『壹』 計算機視覺中,目前有哪些經典的目標跟蹤演算法
第一章介紹運動的分類、計算機視覺領域中運動分析模型、計算機視覺領域運動檢測和目標跟蹤技術研究現狀、計算機視覺領域中運動分析技術的難點等內容;
第二章介紹傳統的運動檢測和目標跟蹤演算法,包括背景差分法、幀間差分法、光流場評估演算法等;
第三章介紹具有周期性運動特徵的低速目標運動檢測和跟蹤演算法,並以CCD測量系統為例介紹該演算法的應用;
第四章介紹高速運動目標識別和跟蹤演算法,並以激光通信十信標光捕獲和跟蹤系統為例介紹該演算法的應用;
第五章介紹具有復雜背景的目標運動檢測過程中採用的光流場演算法,包括正規化相關的特性及其改進光流場評估演算法,並介紹改進光流場演算法的具體應用;
第六章介紹互補投票法實現可信賴運動向量估計。
『貳』 目標跟蹤檢測演算法(四)——多目標擴展
姓名:劉帆;學號:20021210609;學院:電子工程學院
https://blog.csdn.net/qq_34919792/article/details/89893665
【嵌牛導讀】基於深度學習的演算法在圖像和視頻識別任務中取得了廣泛的應用和突破性的進展。從圖像分類問題到行人重識別問題,深度學習方法相比傳統方法表現出極大的優勢。與行人重識別問題緊密相關的是行人的多目標跟蹤問題。
【嵌牛鼻子】深度多目標跟蹤演算法
【嵌牛提問】深度多目標跟蹤演算法有哪些?
【嵌牛正文】
第一階段(概率統計最大化的追蹤)
1)多假設多目標追蹤演算法(MHT,基於kalman在多目標上的拓展)
多假設跟蹤演算法(MHT)是非常經典的多目標跟蹤演算法,由Reid在對雷達信號的自動跟蹤研究中提出,本質上是基於Kalman濾波跟蹤演算法在多目標跟蹤問題中的擴展。
卡爾曼濾波實際上是一種貝葉斯推理的應用,通過歷史關聯的預測量和k時刻的預測量來計算後驗概率:
關聯假設的後驗分布是歷史累計概率密度的連乘,轉化為對數形式,可以看出總體後驗概率的對數是每一步觀察似然和關聯假設似然的求和。但是若同時出現多個軌跡的時候,則需要考慮可能存在的多個假設關聯。
左圖為k-3時刻三個檢測觀察和兩條軌跡的可能匹配。對於這種匹配關系,可以繼續向前預測兩幀,如圖右。得到一種三層的假設樹結構,對於假設樹根枝乾的剪枝,得到k-3時刻的最終關聯結果。隨著可能性增加,假設組合會爆炸性增多,為此,只為了保留最大關聯性,我們需要對其他的節點進行裁剪。下式為選擇方程
實際上MHT不會單獨使用,一般作為單目標追蹤的擴展添加。
2)基於檢測可信度的粒子濾波演算法
這個演算法分為兩個步驟:
1、對每一幀的檢測結果,利用貪心匹配演算法與已有的對象軌跡進行關聯。
其中tr表示一個軌跡,d是某一個檢測,他們的匹配親和度計算包含三個部分:在線更新的分類學習模型(d),用來判斷檢測結果是不是屬於軌跡tr; 軌跡的每個粒子與檢測的匹配度,採用中心距離的高斯密度函數求和(d-p)表示;與檢測尺寸大小相關的閾值函數g(tr,d),表示檢測與軌跡尺度的符合程度, 而α是預設的一個超參數。
計算出匹配親和度矩陣之後,可以採用二部圖匹配的Hungarian演算法計算匹配結果。不過作者採用了近似的貪心匹配演算法,即首先找到親和度最大的那個匹配,然後刪除這個親和度,尋找下一個匹配,依次類推。貪心匹配演算法復雜度是線性,大部分情況下,也能得到最優匹配結果。
2、利用關聯結果,計算每個對象的粒子群權重,作為粒子濾波框架中的觀察似然概率。
其中tr表示需要跟蹤的對象軌跡,p是某個粒子。指示函數I(tr)表示第一步關聯中,軌跡tr是不是關聯到某個檢測結果,當存在關聯時,計算與關聯的檢測d 的高斯密度P{n}(p-d );C{tr}§是對這個粒子的分類概率;§是粒子通過檢測演算法得到的檢測可信度,(tr)是一個加權函數,計算如下:
3)基於馬爾科夫決策的多目標跟蹤演算法
