導航:首頁 > 源碼編譯 > bp神經網路演算法的實質

bp神經網路演算法的實質

發布時間:2023-03-02 10:53:32

1. 深入淺出BP神經網路演算法的原理

深入淺出BP神經網路演算法的原理
相信每位剛接觸神經網路的時候都會先碰到BP演算法的問題,如何形象快速地理解BP神經網路就是我們學習的高級樂趣了(畫外音:樂趣?你在跟我談樂趣?)
本篇博文就是要簡單粗暴地幫助各位童鞋快速入門採取BP演算法的神經網路。
BP神經網路是怎樣的一種定義?看這句話:一種按「誤差逆傳播演算法訓練」的多層前饋網路。
BP的思想就是:利用輸出後的誤差來估計輸出層前一層的誤差,再用這層誤差來估計更前一層誤差,如此獲取所有各層誤差估計。這里的誤差估計可以理解為某種偏導數,我們就是根據這種偏導數來調整各層的連接權值,再用調整後的連接權值重新計算輸出誤差。直到輸出的誤差達到符合的要求或者迭代次數溢出設定值。
說來說去,「誤差」這個詞說的很多嘛,說明這個演算法是不是跟誤差有很大的關系?
沒錯,BP的傳播對象就是「誤差」,傳播目的就是得到所有層的估計誤差。
它的學習規則是:使用最速下降法,通過反向傳播(就是一層一層往前傳)不斷調整網路的權值和閾值,最後使全局誤差系數最小。
它的學習本質就是:對各連接權值的動態調整。

拓撲結構如上圖:輸入層(input),隱藏層(hide layer),輸出層(output)
BP網路的優勢就是能學習和儲存大量的輸入輸出的關系,而不用事先指出這種數學關系。那麼它是如何學習的?
BP利用處處可導的激活函數來描述該層輸入與該層輸出的關系,常用S型函數δ來當作激活函數。

我們現在開始有監督的BP神經網路學習演算法:
1、正向傳播得到輸出層誤差e
=>輸入層輸入樣本=>各隱藏層=>輸出層
2、判斷是否反向傳播
=>若輸出層誤差與期望不符=>反向傳播
3、誤差反向傳播
=>誤差在各層顯示=>修正各層單元的權值,直到誤差減少到可接受程度。
演算法闡述起來比較簡單,接下來通過數學公式來認識BP的真實面目。
假設我們的網路結構是一個含有N個神經元的輸入層,含有P個神經元的隱層,含有Q個神經元的輸出層。

這些變數分別如下:

認識好以上變數後,開始計算:
一、用(-1,1)內的隨機數初始化誤差函數,並設定精度ε,最多迭代次數M
二、隨機選取第k個輸入樣本及對應的期望輸出

重復以下步驟至誤差達到要求:
三、計算隱含層各神經元的輸入和輸出

四、計算誤差函數e對輸出層各神經元的偏導數,根據輸出層期望輸出和實際輸出以及輸出層輸入等參數計算。

五、計算誤差函數對隱藏層各神經元的偏導數,根據後一層(這里即輸出層)的靈敏度(稍後介紹靈敏度)δo(k),後一層連接權值w,以及該層的輸入值等參數計算
六、利用第四步中的偏導數來修正輸出層連接權值

七、利用第五步中的偏導數來修正隱藏層連接權值

八、計算全局誤差(m個樣本,q個類別)

比較具體的計算方法介紹好了,接下來用比較簡潔的數學公式來大致地概括這個過程,相信看完上述的詳細步驟都會有些了解和領悟。
假設我們的神經網路是這樣的,此時有兩個隱藏層。
我們先來理解靈敏度是什麼?
看下面一個公式:

