SGD 每次更新時對每個樣本進行梯度更新,對於很大的數據集來說,可能會有相似的樣本,這樣 BGD 在計算梯度時會出現冗餘,而 SGD 一次只進行一次更新,就沒有冗餘,而且比較快,並且可以新增樣本。

即訓練時,每次只從一批訓練樣本中隨機選取一個樣本進行梯度下降;對隨機梯度下降來說,只需要一次關注一個訓練樣本,一點點把參數朝著全局最小值的方向進行修改了。

整體數據集是個循環,其中對每個樣本進行一次參數更新

缺點:

梯度下降速度比較慢,而且每次梯度更新時往往只專注與局部最優點,而不會恰好指向全局最優點;

單樣本梯度更新時會引入許多雜訊(跟訓練目標無關的特徵也會被歸為該樣本分類的特徵);

SGD 因為更新比較頻繁,會造成 cost function 有嚴重的震盪。

BGD 可以收斂到局部極小值,當然 SGD 的震盪可能會跳到更好的局部極小值處。

當我們稍微減小 learning rate,SGD 和 BGD 的收斂性是一樣的。

優點:

當處理大量數據時,比如SSD或者faster-rcnn等目標檢測模型,每個樣本都有大量候選框參與訓練,這時使用隨機梯度下降法能夠加快梯度的計算。

隨機梯度下降是通過每個樣本來迭代更新一次,如果樣本量很大的情況,那麼可能只用其中部分的樣本,就已經將 迭代到最優解了,對比上面的批量梯度下降,迭代一次需要用到十幾萬訓練樣本,一次迭代不可能最優,如果迭代10次的話就需要遍歷訓練樣本10次。缺點是SGD的噪音較BGD要多,使得SGD並不是每次迭代都向著整體最優化方向。所以雖然訓練速度快,但是准確度下降,並不是全局最優。雖然包含一定的隨機性,但是從期望上來看,它是等於正確的導數的。

梯度更新規則:

MBGD 每一次利用一小批樣本,即 n 個樣本進行計算,這樣它可以降低參數更新時的方差,收斂更穩定,另一方面可以充分地利用深度學習庫中高度優化的矩陣操作來進行更有效的梯度計算。

和 SGD 的區別是每一次循環不是作用於每個樣本,而是具有 n 個樣本的批次。

超參數設定值: n 一般取值在 50~256

缺點:(兩大缺點)

鞍點就是:一個光滑函數的鞍點鄰域的曲線,曲面,或超曲面,都位於這點的切線的不同邊。例如這個二維圖形,像個馬鞍:在x-軸方嚮往上曲,在y-軸方嚮往下曲,鞍點就是(0,0)。

為了應對上面的兩點挑戰就有了下面這些演算法

核心思想:

不使用動量優化時,每次訓練的梯度下降方向,都是按照當前批次訓練數據計算的,可能並不能代表整個數據集,並且會有許多雜訊,下降曲線波動較大:

添加動量項之後,能夠有效減小波動,從而加快訓練速度:

當我們將一個小球從山上滾下來時,沒有阻力的話,它的動量會越來越大,但是如果遇到了阻力,速度就會變小。
加入的這一項,可以使得梯度方向不變的維度上速度變快,梯度方向有所改變的維度上的更新速度變慢,這樣就可以加快收斂並減小震盪。

優點:

通過動量更新,參數向量會在有持續梯度的方向上增加速度;
使梯度下降時的折返情況減輕,從而加快訓練速度;

缺點:

如果數據集分類復雜,會導致 和 時刻梯度 向量方向相差較大;在進行向量求和時,得到的 會非常小,反而使訓練速度大大下降甚至模型難以收斂。

這種情況相當於小球從山上滾下來時是在盲目地沿著坡滾,如果它能具備一些先知,例如快要上坡時,就知道需要減速了的話,適應性會更好。

目前為止,我們可以做到,在更新梯度時順應 loss function 的梯度來調整速度,並且對 SGD 進行加速。

核心思想:

自適應學習率優化演算法針對於機器學習模型的學習率,採用不同的策略來調整訓練過程中的學習率,從而大大提高訓練速度。

這個演算法就可以對低頻的參數做較大的更新,對高頻的做較小的更新,也因此,對於稀疏的數據它的表現很好,很好地提高了 SGD 的魯棒性,例如識別 Youtube 視頻裡面的貓,訓練 GloVe word embeddings,因為它們都是需要在低頻的特徵上有更大的更新。