作者把目標跟蹤看作為狀態轉移的過程,轉移的過程用馬爾科夫決策過程(MDP)建模。一個馬爾科夫決策過程包括下面四個元素:(S, A, T(.),R(.))。其中S表示狀態集合,A表示動作集合,T表示狀態轉移集合,R表示獎勵函數集合。一個決策是指根據狀態s確定動作a, 即 π: SA。一個對象的跟蹤過程包括如下決策過程:
從Active狀態轉移到Tracked或者Inactive狀態:即判斷新出現的對象是否是真。
從Tracked狀態轉移到Tracked或者Lost狀態:即判斷對象是否是持續跟蹤或者暫時處於丟失狀態。
從Lost狀態轉移到Lost或者Tracked或者Inactive狀態:即判斷丟失對象是否重新被跟蹤,被終止,或者繼續處於丟失狀態。
作者設計了三個獎勵函數來描述上述決策過程:
第一個是:
即判斷新出現的對象是否為真,y(a)=1時表示轉移到跟蹤狀態,反之轉移到終止狀態。這是一個二分類問題,採用2類SVM模型學習得到。這里用了5維特徵向量:包括x-y坐標、寬、高和檢測的分數。
第二個是:
這個函數用來判斷跟蹤對象下一時刻狀態是否是出於繼續跟蹤,還是處於丟失,即跟蹤失敗。這里作者用了5個歷史模板,每個模板和當前圖像塊做光流匹配,emedFB表示光流中心偏差, 表示平均重合率。 和 是閾值。
第三個是:
這個函數用來判斷丟失對象是否重新跟蹤,或者終止,或者保持丟失狀態不變。這里當丟失狀態連續保持超過 (=50)時,則轉向終止,其他情況下通過計算M個檢測匹配,來判斷是否存在最優的匹配使上式(3-14)獎勵最大,並大於0。這里涉及兩個問題如何設計特徵以及如何學習參數。這里作者構造了12維與模板匹配相關的統計值。而參數的學習採用強化學習過程,主要思想是在犯錯時候更新二類分類器值。
第二階段 深度學習應用
1)基於對稱網路的多目標跟蹤演算法
關於Siamese網路在單目標跟蹤深度學習中有了介紹,在這里不再介紹,可以向前參考。
2)基於最小多割圖模型的多目標跟蹤演算法
上述演算法中為了匹配兩個檢測採用LUV圖像格式以及光流圖像。Tang等人在文獻中發現採用深度學習計算的類光流特徵(DeepMatching),結合表示能力更強的模型也可以得到效果很好的多目標跟蹤結果。
基於DeepMatching特徵,可以構造下列5維特徵:
其中MI,MU表示檢測矩形框中匹配的點的交集大小以及並集大小,ξv和ξw表示檢測信任度。利用這5維特徵可以學習一個邏輯回歸分類器。
同樣,為了計算邊的匹配代價,需要設計匹配特徵。這里,作者採用結合姿態對齊的疊加Siamese網路計算匹配相似度,如圖9,採用的網路模型StackNetPose具有最好的重識別性能。
綜合StackNetPose網路匹配信任度、深度光流特徵(deepMatching)和時空相關度,作者設計了新的匹配特徵向量。類似於[2], 計算邏輯回歸匹配概率。最終的跟蹤結果取得了非常突出的進步。在MOT2016測試數據上的結果如下表:
3)通過時空域關注模型學習多目標跟蹤演算法
除了採用解決目標重識別問題的深度網路架構學習檢測匹配特徵,還可以根據多目標跟蹤場景的特點,設計合適的深度網路模型來學習檢測匹配特徵。Chu等人對行人多目標跟蹤問題中跟蹤演算法發生漂移進行統計分析,發現不同行人發生交互時,互相遮擋是跟蹤演算法產生漂移的重要原因[4]。如圖10。
在這里插入圖片描述
針對這個問題,文獻[4]提出了基於空間時間關注模型(STAM)用於學習遮擋情況,並判別可能出現的干擾目標。如圖11,空間關注模型用於生成遮擋發生時的特徵權重,當候選檢測特徵加權之後,通過分類器進行選擇得到估計的目標跟蹤結果,時間關注模型加權歷史樣本和當前樣本,從而得到加權的損失函數,用於在線更新目標模型。
該過程分三步,第一步是學習特徵可見圖:
第二步是根據特徵可見圖,計算空間關注圖(Spatial Attention):
其中fatt是一個局部連接的卷積和打分操作。wtji是學習到的參數。