這個公式是誤差對b的一個偏導數,這個b是怎麼?它是一個基,靈敏度δ就是誤差對基的變化率,也就是導數。
因為?u/?b=1,所以?E/?b=?E/?u=δ,也就是說bias基的靈敏度?E/?b=δ等於誤差E對一個節點全部輸入u的導數?E/?u。
也可以認為這里的靈敏度等於誤差E對該層輸入的導數,注意了,這里的輸入是上圖U級別的輸入,即已經完成層與層權值計算後的輸入。
每一個隱藏層第l層的靈敏度為:

這里的「?」表示每個元素相乘,不懂的可與上面詳細公式對比理解
而輸出層的靈敏度計算方法不同,為:

而最後的修正權值為靈敏度乘以該層的輸入值,注意了,這里的輸入可是未曾乘以權值的輸入,即上圖的Xi級別。

對於每一個權值(W)ij都有一個特定的學習率ηIj,由演算法學習完成。

2. bp代表什麼呀

BP神經網路 BP (Back Propagation)神經網路是一種神經網路學習演算法,全稱基於誤差反向傳播演算法的人工神經網路。
如圖所示拓撲結構的單隱層前饋網路,一般稱為三層前饋網或三層感知器,即:輸入層、中間層(也稱隱層)和輸出層。它的特點是:各層神經元僅與相鄰層神經元之間相互全連接,同層內神經元之間無連接,各層神經元之間無反饋連接,夠成具有層次結構的前饋型神經網路系統。單計算層前饋神經網路只能求解線性可分問題,能夠求解非線性問題的網路必須是具有隱層的多層神經網路。
在人工神經網路發展歷史中,很長一段時間里沒有找到隱層的連接權值調整問題的有效演算法。直到誤差反向傳播演算法(BP演算法)的提出,成功地解決了求解非線性連續函數的多層前饋神經網路權重調整問題。
BP (Back Propagation)神經網路,即誤差反傳誤差反向傳播演算法的學習過程,由信息的正向傳播和誤差的反向傳播兩個過程組成。輸入層各神經元負責接收來自外界的輸入信息,並傳遞給中間層各神經元;中間層是內部信息處理層,負責信息變換,根據信息變化能力的需求,中間層可以設計為單隱層或者多隱層結構;最後一個隱層傳遞到輸出層各神經元的信息,經進一步處理後,完成一次學習的正向傳播處理過程,由輸出層向外界輸出信息處理結果。當實際輸出與期望輸出不符時,進入誤差的反向傳播階段。誤差通過輸出層,按誤差梯度下降的方式修正各層權值,向隱層、輸入層逐層反傳。周而復始的信息正向傳播和誤差反向傳播過程,是各層權值不斷調整的過程,也是神經網路學習訓練的過程,此過程一直進行到網路輸出的誤差減少到可以接受的程度,或者預先設定的學習次數為止。
神經網路
神經網路是:
思維學普遍認為,人類大腦的思維分為抽象(邏輯)思維、形象(直觀)思維和靈感(頓悟)思維三種基本方式。
邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,並用符號表示,然後,根據符號運算按串列模式進行邏輯推理;這一過程可以寫成串列的指令,讓計算機執行。然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生想法或解決問題的辦法。這種思維方式的根本之點在於以下兩點:1.信息是通過神經元上的興奮模式分布儲在網路上;2.信息處理是通過神經元之間同時相互作用的動態過程來完成的。
人工神經網路就是模擬人思維的第二種方式。這是一個非線性動力學系統,其特色在於信息的分布式存儲和並行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網路系統所能實現的行為卻是極其豐富多彩的。
神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。目前,主要的研究工作集中在以下幾個方面:
(1)生物原型研究。從生理學、心理學、解剖學、腦科學、病理學等生物科學方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。
(2)建立理論模型。根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。
(3)網路模型與演算法研究。在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機饃擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。
(4)人工神經網路應用系統。在網路模型與演算法研究的基礎上,利用人工神經網路組成實際的應用系統,例如,完成某種信號處理或模式識別的功能、構作專家系統、製成機器人等等。