Adagrad 的優點是減少了學習率的手動調節

式中, 表示第 個分類, 表示第 迭代同時也表示分類 累計出現的次數。 表示初始的學習率取值(一般為0.01)

AdaGrad的核心思想: 縮放每個參數反比於其所有梯度歷史平均值總和的平方根。具有代價函數最大梯度的參數相應地有較大的學習率,而具有小梯度的參數又較小的學習率。

缺點:

它的缺點是分母會不斷積累,這樣學習率就會收縮並最終會變得非常小。

這個演算法是對 Adagrad 的改進,

和 Adagrad 相比,就是分母的 換成了過去的梯度平方的衰減平均值,指數衰減平均值

這個分母相當於梯度的均方根 root mean squared (RMS),在數據統計分析中,將所有值平方求和,求其均值,再開平方,就得到均方根值 ,所以可以用 RMS 簡寫:

其中 的計算公式如下, 時刻的依賴於前一時刻的平均和當前的梯度:

梯度更新規則:

此外,還將學習率 換成了 RMS[Δθ],這樣的話,我們甚至都不需要提前設定學習率了:

超參數設定值: 一般設定為 0.9

RMSprop 是 Geoff Hinton 提出的一種自適應學習率方法。

RMSprop 和 Adadelta 都是為了解決 Adagrad 學習率急劇下降問題的,

梯度更新規則:

RMSprop 與 Adadelta 的第一種形式相同:(使用的是指數加權平均,旨在消除梯度下降中的擺動,與Momentum的效果一樣,某一維度的導數比較大,則指數加權平均就大,某一維度的導數比較小,則其指數加權平均就小,這樣就保證了各維度導數都在一個量級,進而減少了擺動。允許使用一個更大的學習率η)

超參數設定值:

Hinton 建議設定 為 0.9, 學習率 為 0.001。

這個演算法是另一種計算每個參數的自適應學習率的方法。相當於 RMSprop + Momentum

除了像 Adadelta 和 RMSprop 一樣存儲了過去梯度的平方 vt 的指數衰減平均值 ,也像 momentum 一樣保持了過去梯度 mt 的指數衰減平均值:

如果 和 被初始化為 0 向量,那它們就會向 0 偏置,所以做了偏差校正,通過計算偏差校正後的 和 來抵消這些偏差:

梯度更新規則:

超參數設定值:
建議

示例一

示例二

示例三

上面情況都可以看出,Adagrad, Adadelta, RMSprop 幾乎很快就找到了正確的方向並前進,收斂速度也相當快,而其它方法要麼很慢,要麼走了很多彎路才找到。

由圖可知自適應學習率方法即 Adagrad, Adadelta, RMSprop, Adam 在這種情景下會更合適而且收斂性更好。

如果數據是稀疏的,就用自適用方法,即 Adagrad, Adadelta, RMSprop, Adam。

RMSprop, Adadelta, Adam 在很多情況下的效果是相似的。

Adam 就是在 RMSprop 的基礎上加了 bias-correction 和 momentum,

隨著梯度變的稀疏,Adam 比 RMSprop 效果會好。

整體來講,Adam 是最好的選擇。

很多論文里都會用 SGD,沒有 momentum 等。SGD 雖然能達到極小值,但是比其它演算法用的時間長,而且可能會被困在鞍點。

如果需要更快的收斂,或者是訓練更深更復雜的神經網路,需要用一種自適應的演算法。

各種優化器Optimizer原理:從SGD到AdamOptimizer

深度學習——優化器演算法Optimizer詳解(BGD、SGD、MBGD、Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam)

㈣ 數據挖掘十大經典演算法(1)——樸素貝葉斯(Naive Bayes)

在此推出一個演算法系列的科普文章。我們大家在平時埋頭工程類工作之餘,也可以抽身對一些常見演算法進行了解,這不僅可以幫助我們拓寬思路,從另一個維度加深對計算機技術領域的理解,做到觸類旁通,同時也可以讓我們搞清楚一些既熟悉又陌生的領域——比如數據挖掘、大數據、機器學習——的基本原理,揭開它們的神秘面紗,了解到其實很多看似高深的領域,其實背後依據的基礎和原理也並不復雜。而且,掌握各類演算法的特點、優劣和適用場景,是真正從事數據挖掘工作的重中之重。只有熟悉演算法,才可能對紛繁復雜的現實問題合理建模,達到最佳預期效果。