第三步根據空間注意圖加權原特徵圖:
對生成的加權特徵圖進行卷積和全連接網路操作,生成二元分類器判別是否是目標自身。最後用得到分類打分選擇最優的跟蹤結果。
4)基於循環網路判別融合表觀運動交互的多目標跟蹤演算法
上面介紹的演算法採用的深度網路模型都是基於卷積網路結構,由於目標跟蹤是通過歷史軌跡信息來判斷新的目標狀態,因此,設計能夠記憶歷史信息並根據歷史信息來學習匹配相似性度量的網路結構來增強多目標跟蹤的性能也是比較可行的演算法框架。
考慮從三個方面特徵計算軌跡歷史信息與檢測的匹配:表觀特徵,運動特徵,以及交互模式特徵。這三個方面的特徵融合以分層方式計算。
在底層的特徵匹配計算中,三個特徵都採用了長短期記憶模型(LSTM)。對於表觀特徵,首先採用VGG-16卷積網路生成500維的特徵ϕtA,以這個特徵作為LSTM的輸入計算循環。
對於運動特徵,取相對位移vit為基本輸入特徵,直接輸入LSTM模型計算沒時刻的輸出ϕi,對於下一時刻的檢測同樣計算相對位移vjt+1,通過全連接網路計算特徵ϕj,類似於表觀特徵計算500維特徵ϕm,並利用二元匹配分類器進行網路的預訓練。
對於交互特徵,取以目標中心位置周圍矩形領域內其他目標所佔的相對位置映射圖作為LSTM模型的輸入特徵,計算輸出特徵ϕi,對於t+1時刻的檢測計算類似的相對位置映射圖為特徵,通過全連接網路計算特徵ϕj,類似於運動模型,通過全連接網路計算500維特徵ϕI,進行同樣的分類訓練。
當三個特徵ϕA,ϕM,ϕI都計算之後拼接為完整的特徵,輸入到上層的LSTM網路,對輸出的向量進行全連接計算,然後用於匹配分類,匹配正確為1,否則為0。對於最後的網路結構,還需要進行微調,以優化整體網路性能。最後的分類打分看作為相似度用於檢測與軌跡目標的匹配計算。最終的跟蹤框架採用在線的檢測與軌跡匹配方法進行計算。
5)基於雙線性長短期循環網路模型的多目標跟蹤演算法
在對LSTM中各個門函數的設計進行分析之後,Kim等人認為僅僅用基本的LSTM模型對於表觀特徵並不是最佳的方案,在文獻[10]中,Kim等人設計了基於雙線性LSTM的表觀特徵學習網路模型。
除了利用傳統的LSTM進行匹配學習,或者類似[5]中的演算法,拼接LSTM輸出與輸入特徵,作者設計了基於乘法的雙線性LSTM模型,利用LSTM的隱含層特徵(記憶)信息與輸入的乘積作為特徵,進行匹配分類器的學習。
這里對於隱含層特徵ht-1,必須先進行重新排列(reshape)操作,然後才能乘以輸入的特徵向量xt。
其中f表示非線性激活函數,mt是新的特徵輸入。而原始的檢測圖像採用ResNet50提取2048維的特徵,並通過全連接降為256維。下表中對於不同網路結構、網路特徵維度、以及不同LSTM歷史長度時,表觀特徵的學習對跟蹤性能的影響做了驗證。
可以看出採用雙線性LSTM(bilinear LSTM)的表觀特徵性能最好,此時的歷史相關長度最佳為40,這個值遠遠超過文獻[5]中的2-4幀歷史長度。相對來說40幀歷史信息影響更接近人類的直覺。
『叄』 目標跟蹤檢測演算法(一)——傳統方法
姓名:劉帆;學號:20021210609;學院:電子工程學院
https://blog.csdn.net/qq_34919792/article/details/89893214
【嵌牛導讀】目標跟蹤演算法研究難點與挑戰在於實際復雜的應用環境 、背景相似干擾、光照條件的變化、遮擋等外界因素以及目標姿態變化,外觀變形,尺度變化、平面外旋轉、平面內旋轉、出視野、快速運動和運動模糊等。而且當目標跟蹤演算法投入實際應用時,不可避免的一個問題——實時性問題也是非常的重要。正是有了這些問題,才使得演算法研究充滿著難點和挑戰。
【嵌牛鼻子】目標跟蹤演算法,傳統演算法
【嵌牛提問】利用目標跟蹤檢測演算法要達到何目的?第一階段的單目標追蹤演算法包括什麼?具體步驟有哪些?它們有何特點?