縱觀當代新興科學技術的發展歷史,人類在征服宇宙空間、基本粒子,生命起源等科學技術領域的進程中歷經了崎嶇不平的道路。我們也會看到,探索人腦功能和神經網路的研究將伴隨著重重困難的克服而日新月異。
【人工神經網路的工作原理】
人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對手寫「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而當輸入為「B」時,輸出為「0」。
所以網路學習的准則應該是:如果網路作出錯誤的的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。
如果輸出為「0」(即結果錯誤),則把網路連接權值朝著減小綜合輸入加權值的方向調整,其目的在於使網路下次再遇到「A」模式輸入時,減小犯同樣錯誤的可能性。如此操作調整,當給網路輪番輸入若干個手寫字母「A」、「B」後,經過網路按以上學習方法進行若干次學習後,網路判斷的正確率將大大提高。這說明網路對這兩個模式的學習已經獲得了成功,它已將這兩個模式分布地記憶在網路的各個連接權值上。當網路再次遇到其中任何一個模式時,能夠作出迅速、准確的判斷和識別。一般說來,網路中所含的神經元個數越多,則它能記憶、識別的模式也就越多。
「人腦是如何工作的?」
「人類能否製作模擬人腦的人工神經元?」
多少年以來,人們從醫學、生物學、生理學、哲學、信息學、計算機科學、認知學、組織協同學等各個角度企圖認識並解答上述問題。在尋找上述問題答案的研究過程中,近年來逐漸形成了一個新興的多學科交叉技術領域,稱之為「神經網路」。神經網路的研究涉及眾多學科領域,這些領域互相結合、相互滲透並相互推動。不同領域的科學家又從各自學科的興趣與特色出發,提出不同的問題,從不同的角度進行研究。
心理學家和認知科學家研究神經網路的目的在於探索人腦加工、儲存和搜索信息的機制,弄清人腦功能的機理,建立人類認知過程的微結構理論。
生物學、醫學、腦科學專家試圖通過神經網路的研究推動腦科學向定量、精確和理論化體系發展,同時也寄希望於臨床醫學的新突破;信息處理和計算機科學家研究這一問題的目的在於尋求新的途徑以解決目前不能解決或解決起來有極大困難的大量問題,構造更加逼近人腦功能的新一代計算機。
人工神經網路是由大量的簡單基本元件——神經元相互聯接而成的自適應非線性動態系統。每個神經元的結構和功能比較簡單,但大量神經元組合產生的系統行為卻非常復雜。
人工神經網路反映了人腦功能的若干基本特性,但並非生物系統的逼真描述,只是某種模仿、簡化和抽象。
與數字計算機比較,人工神經網路在構成原理和功能特點等方面更加接近人腦,它不是按給定的程序一步一步地執行運算,而是能夠自身適應環境、總結規律、完成某種運算、識別或過程式控制制。
人工神經元的研究起源於腦神經元學說。19世紀末,在生物、生理學領域,Waldeger等人創建了神經元學說。人們認識到復雜的神經系統是由數目繁多的神經元組合而成。大腦皮層包括有100億個以上的神經元,每立方毫米約有數萬個,它們互相聯結形成神經網路,通過感覺器官和神經接受來自身體內外的各種信息,傳遞至中樞神經系統內,經過對信息的分析和綜合,再通過運動神經發出控制信息,以此來實現機體與內外環境的聯系,協調全身的各種機能活動。
神經元也和其他類型的細胞一樣,包括有細胞膜、細胞質和細胞核。但是神經細胞的形態比較特殊,具有許多突起,因此又分為細胞體、軸突和樹突三部分。細胞體內有細胞核,突起的作用是傳遞信息。樹突是作為引入輸入信號的突起,而軸突是作為輸出端的突起,它只有一個。
樹突是細胞體的延伸部分,它由細胞體發出後逐漸變細,全長各部位都可與其他神經元的軸突末梢相互聯系,形成所謂「突觸」。在突觸處兩神經元並未連通,它只是發生信息傳遞功能的結合部,聯系界面之間間隙約為(15~50)×10米。突觸可分為興奮性與抑制性兩種類型,它相應於神經元之間耦合的極性。每個神經元的突觸數目正常,最高可達10個。各神經元之間的連接強度和極性有所不同,並且都可調整、基於這一特性,人腦具有存儲信息的功能。利用大量神經元相互聯接組成人工神經網路可顯示出人的大腦的某些特徵。下面通過人工神經網路與通用的計算機工作特點來對比一下:
若從速度的角度出發,人腦神經元之間傳遞信息的速度要遠低於計算機,前者為毫秒量級,而後者的頻率往往可達幾百兆赫。但是,由於人腦是一個大規模並行與串列組合處理系統,因而,在許多問題上可以作出快速判斷、決策和處理,其速度則遠高於串列結構的普通計算機。人工神經網路的基本結構模仿人腦,具有並行處理特徵,可以大大提高工作速度。
人腦存貯信息的特點為利用突觸效能的變化來調整存貯內容,也即信息存貯在神經元之間連接強度的分布上,存貯區與計算機區合為一體。雖然人腦每日有大量神經細胞死亡 (平均每小時約一千個),但不影響大腦的正常思維活動。
普通計算機是具有相互獨立的存貯器和運算器,知識存貯與數據運算互不相關,只有通過人編出的程序使之溝通,這種溝通不能超越程序編制者的預想。元器件的局部損壞及程序中的微小錯誤都可能引起嚴重的失常。
人類大腦有很強的自適應與自組織特性,後天的學習與訓練可以開發許多各具特色的活動功能。如盲人的聽覺和觸覺非常靈敏;聾啞人善於運用手勢;訓練有素的運動員可以表現出非凡的運動技巧等等。
普通計算機的功能取決於程序中給出的知識和能力。顯然,對於智能活動要通過總結編製程序將十分困難。
人工神經網路也具有初步的自適應與自組織能力。在學習或訓練過程中改變突觸權重值,以適應周圍環境的要求。同一網路因學習方式及內容不同可具有不同的功能。人工神經網路是一個具有學習能力的系統,可以發展知識,以致超過設計者原有的知識水平。通常,它的學習訓練方式可分為兩種,一種是有監督或稱有導師的學習,這時利用給定的樣本標准進行分類或模仿;另一種是無監督學習或稱無為導師學習,這時,只規定學習方式或某些規則,則具體的學習內容隨系統所處環境 (即輸入信號情況)而異,系統可以自動發現環境特徵和規律性,具有更近似人腦的功能。
人工神經網路早期的研究工作應追溯至本世紀40年代。下面以時間順序,以著名的人物或某一方面突出的研究成果為線索,簡要介紹人工神經網路的發展歷史。
1943年,心理學家W·Mcculloch和數理邏輯學家W·Pitts在分析、總結神經元基本特性的基礎上首先提出神經元的數學模型。此模型沿用至今,並且直接影響著這一領域研究的進展。因而,他們兩人可稱為人工神經網路研究的先驅。
1945年馮·諾依曼領導的設計小組試製成功存儲程序式電子計算機,標志著電子計算機時代的開始。1948年,他在研究工作中比較了人腦結構與存儲程序式計算機的根本區別,提出了以簡單神經元構成的再生自動機網路結構。但是,由於指令存儲式計算機技術的發展非常迅速,迫使他放棄了神經網路研究的新途徑,繼續投身於指令存儲式計算機技術的研究,並在此領域作出了巨大貢獻。雖然,馮·諾依曼的名字是與普通計算機聯系在一起的,但他也是人工神經網路研究的先驅之一。
50年代末,F·Rosenblatt設計製作了「感知機」,它是一種多層的神經網路。這項工作首次把人工神經網路的研究從理論探討付諸工程實踐。當時,世界上許多實驗室仿效製作感知機,分別應用於文字識別、聲音識別、聲納信號識別以及學習記憶問題的研究。然而,這次人工神經網路的研究高潮未能持續很久,許多人陸續放棄了這方面的研究工作,這是因為當時數字計算機的發展處於全盛時期,許多人誤以為數字計算機可以解決人工智慧、模式識別、專家系統等方面的一切問題,使感知機的工作得不到重視;其次,當時的電子技術工藝水平比較落後,主要的元件是電子管或晶體管,利用它們製作的神經網路體積龐大,價格昂貴,要製作在規模上與真實的神經網路相似是完全不可能的;另外,在1968年一本名為《感知機》的著作中指出線性感知機功能是有限的,它不能解決如異感這樣的基本問題,而且多層網路還不能找到有效的計算方法,這些論點促使大批研究人員對於人工神經網路的前景失去信心。60年代末期,人工神經網路的研究進入了低潮。
另外,在60年代初期,Widrow提出了自適應線性元件網路,這是一種連續取值的線性加權求和閾值網路。後來,在此基礎上發展了非線性多層自適應網路。當時,這些工作雖未標出神經網路的名稱,而實際上就是一種人工神經網路模型。
隨著人們對感知機興趣的衰退,神經網路的研究沉寂了相當長的時間。80年代初期,模擬與數字混合的超大規模集成電路製作技術提高到新的水平,完全付諸實用化,此外,數字計算機的發展在若干應用領域遇到困難。這一背景預示,向人工神經網路尋求出路的時機已經成熟。美國的物理學家Hopfield於1982年和1984年在美國科學院院刊上發表了兩篇關於人工神經網路研究的論文,引起了巨大的反響。人們重新認識到神經網路的威力以及付諸應用的現實性。隨即,一大批學者和研究人員圍繞著 Hopfield提出的方法展開了進一步的工作,形成了80年代中期以來人工神經網路的研究熱潮。