本系列文章的目的是力求用最干練而生動的講述方式,為大家講解由國際權威的學術組織the IEEE International Conference on Data Mining (ICDM) 於2006年12月評選出的數據挖掘領域的十大經典演算法。它們包括:

本文作為本系列的第一篇,在介紹具體演算法之前,先簡單為大家鋪墊幾個數據挖掘領域的常見概念:

在數據挖掘領域,按照演算法本身的行為模式和使用目的,主要可以分為分類(classification),聚類(clustering)和回歸(regression)幾種,其中:

打幾個不恰當的比方

另外,還有一個經常有人問起的問題,就是 數據挖掘 機器學習 這兩個概念的區別,這里一句話闡明我自己的認識:機器學習是基礎,數據挖掘是應用。機器學習研製出各種各樣的演算法,數據挖掘根據應用場景把這些演算法合理運用起來,目的是達到最好的挖掘效果。

當然,以上的簡單總結一定不夠准確和嚴謹,更多的是為了方便大家理解打的比方。如果大家有更精當的理解,歡迎補充和交流。

好了,鋪墊了這么多,現在終於進入正題!
作為本系列入門的第一篇,先為大家介紹一個容易理解又很有趣的演算法—— 樸素貝葉斯

先站好隊,樸素貝葉斯是一個典型的 有監督的分類演算法

光從名字也可以想到,要想了解樸素貝葉斯,先要從 貝葉斯定理 說起。
貝葉斯定理是我們高中時代學過的一條概率學基礎定理,它描述了條件概率的計算方式。不要怕已經把這些知識還給了體育老師,相信你一看公式就能想起來。

P(A|B)表示事件B已經發生的前提下,事件A發生的概率,叫做事件B發生下事件A的條件概率。其基本求解公式為:

其中,P(AB)表示A和B同時發生的概率,P(B)標識B事件本身的概率。

貝葉斯定理之所以有用,是因為我們在生活中經常遇到這種情況:我們可以很容易直接得出P(A|B),P(B|A)則很難直接得出,但我們更關心P(B|A)。

而貝葉斯定理就為我們打通從P(A|B)獲得P(B|A)的道路。
下面不加證明地直接給出貝葉斯定理:

有了貝葉斯定理這個基礎,下面來看看樸素貝葉斯演算法的基本思路。

你看,其思想就是這么的樸素。那麼,屬於每個分類的概率該怎麼計算呢?下面我們先祭出形式化語言!

那麼現在的關鍵就是如何計算第3步中的各個條件概率。我們可以這么做:

因為分母對於所有類別為常數,因為我們只要將分子最大化皆可。又因為各特徵屬性是條件獨立的,所以有:

如果你也跟我一樣,對形式化語言有嚴重生理反應,不要怕,直接跳過前面這一坨,我們通過一個鮮活的例子,用人類的語言再解釋一遍這個過程。

某個醫院早上收了六個門診病人,如下表。

現在又來了第七個病人,是一個打噴嚏的建築工人。請問他最有可能患有何種疾病?

本質上,這就是一個典型的分類問題, 症狀 職業 是特徵屬性, 疾病種類 是目標類別

根據 貝葉斯定理

可得

假定"打噴嚏"和"建築工人"這兩個特徵是獨立的,因此,上面的等式就變成了

這是可以計算的。

因此,這個打噴嚏的建築工人,有66%的概率是得了感冒。同理,可以計算這個病人患上過敏或腦震盪的概率。比較這幾個概率,就可以知道他最可能得什麼病。

接下來,我們再舉一個樸素貝葉斯演算法在實際中經常被使用的場景的例子—— 文本分類器 ,通常會用來識別垃圾郵件。
首先,我們可以把一封郵件的內容抽象為由若干關鍵片語成的集合,這樣是否包含每種關鍵詞就成了一封郵件的特徵值,而目標類別就是 屬於垃圾郵件 不屬於垃圾郵件

假設每個關鍵詞在一封郵件里出現與否的概率相互之間是獨立的,那麼只要我們有若干已經標記為垃圾郵件和非垃圾郵件的樣本作為訓練集,那麼就可以得出,在全部垃圾郵件(記為Trash)出現某個關鍵詞Wi的概率,即 P(Wi|Trash)

而我們最重要回答的問題是,給定一封郵件內容M,它屬於垃圾郵件的概率是多大,即 P(Trash|M)