【嵌牛正文】
第一階段
目標跟蹤分為兩個部分,一個是對指定目標尋找可以跟蹤的特徵,常用的有顏色,輪廓,特徵點,軌跡等,另一個是對目標特徵進行跟蹤。
1、靜態背景
1)背景差: 對背景的光照變化、雜訊干擾以及周期性運動等進行建模。通過當前幀減去背景圖來捕獲運動物體的過程。
2)幀差: 由於場景中的目標在運動,目標的影像在不同圖像幀中的位置不同。該類演算法對時間上連續的兩幀或三幀圖像進行差分運算,不同幀對應的像素點相減,判斷灰度差的絕對值,當絕對值超過一定閾值時,即可判斷為運動目標,從而實現目標的檢測功能。
與二幀差分法不同的是,三幀差分法(交並運算)去除了重影現象,可以檢測出較為完整的物體。幀間差分法的原理簡單,計算量小,能夠快速檢測出場景中的運動目標。但幀間差分法檢測的目標不完整,內部含有「空洞」,這是因為運動目標在相鄰幀之間的位置變化緩慢,目標內部在不同幀圖像中相重疊的部分很難檢測出來。幀間差分法通常不單獨用在目標檢測中,往往與其它的檢測演算法結合使用。
3)Codebook
演算法為圖像中每一個像素點建立一個碼本,每個碼本可以包括多個碼元(對應閾值范圍),在學習階段,對當前像素點進行匹配,如果該像素值在某個碼元的學習閾值內,也就是說與之前出現過的某種歷史情況偏離不大,則認為該像素點符合背景特徵,需要更新對應點的學習閾值和檢測閾值。
如果新來的像素值與每個碼元都不匹配,則可能是由於動態背景導致,這種情況下,我們需要為其建立一個新的碼元。每個像素點通過對應多個碼元,來適應復雜的動態背景。
在應用時,每隔一段時間選擇K幀通過更新演算法建立CodeBook背景模型,並且刪除超過一段時間未使用的碼元。
4)GMM
混合高斯模型(Gaussian of Micture Models,GMM)是較常用的背景去除方法之一(其他的還有均值法、中值法、滑動平均濾波等)。
首先我們需要了解單核高斯濾波的演算法步驟:
混合高斯建模GMM(Gaussian Mixture Model)作為單核高斯背景建模的擴展,是目前使用最廣泛的一種方法,GMM將背景模型描述為多個分布,每個像素的R、G、B三個通道像素值的變化分別由一個混合高斯模型分布來刻畫,符合其中一個分布模型的像素即為背景像素。作為最常用的一種背景建模方法,GMM有很多改進版本,比如利用紋理復雜度來更新差分閾值,通過像素變化的劇烈程度來動態調整學習率等。
5)ViBe(2011)
ViBe演算法主要特點是隨機背景更新策略,這和GMM有很大不同。其步驟和GMM類似。具體的思想就是為每個像素點存儲了一個樣本集,樣本集中采樣值就是該像素點過去的像素值和其鄰居點的像素值,然後將每一個新的像素值和樣本集進行比較來判斷是否屬於背景點。
其中pt(x)為新幀的像素值,R為設定值,p1、p2、p3….為樣本集中的像素值,以pt(x)為圓心R為半徑的圓被認為成一個集,當樣本集與此集的交集大於設定的閾值#min時,可認為此為背景像素點(交集越大,表示新像素點與樣本集越相關)。我們可以通過改變#min的值與R的值來改變模型的靈敏度。
Step1:初始化單幀圖像中每個像素點的背景模型。假設每一個像素和其鄰域像素的像素值在空域上有相似的分布。基於這種假設,每一個像素模型都可以用其鄰域中的像素來表示。為了保證背景模型符合統計學規律,鄰域的范圍要足夠大。當輸入第一幀圖像時,即t=0時,像素的背景模型。其中,NG(x,y)表示空域上相鄰的像素值,f(xi,yi)表示當前點的像素值。在N次的初始化的過程中,NG(x,y)中的像素點(xi,yi)被選中的可能次數為L=1,2,3,…,N。