3. 什麼是BP神經網路

BP演算法的基本思想是:學習過程由信號正向傳播與誤差的反向回傳兩個部分組成;正向傳播時,輸入樣本從輸入層傳入,經各隱層依次逐層處理,傳向輸出層,若輸出層輸出與期望不符,則將誤差作為調整信號逐層反向回傳,對神經元之間的連接權矩陣做出處理,使誤差減小。經反復學習,最終使誤差減小到可接受的范圍。具體步驟如下:
1、從訓練集中取出某一樣本,把信息輸入網路中。
2、通過各節點間的連接情況正向逐層處理後,得到神經網路的實際輸出。
3、計算網路實際輸出與期望輸出的誤差。
4、將誤差逐層反向回傳至之前各層,並按一定原則將誤差信號載入到連接權值上,使整個神經網路的連接權值向誤差減小的方向轉化。
5、対訓練集中每一個輸入—輸出樣本對重復以上步驟,直到整個訓練樣本集的誤差減小到符合要求為止。

4. 反向傳播演算法是什麼

反向傳播演算法,簡稱BP演算法,適合於多層神經元網路的一種學習演算法。

它建立在梯度下降法的基礎上。BP網路的輸入輸出關系實質上是一種映射關系:一個n輸入m輸出的BP神經網路所完成的功能是從n維歐氏空間向m維歐氏空間中一有限域的連續映射,這一映射具有高度非線性。它的信息處理能力來源於簡單非線性函數的多次復合,因此具有很強的函數復現能力。這是BP演算法得以應用的基礎。

反向傳播演算法動機簡介

反向傳播演算法被設計為減少公共子表達式的數量而不考慮存儲的開銷。反向傳播避免了重復子表達式的指數爆炸。然而,其他演算法可能通過對計算圖進行簡化來避免更多的子表達式,或者也可能通過重新計算而不是存儲這些子表達式來節省內存。