根據貝葉斯定理,有

我們先來看分子:
P(M|Trash) 可以理解為在垃圾郵件這個范疇中遇見郵件M的概率,而一封郵件M是由若干單詞Wi獨立匯聚組成的,只要我們所掌握的單詞樣本足夠多,因此就可以得到

這些值我們之前已經可以得到了。

再來看分子里的另一部分 P(Trash) ,這個值也就是垃圾郵件的總體概率,這個值顯然很容易得到,用訓練集中垃圾郵件數除以總數即可。

而對於分母來說,我們雖然也可以去計算它,但實際上已經沒有必要了,因為我們要比較的 P(Trash|M) 和 P(non-Trash|M) 的分母都是一樣的,因此只需要比較分子大小即可。

這樣一來,我們就可以通過簡單的計算,比較郵件M屬於垃圾還是非垃圾二者誰的概率更大了。

樸素貝葉斯的英文叫做 Naive Bayes ,直譯過來其實是 天真的貝葉斯 ,那麼他到底天真在哪了呢?

這主要是因為樸素貝葉斯的基本假設是所有特徵值之間都是相互獨立的,這才使得概率直接相乘這種簡單計算方式得以實現。然而在現實生活中,各個特徵值之間往往存在一些關聯,比如上面的例子,一篇文章中不同單詞之間一定是有關聯的,比如有些詞總是容易同時出現。

因此,在經典樸素貝葉斯的基礎上,還有更為靈活的建模方式—— 貝葉斯網路(Bayesian Belief Networks, BBN) ,可以單獨指定特徵值之間的是否獨立。這里就不展開了,有興趣的同學們可以做進一步了解。

最後我們來對這個經典演算法做個點評:

優點:

缺點:

好了,對於 樸素貝葉斯 的介紹就到這里,不知道各位看完之後是否會對數據挖掘這個領域產生了一點興趣了呢?

㈤ python中有哪些簡單的演算法

你好:
跟你詳細說一下python的常用8大演算法:
1、插入排序
插入排序的基本操作就是將一個數據插入到已經排好序的有序數據中,從而得到一個新的、個數加一的有序數據,演算法適用於少量數據的排序,時間復雜度為O(n^2)。是穩定的排序方法。插入演算法把要排序的數組分成兩部分:第一部分包含了這個數組的所有元素,但將最後一個元素除外(讓數組多一個空間才有插入的位置),而第二部分就只包含這一個元素(即待插入元素)。在第一部分排序完成後,再將這個最後元素插入到已排好序的第一部分中。
2、希爾排序
希爾排序(Shell Sort)是插入排序的一種。也稱縮小增量排序,是直接插入排序演算法的一種更高效的改進版本。希爾排序是非穩定排序演算法。該方法因DL.Shell於1959年提出而得名。 希爾排序是把記錄按下標的一定增量分組,對每組使用直接插入排序演算法排序;隨著增量逐漸減少,每組包含的關鍵詞越來越多,當增量減至1時,整個文件恰被分成一組,演算法便終止。
3、冒泡排序
它重復地走訪過要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該數列已經排序完成。
4、快速排序
通過一趟排序將要排序的數據分割成獨立的兩部分,其中一部分的所有數據都比另外一部分的所有數據都要小,然後再按此方法對這兩部分數據分別進行快速排序,整個排序過程可以遞歸進行,以此達到整個數據變成有序序列。
5、直接選擇排序
基本思想:第1趟,在待排序記錄r1 ~ r[n]中選出最小的記錄,將它與r1交換;第2趟,在待排序記錄r2 ~ r[n]中選出最小的記錄,將它與r2交換;以此類推,第i趟在待排序記錄r[i] ~ r[n]中選出最小的記錄,將它與r[i]交換,使有序序列不斷增長直到全部排序完畢。
6、堆排序
堆排序(Heapsort)是指利用堆積樹(堆)這種數據結構所設計的一種排序演算法,它是選擇排序的一種。可以利用數組的特點快速定位指定索引的元素。堆分為大根堆和小根堆,是完全二叉樹。大根堆的要求是每個節點的值都不大於其父節點的值,即A[PARENT[i]] >= A[i]。在數組的非降序排序中,需要使用的就是大根堆,因為根據大根堆的要求可知,最大的值一定在堆頂。
7、歸並排序
歸並排序是建立在歸並操作上的一種有效的排序演算法,該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。將已有序的子序列合並,得到完全有序的序列;即先使每個子序列有序,再使子序列段間有序。若將兩個有序表合並成一個有序表,稱為二路歸並。
歸並過程為:比較a[i]和a[j]的大小,若a[i]≤a[j],則將第一個有序表中的元素a[i]復制到r[k]中,並令i和k分別加上1;否則將第二個有序表中的元素a[j]復制到r[k]中,並令j和k分別加上1,如此循環下去,直到其中一個有序表取完,然後再將另一個有序表中剩餘的元素復制到r中從下標k到下標t的單元。歸並排序的演算法我們通常用遞歸實現,先把待排序區間[s,t]以中點二分,接著把左邊子區間排序,再把右邊子區間排序,最後把左區間和右區間用一次歸並操作合並成有序的區間[s,t]。
8、基數排序
基數排序(radix sort)屬於「分配式排序」(distribution sort),又稱「桶子法」(bucket sort)或bin sort,顧名思義,它是透過鍵值的部分資訊,將要排序的元素分配至某些「桶」中,藉以達到排序的作用,基數排序法是屬於穩定性的排序,其時間復雜度為O (nlog(r)m),其中r為所採取的基數,而m為堆數,在某些時候,基數排序法的效率高於其它的穩定性排序法。