Step2:對後續的圖像序列進行前景目標分割操作。當t=k時,像素點(x,y)的背景模型為BKm(x,y),像素值為fk(x,y)。按照下面判斷該像素值是否為前景。這里上標r是隨機選的;T是預先設置好的閾值。當fk(x,y)滿足符合背景#N次時,我們認為像素點fk(x,y)為背景,否則為前景。
Step3:ViBe演算法的更新在時間和空間上都具有隨機性。每一個背景點有1/ φ的概率去更新自己的模型樣本值,同時也有1/ φ的概率去更新它的鄰居點的模型樣本值。更新鄰居的樣本值利用了像素值的空間傳播特性,背景模型逐漸向外擴散,這也有利於Ghost區域的更快的識別。同時當前景點計數達到臨界值時將其變為背景,並有1/ φ的概率去更新自己的模型樣本值(為了減少緩慢移動物體的影響和攝像機的抖動)。
可以有如下總結,ViBe中的每一個像素點在更新的時候都有一個時間和空間上隨機影響的范圍,這個范圍很小,大概3x3的樣子,這個是考慮到攝像頭抖動時會有坐標的輕微來回變化,這樣雖然由於ViBe的判別方式仍認為是背景點,但是也會對後面的判別產生影響,為了保證空間的連續性,隨機更新減少了這個影響。而在樣本值保留在樣本集中的概率隨著時間的增大而變小,這就保證了像素模型在時間上面的延續特性。
6)光流
光流是由物體或相機的運動引起的圖像對象在兩個連續幀之間的視在運動模式。它是2D矢量場,其中每個矢量是一個位移矢量,顯示點從第一幀到第二幀的移動。
光流實際上是一種特徵點跟蹤方法,其計算的為向量,基於三點假設:
1、場景中目標的像素在幀間運動時亮度(像素值或其衍生值)不發生變化;2、幀間位移不能太大;3、同一表面上的鄰近點都在做相同的運動;
光流跟蹤過程:1)對一個連續視頻幀序列進行處理;2)對每一幀進行前景目標檢測;3)對某一幀出現的前景目標,找出具有代表性的特徵點(Harris角點);4)對於前後幀做像素值比較,尋找上一幀在當前幀中的最佳位置,從而得到前景目標在當前幀中的位置信息;5)重復上述步驟,即可實現目標跟蹤
2、運動場(分為相機固定,但是視角變化和相機是運動的)
1)運動建模(如視覺里程計運動模型、速度運動模型等)
運動學是對進行剛性位移的相機進行構型,一般通過6個變數來描述,3個直角坐標,3個歐拉角(橫滾、俯仰、偏航)。
Ⅰ、對相機的運動建模
由於這個不是我們本次所要討論的重點,但是在《概率機器人》一書中提出了很多很好的方法,相機的運動需要對圖像內的像素做位移矩陣和旋轉矩陣的坐標換算。除了對相機建立傳統的速度運動模型外,也可以用視覺里程計等通關過置信度的更新來得到概率最大位置。
Ⅱ、對於跟蹤目標的運動建模
該方法需要提前通過先驗知識知道所跟蹤的目標對象是什麼,比如車輛、行人、人臉等。通過對要跟蹤的目標進行建模,然後再利用該模型來進行實際的跟蹤。該方法必須提前知道要跟蹤的目標對象是什麼,然後再去跟蹤指定的目標,這是它的局限性,因而其推廣性相對比較差。(比如已知跟蹤的物體是羽毛球,那很容易通過前幾幀的取點,來建立整個羽毛球運動的拋物線模型)
2)核心搜索演算法(常見的預測演算法有Kalman(卡爾曼)濾波、擴展卡爾曼濾波、粒子濾波)
Ⅰ、Kalman 濾波
Kalman濾波器是通過前一狀態預測當前狀態,並使用當前觀測狀態進行校正,從而保證輸出狀態平穩變化,可有效抵抗觀測誤差。因此在運動目標跟蹤中也被廣泛使用。