5. BP人工神經網路方法

(一)方法原理

人工神經網路是由大量的類似人腦神經元的簡單處理單元廣泛地相互連接而成的復雜的網路系統。理論和實踐表明,在信息處理方面,神經網路方法比傳統模式識別方法更具有優勢。人工神經元是神經網路的基本處理單元,其接收的信息為x1,x2,…,xn,而ωij表示第i個神經元到第j個神經元的連接強度或稱權重。神經元的輸入是接收信息X=(x1,x2,…,xn)與權重W={ωij}的點積,將輸入與設定的某一閾值作比較,再經過某種神經元激活函數f的作用,便得到該神經元的輸出Oi。常見的激活函數為Sigmoid型。人工神經元的輸入與輸出的關系為

地球物理勘探概論

式中:xi為第i個輸入元素,即n維輸入矢量X的第i個分量;ωi為第i個輸入與處理單元間的互聯權重;θ為處理單元的內部閾值;y為處理單元的輸出。

常用的人工神經網路是BP網路,它由輸入層、隱含層和輸出層三部分組成。BP演算法是一種有監督的模式識別方法,包括學習和識別兩部分,其中學習過程又可分為正向傳播和反向傳播兩部分。正向傳播開始時,對所有的連接權值置隨機數作為初值,選取模式集的任一模式作為輸入,轉向隱含層處理,並在輸出層得到該模式對應的輸出值。每一層神經元狀態隻影響下一層神經元狀態。此時,輸出值一般與期望值存在較大的誤差,需要通過誤差反向傳遞過程,計算模式的各層神經元權值的變化量

。這個過程不斷重復,直至完成對該模式集所有模式的計算,產生這一輪訓練值的變化量Δωij。在修正網路中各種神經元的權值後,網路重新按照正向傳播方式得到輸出。實際輸出值與期望值之間的誤差可以導致新一輪的權值修正。正向傳播與反向傳播過程循環往復,直到網路收斂,得到網路收斂後的互聯權值和閾值。

(二)BP神經網路計算步驟

(1)初始化連接權值和閾值為一小的隨機值,即W(0)=任意值,θ(0)=任意值。

(2)輸入一個樣本X。

(3)正向傳播,計算實際輸出,即根據輸入樣本值、互聯權值和閾值,計算樣本的實際輸出。其中輸入層的輸出等於輸入樣本值,隱含層和輸出層的輸入為

地球物理勘探概論

輸出為

地球物理勘探概論

式中:f為閾值邏輯函數,一般取Sigmoid函數,即

地球物理勘探概論

式中:θj表示閾值或偏置;θ0的作用是調節Sigmoid函數的形狀。較小的θ0將使Sigmoid函數逼近於閾值邏輯單元的特徵,較大的θ0將導致Sigmoid函數變平緩,一般取θ0=1。

(4)計算實際輸出與理想輸出的誤差

地球物理勘探概論

式中:tpk為理想輸出;Opk為實際輸出;p為樣本號;k為輸出節點號。

(5)誤差反向傳播,修改權值

地球物理勘探概論

式中:

地球物理勘探概論

地球物理勘探概論

(6)判斷收斂。若誤差小於給定值,則結束,否則轉向步驟(2)。

(三)塔北雅克拉地區BP神經網路預測實例

以塔北雅克拉地區S4井為已知樣本,取氧化還原電位,放射性元素Rn、Th、Tc、U、K和地震反射

構造面等7個特徵為識別的依據。

構造面反映了局部構造的起伏變化,其局部隆起部位應是油氣運移和富集的有利部位,它可以作為判斷含油氣性的諸種因素之一。在該地區投入了高精度重磁、土壤微磁、頻譜激電等多種方法,一些參數未入選為判別的特徵參數,是因為某些參數是相關的。在使用神經網路方法判別之前,還採用K-L變換(Karhaem-Loeve)來分析和提取特徵。