㈥ 優化演算法筆記(一)優化演算法的介紹

(以下描述,均不是學術用語,僅供大家快樂的閱讀)

        我們常見常用的演算法有排序演算法,字元串遍歷演算法,尋路演算法等。這些演算法都是為了解決特定的問題而被提出。

        演算法本質是一種按照固定步驟執行的過程。

        優化演算法也是這樣一種過程,是一種根據概率按照固定步驟尋求問題的最優解的過程。與常見的排序演算法、尋路演算法不同的是,優化演算法不具備等冪性,是一種 概率演算法 。演算法不斷的 迭代 執行同一步驟直到結束,其流程如下圖。

        等冪性即 對於同樣的輸入,輸出是相同的 。

        比如圖1,對於給定的魚和給定的熊掌,我們在相同的條件下一定可以知道它們誰更重,當然,相同的條件是指魚和熊掌處於相同的重力作用下,且不用考慮水分流失的影響。在這些給定的條件下,我們(無論是誰)都將得出相同的結論,魚更重或者熊掌更重。我們可以認為,秤是一個等冪性的演算法(工具)。

        現在把問題變一變,問魚與熊掌你更愛哪個,那麼現在,這個問題,每個人的答案可能不會一樣,魚與熊掌各有所愛。說明喜愛這個演算法不是一個等冪性演算法。當然你可能會問,哪個更重,和更喜歡哪個這兩個問題一個是客觀問題,一個是主觀問題,主觀問題沒有確切的答案的。當我們處理主觀問題時,也會將其轉換成客觀問題,比如給喜歡魚和喜歡熊掌的程度打個分,再去尋求答案,畢竟計算機沒有感情,只認0和1(量子計算機我不認識你)。

        說完了等冪性,再來說什麼是概率演算法。簡單來說就是看臉、看人品、看運氣的演算法。

        有一場考試,考試的內容全部取自課本,同時老師根據自己的經驗給同學們劃了重點,但是因為試卷並不是該老師所出,也會有考試內容不在重點之內,老師估計試卷中至少80%內容都在重點中。學霸和學渣參加了考試,學霸為了考滿分所以無視重點,學渣為了pass,因此只看了重點。這樣做的結果一定是score(學霸)>=score(學渣)。

        當重點跟上圖一樣的時候,所有的內容都是重點的時候,學霸和學渣的學習策略變成了相同的策略,則score(學霸)=score(學渣)。但同時,學渣也要付出跟學霸相同的努力去學習這些內容,學渣心裡苦啊。

        當課本如下圖時

        學霸?學霸人呢,哪去了快來學習啊,不是說學習一時爽,一直學習一直爽嗎,快來啊,還等什麼。

        這時,如果重點內容遠少於書本內容時,學渣的學習策略有了優勢——花費的時間和精力較少。但是同時,學渣的分數也是一個未知數,可能得到80分也可能拿到100分,分數完全取決於重點內容與題目的契合度,契合度越高,分數越高。對學渣來說,自己具體能考多少分無法由自己決定,但是好在能夠知道大概的分數范圍。

        學霸的學習策略是一種遍歷性演算法,他會遍歷、通讀全部內容,以保證滿分。

        學渣的學習策略則是一種概率演算法,他只會遍歷、學習重點內容,但至於這些重點是不是真重點他也不知道。

        與遍歷演算法相比,概率演算法的結果具有不確定性,可能很好,也可能很差,但是會消耗更少的資源,比如時間(人生),空間(記憶)。概率演算法的最大優點就是 花費較少的代價來獲取最高的收益 ,在現實中體現於節省時間,使用很少的時間得到一個不與最優解相差較多的結果。