在視頻處理的運動目標跟蹤里,每個目標的狀態可表示為(x,y,w,h),x和y表示目標位置,w和h表示目標寬高。一般地認為目標的寬高是不變的,而其運動速度是勻速,那麼目標的狀態向量就應該擴展為(x,y,w,h,dx,dy),其中dx和dy是目標當前時刻的速度。通過kalman濾波器來估計每個時刻目標狀態的大致過程為:
對視頻進行運動目標檢測,通過簡單匹配方法來給出目標的第一個和第二個狀態,從第三個狀態開始,就先使用kalman濾波器預測出當前狀態,再用當前幀圖像的檢測結果作為觀測值輸入給kalman濾波器,得到的校正結果就被認為是目標在當前幀的真實狀態。(其中,Zt為測量值,為預測值,ut為控制量,Kt為增益。)
Ⅱ、擴展卡爾曼濾波(EKF)和無跡卡爾曼濾波(UKF)
由於卡爾曼濾波的假設為線性問題,無法直接用在非線性問題上,EKF和UKF解決了這個問題(這個線性問題體現在用測量量來計算預測量的過程中)。EKF是通過構建線性函數g(x),與非線性函數相切,並對每一時刻所求得的g(x)做KF,如下圖所示。
UKF與EKF去求解雅可比矩陣擬合線性方程的方法不同,通過對那個先驗分布中的採集點,來線性化隨機變數的非線性函數。與EKF所用的方法不同,UKF產生的高斯分布和實際高斯分布更加接近,其引起的近似誤差也更小。
Ⅲ、粒子濾波
1、初始狀態:基於粒子濾波的目標追蹤方法是一種生成式跟蹤方法,所以要有一個初始化的階段。對於第一幀圖像,人工標定出待檢測的目標,對該目標區域提出特徵;
2、搜索階段:現在已經知道了目標的特徵,然後就在目標的周圍撒點(particle), 如:a)均勻的撒點;b)按高斯分布撒點,就是近的地方撒得多,遠的地方撒的少。論文里使用的是後一種方法。每一個粒子都計算所在區域內的顏色直方圖,如初始化提取特徵一樣,然後對所有的相似度進行歸一化。文中相似性使用的是巴氏距離;
3、重采樣:根據粒子權重對粒子進行篩選,篩選過程中,既要大量保留權重大的粒子,又要有一小部分權重小的粒子;
4、狀態轉移:將重采樣後的粒子帶入狀態轉移方程得到新的預測粒子;
5、測量及更新:對目標點特徵化,並計算各個粒子和目標間的巴氏距離,更新粒子的權重;
6、決策階段:每個粒子都獲得一個和目標的相似度,相似度越高,目標在該范圍出現的可能性越高,將保留的所有粒子通過相似度加權後的結果作為目標可能的位置。
3)Meanshift演算法
MeanShift演算法屬於核密度估計法,它不需要任何先驗知識而完全依靠特徵空間中樣本點的計算其密度函數值。對於一組采樣數據,直方圖法通常把數據的值域分成若干相等的區間,數據按區間分成若干組,每組數據的個數與總參數個數的比率就是每個單元的概率值;核密度估計法的原理相似於直方圖法,只是多了一個用於平滑數據的核函數。採用核函數估計法,在采樣充分的情況下,能夠漸進地收斂於任意的密度函數,即可以對服從任何分布的數據進行密度估計。
Meanshift演算法步驟
1、通過對初始點(或者上一幀的目標點)為圓心,繪制一個半徑為R的圓心,尋找特徵和該點相似的點所構成的向量;
2、所有向量相加,可以獲得一個向量疊加,這個向量指向特徵點多的方向;
3、取步驟二的向量終點為初始點重復步驟一、二,直到得到的向量小於一定的閾值,也就是說明當前位置是特徵點密度最密集的地方,停止迭代,認為該點為當前幀的目標點;
4)Camshift演算法