S4井位於測區西南部5線25點,是區內唯一已知井。該井在5390.6m的侏羅系地層獲得40.6m厚的油氣層,在5482m深的震旦系地層中獲58m厚的油氣層。取S4井周圍9個點,即4~6線的23~25 點作為已知油氣的訓練樣本;由於區內沒有未見油的鑽井,只好根據地質資料分析,選取14~16線的55~57點作為非油氣的訓練樣本。BP網路學習迭代17174次,總誤差為0.0001,學習效果相當滿意。以學習後的網路進行識別,得出結果如圖6-2-4所示。

圖6-2-4 塔北雅克拉地區BP神經網路聚類結果

(據劉天佑等,1997)

由圖6-2-4可見,由預測值大於0.9可得5個大封閉圈遠景區,其中測區南部①號遠景區對應著已知油井S4井;②、③號油氣遠景區位於地震勘探所查明的托庫1、2號構造,該兩個構造位於沙雅隆起的東段,其西段即為1984年鑽遇高產油氣流的Sch2井,應是含油氣性好的遠景區;④、⑤號遠景區位於大澇壩構造,是yh油田的組成部分。

6. bp神經網路的缺點

1)局部極小化問題:從數學角度看,傳統的BP神經網路為一種局部搜索的優化方法,它要解決的是一個復雜非線性化問題,網路的權值是通過沿局部改善的方向逐漸進行調整的,這樣會使演算法陷入局部極值,權值收斂到局部極小點,從而導致網路訓練失敗。加上BP神經網路對初始網路權重非常敏感,以不同的權重初始化網路,其往往會收斂於不同的局部極小,這也是很多學者每次訓練得到不同結果的根本原因。
2)BP神經網路演算法的收斂速度慢:由於BP神經網路演算法本質上為梯度下降法,它所要優化的目標函數是非常復雜的,因此,必然會出現「鋸齒形現象」,這使得BP演算法低效;又由於優化的目標函數很復雜,它必然會在神經元輸出接近0或1的情況下,出現一些平坦區,在這些區域內,權值誤差改變很小,使訓練過程幾乎停頓。
3)BP神經網路結構選擇不一:BP神經網路結構的選擇至今尚無一種統一而完整的理論指導,一般只能由經驗選定。網路結構選擇過大,訓練中效率不高,可能出現過擬合現象,造成網路性能低,容錯性下降,若選擇過小,則又會造成網路可能不收斂。而網路的結構直接影響網路的逼近能力及推廣性質。因此,應用中如何選擇合適的網路結構是一個重要的問題。
4)應用實例與網路規模的矛盾問題:BP神經網路難以解決應用問題的實例規模和網路規模間的矛盾問題,其涉及到網路容量的可能性與可行性的關系問題,即學習復雜性問題。
5)BP神經網路預測能力和訓練能力的矛盾問題:預測能力也稱泛化能力或者推廣能力,而訓練能力也稱逼近能力或者學習能力。一般情況下,訓練能力差時,預測能力也差。

閱讀全文

與bp神經網路演算法的實質相關的資料

熱點內容
加密電梯卡怎麼復制到蘋果手機上 瀏覽:304
php獲取數據類型 瀏覽:915
新概念c51單片機 瀏覽:326
刪除文件的命令行 瀏覽:981
java編程軟體eclipse 瀏覽:198
番茄app怎麼完成簽約流程 瀏覽:725
ibm伺服器如何進u盤啟動 瀏覽:185
網路驅動重啟命令 瀏覽:446
入職聯想程序員 瀏覽:155
linux拷貝目錄下所有文件 瀏覽:46
androidwebview測試 瀏覽:234
java數組效率 瀏覽:496
java我的世界怎麼免費開伺服器 瀏覽:520
被刪了的app如何找回 瀏覽:358
冒險島飛花院伺服器什麼時間開的 瀏覽:864
old引擎視頻編譯 瀏覽:936
三小虎語音包文件夾 瀏覽:169
安卓區王者怎麼轉移蘋果多少錢 瀏覽:542
怎麼學好電腦的文字編程 瀏覽:400
武俠版pdf 瀏覽:776