        「莊子:吾生也有涯,而知也無涯;以有涯隨無涯,殆矣。」的意思是:人生是有限的,但知識是無限的(沒有邊界的),用有限的人生追求無限的知識,是必然失敗的。

        生活中概率演算法(思想)的應用其實比較廣泛,只是我們很少去注意罷了。關於概率演算法還衍生出了一些有趣的理論,比如墨菲定律和倖存者偏差,此處不再詳述。

        上面說到,優化演算法就是不停的執行同樣的策略、步驟直到結束。為什麼要這樣呢?因為優化演算法是一種概率演算法,執行一次操作就得到最優結果幾乎是不可能的,重復多次取得最優的概率也會增大。

        栗子又來了,要從1-10這10個數中取出一個大於9的數,只取1次,達到要求的概率為10%,取2次,達到要求的概率為19%。

        可以看出取到第10次時,達到要求的概率幾乎65%,取到100次時,達到要求的概率能接近100%。優化演算法就是這樣簡單粗暴的來求解問題的嗎?非也,這並不是一個恰當的例子,因為每次取數的操作之間是相互獨立的,第2次取數的結果不受第1次取數結果的影響,假設前99次都沒達到要求,那麼再取一次達到要求的概率跟取一次達到要求的概率相同。

        優化演算法中,後一次的計算會依賴前一次的結果,以保證後一次的結果不會差於前一次的結果。這就不得不談到馬爾可夫鏈了。

        由鐵組成的鏈叫做鐵鏈,同理可得,馬爾可夫鏈就是馬爾可夫組成的鏈。

        言歸正傳, 馬爾可夫鏈(Markov Chain, MC) ,描述的是 狀態轉移的過程中,當前狀態轉移的概率只取決於上一步的狀態,與其他步的狀態無關 。簡單來說就是當前的結果只受上一步的結果的影響。每當我看到馬爾可夫鏈時,我都會陷入沉思,生活中、或者歷史中有太多太多與馬爾可夫鏈相似的東西。西歐封建等級制度中「附庸的附庸不是我的附庸」與「昨天的努力決定今天的生活,今天的努力決定明天的生活」,你的下一份工作的工資大多由你當前的工資決定,這些都與馬爾可夫鏈有異曲同工之處。

        還是從1-10這10個數中取出一個大於9的數的這個例子。基於馬爾可夫鏈的概率演算法在取數時需要使當前取的數不小於上一次取的數。比如上次取到了3,那麼下次只能在3-10這幾個數中取,這樣一來,達到目標的概率應該會顯著提升。還是用數據說話。

        取1次達到要求的概率仍然是

        取2次內達到要求的概率為

        取3次內達到要求的概率為

        取4次內……太麻煩了算了不算了

        可以看出基於馬爾可夫鏈來取數時,3次內能達到要求的概率與不用馬爾可夫鏈時取6次的概率相當。說明基於馬爾可夫鏈的概率演算法求解效率明顯高於隨機概率演算法。那為什麼不將所有的演算法都基於馬爾可夫鏈呢?原因一,其實現方式不是那麼簡單,例子中我們規定了取數的規則是復合馬爾可夫鏈的,而在其他問題中我們需要建立適當的復合馬爾科夫鏈的模型才能使用。原因二,並不是所有的問題都符合馬爾科夫鏈條件,比如原子內電子出現的位置,女朋友為什麼會生(lou)氣,彩票號碼的規律等,建立模型必須與問題有相似之處才能較好的解決問題。

        介紹完了優化演算法,再來討論討論優化演算法的使用場景。

        前面說了優化演算法是一種概率演算法,無法保證一定能得到最優解,故如果要求結果必須是確定、穩定的值,則無法使用優化演算法求解。

        例1,求城市a與城市b間的最短路線。如果結果用來修建高速、高鐵,那麼其結果必定是唯一確定的值,因為修路寸土寸金,必須選取最優解使花費最少。但如果結果是用來趕路,那麼即使沒有選到最優的路線,我們可能也不會有太大的損失。