Camshift演算法是MeanShift演算法的改進,稱為連續自適應的MeanShift演算法。Camshift 是由Meanshift 推導而來 Meanshift主要是用在單張影像上,但是獨立一張影像分析對追蹤而言並無意義,Camshift 就是利用MeanShift的方法,對影像串列進行分析。
1、首先在影像串列中選擇目標區域。
2、計算此區域的顏色直方圖(特徵提取)。
3、用MeanShift演演算法來收斂欲追蹤的區域。
4、通過目標點的位置和向量信息計算新的窗口大小,並標示之。
5、以此為參數重復步驟三、四。
Camshift 關鍵就在於當目標的大小發生改變的時候,此演算法可以自適應調整目標區域繼續跟蹤。
3、小結
第一階段的單目標追蹤演算法基本上都是傳統方法,計算量小,在嵌入式等設備中落地較多,opencv中也預留了大量的介面。通過上面的兩節的介紹,我們不難發現,目標檢測演算法的步驟分為兩部分,一部分是對指定目標尋找可以跟蹤的特徵,常用的有顏色,輪廓,特徵點,軌跡等,另一部分是對目標特徵進行跟蹤,如上文所提及的方法。所以目標檢測方法的發展,也可總結為兩個方面,一個是如何去獲得更加具有區分性的可跟蹤的穩定特徵,另一個是如何建立幀與幀之間的數據關聯,保證跟蹤目標是正確的。
隨著以概率為基礎的卡爾曼濾波、粒子濾波或是以Meanshift為代表向量疊加方法在目標檢測的運用,使得目標檢測不再需要假設自身的一個狀態為靜止的,而是可以是運動的,更加符合復雜場景中的目標跟蹤。
『肆』 yolo演算法是什麼
Yolo是一種目標檢測演算法。
目標檢測的任務是從圖片中找出物體並給出其類別和位置,對於單張圖片,輸出為圖片中包含的N個物體的每個物體的中心位置(x,y)、寬(w)、高(h)以及其類別。
Yolo的預測基於整個圖片,一次性輸出所有檢測到的目標信號,包括其類別和位置。Yolo首先將圖片分割為sxs個相同大小的grid。
介紹
Yolo只要求grid中識別的物體的中心必須在這個grid內(具體來說,若某個目標的中心點位於一個grid內,該grid輸出該目標類別的概率為1,所有其他grid對該目標預測概率設置為0)。
實現方法:讓sxs個框每個都預測出B個boungding box,bounding box有5個量,分別為物體的x,y,h,w和預測的置信度;每個grid預測B個bounding box和物體類別,類別使用one-hot表示。
『伍』 目標跟蹤演算法
一般將目標跟蹤分為兩個部分:特徵提取、目標跟蹤演算法。其中提取的目標特徵大致可以分為以下幾種:目標跟蹤的演算法大致可以分為以下四種:
1) 均值漂移演算法,即meanshift演算法,此方法可以通過較少的迭代次數快速找到與目標最相似的位置,效果也挺好的。但是其不能解決目標的遮擋問題並且不能適應運動目標的的形狀和大小變化等。對其改進的演算法有camshift演算法,此方法可以適應運動目標的大小形狀的改變,具有較好的跟蹤效果,但當背景色和目標顏色接近時,容易使目標的區域變大,最終有可能導致目標跟蹤丟失。
2) 基於Kalman濾波的目標跟蹤,該方法是認為物體的運動模型服從高斯模型,來對目標的運動狀態進行預測,然後通過與觀察模型進行對比,根據誤差來更新運動目標的狀態,該演算法的精度不是特高。
3) 基於粒子濾波的目標跟蹤,每次通過當前的跟蹤結果重采樣粒子的分布,然後根據粒子的分布對粒子進行擴散,再通過擴散的結果來重新觀察目標的狀態,最後歸一化更新目標的`狀態。此演算法的特點是跟蹤速度特別快,而且能解決目標的部分遮擋問題,在實際工程應用過程中越來越多的被使用。
4) 基於對運動目標建模的方法。該方法需要提前通過先驗知識知道所跟蹤的目標對象是什麼,比如車輛、行人、人臉等。通過對要跟蹤的目標進行建模,然後再利用該模型來進行實際的跟蹤。該方法必須提前知道要跟蹤的目標對象是什麼,然後再去跟蹤指定的目標,這是它的局限性,因而其推廣性相對比較差。
『陸』 多假設追蹤方法mht是什麼演算法
多假設跟蹤演算法是一種數據關聯類型的多目標跟蹤演算法,實現方式分為面向假設的MHT和面向航跡的MHT兩種。
MHT演算法的實現流程包括航跡關聯和航跡維護兩個步驟。
MHT演算法計算量龐大,隨著量測數和目標數呈指數級增長,但對於雜波密集環境下的多目標跟蹤具有很高的准確率。
『柒』 自動跟蹤的跟蹤演算法
質心跟蹤演算法:這種跟蹤方式用於跟蹤有界目標,且目標與環境相比有明顯不同灰度等級,如空中飛機等。目標完全包含在鏡頭視場范圍內。
相關跟蹤演算法:相關可用來跟蹤多種類型的目標,當跟蹤目標無邊界且動態不是很強時這種方式非常有效。典型應用於:目標在近距離的范圍,且目標擴展到鏡頭視場范圍外,如航行在大海中的一艘船。
相位相關演算法:相位相關演算法是非常通用的演算法,既可以用來跟蹤無界目標也可以用來跟蹤有界目標。在復雜環境下(如地面的汽車)能給出一個好的效果。
多目標跟蹤演算法:多目標跟蹤用於有界目標如飛機、地面汽車等。它們完全在跟蹤窗口內。對復雜環境里的小目標跟蹤,本演算法能給出一個較好的性能。
邊緣跟蹤演算法:當跟蹤目標有一個或多個確定的邊緣而同時卻又具有不確定的邊緣,這時邊緣跟蹤是最有效的演算法。典型如火箭發射,它有確定好的前邊緣,但尾邊緣由於噴氣而不定。
場景鎖定演算法:該演算法專門用於復雜場景的跟蹤。適合於空對地和地對地場景。這個演算法跟蹤場景中的多個目標,然後依據每個點的運動,從而估計整個場景全局運動,場景中的目標和定位是自動選擇的。當存在跟蹤點移動到攝像機視場外時,新的跟蹤點能自動被標識。瞄準點初始化到場景中的某個點,跟蹤啟動,同時定位瞄準線。在這種模式下,能連續跟蹤和報告場景里的目標的位置。
組合跟蹤演算法:顧名思義這種跟蹤方式是兩種具有互補特性的跟蹤演算法的組合:相關類演算法 + 質心類演算法。它適合於目標尺寸、表面、特徵改變很大的場景。
『捌』 德雲系:擴展模塊的目標跟蹤演算法有哪些
你好,分為了以下四種:
1. KCF:TrackerKCF 使用目標周圍區域的循環矩陣採集正負樣本,利用脊回歸訓練目標檢測器,並成功的利用循環矩陣在傅里葉空間可對角化的性質將矩陣的運算轉化為向量的Hadamad積,即元素的點乘,大大降低了運算量,提高了運算速度,使演算法滿足實時性要求.
2.MIL:TrackerMIL 以在線方式訓練分類器將對象與背景分離;多實例學習避免魯棒跟蹤的漂移問題
3. OLB:TrackerBoosting 基於AdaBoost演算法的在線實時對象跟蹤.分類器在更新步驟中使用周圍背景作為反例以避免漂移問題.
4.MedianFlow:TrackerMedianFlow 跟蹤器適用於非常平滑和可預測的運動,物體在整個序列中可見.
5.TLD:TrackerTLD 將長期跟蹤任務分解為跟蹤,學習和檢測.跟蹤器在幀之間跟蹤對象.探測器本地化所觀察到的所有外觀,並在必要時糾正跟蹤器.學習估計檢測器的錯誤並進行更新以避免再出現這些錯誤.追蹤器能夠處理快速運動,部分遮擋,物體缺失等情況.