        例2,求城市a與城市b間的最短路線,即使有兩條路徑,路徑1和路徑2,它們從a到b的距離相同,我們也可以得出這兩條路徑均為滿足條件的解。現在將問題改一下,求城市a到城市b耗時最少的線路。現在我們無法馬上得出確切的答案,因為最短的線路可能並不是最快的路線,還需要考慮到天氣,交通路況等因素,該問題的結果是一個動態的結果,不同的時間不同的天氣我們很可能得出不同的結果。

        現實生產、生活中,也有不少的場景使用的優化演算法。例如我們的使用的美圖軟體,停車場車牌識別,人臉識別等,其底層參數可能使用了優化演算法來加速參數計算,其參數的細微差別對結果的影響不太大,需要較快的得出誤差范圍內的參數即可;電商的推薦系統等也使用了優化演算法來加速參數的訓練和收斂,我們會發現每次刷新時,推給我們的商品都有幾個會發生變化,而且隨著我們對商品的瀏覽,系統推給我們的商品也會發生變化,其結果是動態變化的;打車軟體的訂單系統,會根據司機和客人的位置,區域等來派發司機給客人,不同的區域,不同的路況,派發的司機也是動態變化的。

        綜上我們可以大致總結一下推薦、不推薦使用優化演算法的場景的特點。

        前面說過,優化演算法處理的問題都是客觀的問題,如果遇到主觀的問題,比如「我孰與城北徐公美」,我們需要將這個問題進行量化而轉換成客觀的問題,如身高——「修八尺有餘」,「外貌——形貌昳麗」,自信度——「明日徐公來,孰視之,自以為不如;窺鏡而自視,又弗如遠甚」,轉化成客觀問題後我們可以得到各個解的分數,通過比較分數,我們就能知道如何取捨如何優化。這個轉化過程叫做問題的建模過程,建立的問題模型實際上是一個函數,這個函數對優化演算法來說是一個黑盒函數,即不需要知道其內部實現只需要給出輸入,得到輸出。

        在優化演算法中這個黑盒函數叫做 適應度函數 , 優化演算法的求解過程就是尋找適應度函數最優解的過程 ,使用優化演算法時我們最大的挑戰就是如何將抽象的問題建立成具體的模型,一旦合適的模型建立完成,我們就可以愉快的使用優化演算法來求解問題啦。(「合適」二字談何容易)

        優化演算法的大致介紹到此結束,後面我們會依次介紹常見、經典的優化演算法,並探究其參數對演算法性能的影響。

——2019.06.20

[目錄]

[下一篇 優化演算法筆記(二)優化演算法的分類]

㈦ 常見排序演算法歸納

排序演算法一般分類:

比較兩個相鄰的元素,將值大的元素交換至右端。

依次比較兩個相鄰的數,將小數放到前面,大數放到後面

即在第一趟:首先比較第1個數和第2個數,將小數放前,大數放後。然後比較第2個數和第3個數,將小數放前,大數放後,如此一直繼續下去,直到比較最後兩個數,將小數放前,大數放後。然後重復第一趟步驟,直到所有排序完成。

第一趟比較完成後,最後一個數一定是數組中最大的一個數,所以第二趟比較的時候最後一個數不參與比較。

第二趟完成後,倒數第二個數也一定是數組中第二大的數,所以第三趟比較的時候最後兩個數不參與比較。

依次類推......

輸出結果:

冒泡排序的優點: 每進行一趟排序,就會少比較一次,因為每進行一趟排序都會找出一個較大值。如上例:第一趟比較之後,排在最後的一個數一定是最大的一個數,第二趟排序的時候,只需要比較除了最後一個數以外的其他的數,同樣也能找出一個最大的數排在參與第二趟比較的數後面,第三趟比較的時候,只需要比較除了最後兩個數以外的其他的數,以此類推……也就是說,沒進行一趟比較,每一趟少比較一次,一定程度上減少了演算法的量。

用時間復雜度來說:

從一個數組中隨機選出一個數N,通過一趟排序將數組分割成三個部分,1、小於N的區域 2、等於N的區域 3、大於N的區域,然後再按照此方法對小於區的和大於區分別遞歸進行,從而達到整個數據變成有序數組。

如下圖:

假設最開始的基準數據為數組的第一個元素23,則首先用一個臨時變數去存儲基準數據,即 tmp=23 ,然後分別從數組的兩端掃描數組,設兩個指示標志: low 指向起始位置, high 指向末尾。

首先從後半部分開始,如果 掃描到的值大於基準數據 就讓 high-1 ,如果發現有元素比該基準數據的值小,比如上面的 18 <= tmp ,就讓 high位置的值賦值給low位置 ,結果如下:

然後開始從前往後掃描,如果掃描到的值小於基準數據就讓 low+1 ,如果發現有元素大於基準數據的值,比如上圖 46 >= tmp ,就再將 low 位置的值賦值給 high 位置的值,指針移動並且數據交換後的結果如下:

然後再開始從前往後遍歷,直到 low=high 結束循環,此時low或者high的下標就是 基準數據23在該數組中的正確索引位置 ,如下圖所示:

這樣一遍遍的走下來,可以很清楚的知道,快排的本質就是把比基準數據小的都放到基準數的左邊,比基準數大的數都放到基準數的右邊,這樣就找到了該數據在數組中的正確位置。

然後採用遞歸的方式分別對前半部分和後半部分排序,最終結果就是自然有序的了。

輸出結果:

最好情況下快排每次能恰好均分序列,那麼時間復雜度就是O(nlogn),最壞情況下,快排每次劃分都只能將序列分為一個元素和其它元素兩部分,這時候的快排退化成冒泡排序,時間復雜度為O(n^2)。

插入排序的基本操作就是將一個數據插入到已經排好序的有序數據中,從而得到一個新的、個數加一的有序數據,演算法適用於少量數據的排序,時間復雜度為O(n^2)。是穩定的排序方法。

將一個數據插入到 已經排好序的有序數據

第一趟排序:

用數組的第二個數與第一個數( 看成是已有序的數據 )比較

第二趟排序:

用數組的第三個數與已是有序的數據 {2,3} (剛才在第一趟排的)比較

在第二步中:

...

後面依此類推

輸出結果:

選擇排序是一種簡單直觀的排序演算法。它的工作原理是每一次從待排序的數據元素中選出最小(或最大)的一個元素,存放在序列的起始位置,然後,再從剩餘未排序元素中繼續尋找最小(大)元素,然後放到已排序序列的末尾。以此類推,直到全部待排序的數據元素排完。 選擇排序是不穩定的排序方法。

舉例:數組 int[] arr={5,2,8,4,9,1}

第一趟排序 : 原始數據: 5 2 8 4 9 1

最小數據1,把1放在首位,也就是1和5互換位置,

排序結果: 1 2 8 4 9 5

第二趟排序

第1以外的數據 {2 8 4 9 5} 進行比較,2最小,

排序結果: 1 2 8 4 9 5

第三趟排序

除 1、2 以外的數據 {8 4 9 5} 進行比較,4最小,8和4交換

排序結果: 1 2 4 8 9 5

第四趟排序 :

除第 1、2、4 以外的其他數據 {8 9 5} 進行比較,5最小,8和5交換

排序結果: 1 2 4 5 9 8

第五趟排序:

除第 1、2、4、5 以外的其他數據 {9 8} 進行比較,8最小,8和9交換

排序結果: 1 2 4 5 8 9

輸出結果:

歸並排序(merge sort)是利用歸並的思想實現的排序方法,該演算法採用經典的分治(divide-and-conquer)策略(分治法將問題分(divide)成一些小的問題然後遞歸求解,而治(conquer)的階段則將分的階段得到的各答案"修補"在一起,即分而治之)。

比如我們對 [8,4,5,7,1,3,6,2] 這個數組進行歸並排序,我們首先利用分治思想的「分」將數組拆分。

輸出結果:

閱讀全文

與適恰的演算法相關的資料

熱點內容
記事本dos命令 瀏覽:269
伺服器如何搭建多個節點 瀏覽:324
acx演算法 瀏覽:256
幽冥詭匠漫畫全集用什麼app可以看 瀏覽:1001
租用伺服器為什麼越來越慢 瀏覽:960
演算法創新就業方向 瀏覽:423
演算法最優解作者 瀏覽:867
通達信紅綠寶塔線指標源碼 瀏覽:666
app是什麼東西合法嗎 瀏覽:231
怎麼鎖app視頻教程 瀏覽:841
迅捷pdf注冊碼生成器 瀏覽:748
androidsdkosx 瀏覽:303
壓縮面膜紙熒光 瀏覽:841
app怎麼分身三個 瀏覽:744
電影bt下載源碼 瀏覽:421
iwatch屏幕加密晶元 瀏覽:570
公安主題網站源碼 瀏覽:986
天津市伺服器供應商雲伺服器 瀏覽:115
數控車床子程序編程 瀏覽:111
floydwarshall演算法 瀏覽:719