㈠ 目前使用的兩種常見動態路由協議演算法是什麼方法
根據路由演算法對網路變化的適應能力,主要分為兩種類型:
靜態路由選擇策略——即非自適應路由選擇,其特點是簡單和開銷較小,但不能及時適應網路狀態的變化。
動態路由選擇策略——即自適應路由選擇,其特點是能較好地適應網路狀態的變化,但實現起來較為復雜,開銷也比較大。
網際網路的路由選擇協議
有關路由選擇演算法的幾個基本概念
分層次的路由選擇協議
內部網關協議和外部網關協議
距離向量演算法,鏈路狀態演算法
路由信息協議RIP(Routing
Information
Protocol)
開放最短路徑優先OSPF(Open
Shortest
Path
First)
外部網關協議EGP,BGP
路由選擇演算法的幾個基本概念
理想的路由演算法
演算法必須是正確的和完整的。
演算法在計算上應簡單。
演算法應能適應通信量和網路拓撲的變化,這就是說,要有自適應性。
演算法應具有穩定性。
演算法應是公平的。
演算法應是最佳的。
費用或代價
在研究路由選擇時,需要給每一條鏈路指明一定的費用或代價。
這里「代價」並不一定是僅指
「錢」,而是由一個或幾個因素綜合決定的一種度量(metric),如鏈路長度、數據率、鏈路容量、是否要保密、傳播時延等,甚至還可以是一天中某一個小時內的通信量、結點的緩存被佔用的程度、鏈路差錯率等。
不同的要求下,各種因素的權值可能不同。
網際網路採用分層次的路由選擇協議。
網際網路的規模非常大。如果讓所有的路由器知道所有的網路應怎樣到達,則這種路由表將非常大,處理起來也太花時間。而所有這些路由器之間交換路由信息所需的帶寬就會使網際網路的通信鏈路飽和。
許多單位不願意外界了解自己單位網路的布局細節和本部門所採用的路由選擇協議(這屬於本部門內部的事情),但同時還希望連接到網際網路上。
㈡ 神經網路演算法的三大類分別是
神經網路演算法的三大類分別是:
1、前饋神經網路:
這是實際應用中最常見的神經網路類型。第一層是輸入,最後一層是輸出。如果有多個隱藏層,我們稱之為「深度」神經網路。他們計算出一系列改變樣本相似性的變換。各層神經元的活動是前一層活動的非線性函數。
2、循環網路:
循環網路在他們的連接圖中定向了循環,這意味著你可以按照箭頭回到你開始的地方。他們可以有復雜的動態,使其很難訓練。他們更具有生物真實性。
循環網路的目的是用來處理序列數據。在傳統的神經網路模型中,是從輸入層到隱含層再到輸出層,層與層之間是全連接的,每層之間的節點是無連接的。但是這種普通的神經網路對於很多問題卻無能無力。
循環神經網路,即一個序列當前的輸出與前面的輸出也有關。具體的表現形式為網路會對前面的信息進行記憶並應用於當前輸出的計算中,即隱藏層之間的節點不再無連接而是有連接的,並且隱藏層的輸入不僅包括輸入層的輸出還包括上一時刻隱藏層的輸出。
3、對稱連接網路:
對稱連接網路有點像循環網路,但是單元之間的連接是對稱的(它們在兩個方向上權重相同)。比起循環網路,對稱連接網路更容易分析。
這個網路中有更多的限制,因為它們遵守能量函數定律。沒有隱藏單元的對稱連接網路被稱為「Hopfield 網路」。有隱藏單元的對稱連接的網路被稱為玻爾茲曼機。
(2)動態復雜網路演算法擴展閱讀:
應用及發展:
心理學家和認知科學家研究神經網路的目的在於探索人腦加工、儲存和搜索信息的機制,弄清人腦功能的機理,建立人類認知過程的微結構理論。
生物學、醫學、腦科學專家試圖通過神經網路的研究推動腦科學向定量、精確和理論化體系發展,同時也寄希望於臨床醫學的新突破;信息處理和計算機科學家研究這一問題的目的在於尋求新的途徑以解決不能解決或解決起來有極大困難的大量問題,構造更加逼近人腦功能的新一代計算機。
㈢ 路由演算法的類型有
路由演算法有很多種,如果從路由表對網路拓撲和通信量變化的自適應能力的角度劃分,可以分為靜態路由演算法和動態路由演算法兩大類,這兩大類又可細分為幾種小類型,比較典型常見的有以下幾種:
一、靜態路由演算法
1.Dijkstra演算法(最短路徑演算法)
Dijkstra(迪傑斯特拉)演算法是典型的單源最短路徑演算法,用於計算一個節點到其他所有節點的最短路徑。主要特點是以起始點為中心向外層層擴展,直到擴展到終點為止。Dijkstra演算法是很有代表性的最短路徑演算法,在很多專業課程中都作為基本內容有詳細的介紹,如數據結構,圖論,運籌學等等。Dijkstra一般的表述通常有兩種方式,一種用永久和臨時標號方式,一種是用OPEN,CLOSE表的方式,這里均採用永久和臨時標號的方式。注意該演算法要求圖中不存在負權迴路。
Dijkstra演算法執行步驟如下:
步驟一:路由器建立一張網路圖,並且確定源節點和目的節點,在這個例子里我們設為V1和V2。然後路由器建立一個矩陣,稱為「鄰接矩陣」。在這個矩陣中,各矩陣元素表示權值。例如,[i,j]是節點Vi與Vj之間的鏈路權值。如果節點Vi與Vj之間沒有鏈路直接相連,它們的權值設為「無窮大」。
步驟二:路由器為網路中的每一個節點建立一組狀態記錄。此記錄包括三個欄位:
前序欄位———表示當前節點之前的節點。
長度欄位———表示從源節點到當前節點的權值之和。
標號欄位———表示節點的狀態。每個節點都處於一個狀態模式:「永久」或「暫時」。
步驟三:路由器初始化(所有節點的)狀態記錄集參數,將它們的長度設為「無窮大」,標號設為「暫時」。
步驟四:路由器設置一個T節點。例如,如果設V1是源T節點,路由器將V1的標號更改為「永久」。當一個標號更改為「永久」後,它將不再改變。一個T節點僅僅是一個代理而已。
步驟五:路由器更新與源T節點直接相連的所有暫時性節點的狀態記錄集。
步驟六:路由器在所有的暫時性節點中選擇距離V1的權值最低的節點。這個節點將是新的T節點。
步驟七:如果這個節點不是V2(目的節點),路由器則返回到步驟5。
步驟八:如果節點是V2,路由器則向前回溯,將它的前序節點從狀態記錄集中提取出來,如此循環,直到提取到V1為止。這個節點列表便是從V1到V2的最佳路由。
2.擴散法
事先不需要任何網路信息;路由器把收到的每一個分組,向除了該分組到來的線路外的所有輸出線路發送。將來會有多個分組的副本到達目的地端,最先到達的,可能是走了「最優」的路徑常見的擴散法是選擇性擴散演算法。
3.LS演算法
採用LS演算法時,每個路由器必須遵循以下步驟:
步驟一:確認在物理上與之相連的路由器並獲得它們的IP地址。當一個路由器開始工作後,它首先向整個網路發送一個「HELLO」分組數據包。每個接收到數據包的路由器都將返回一條消息,其中包含它自身的IP地址。
步驟二:測量相鄰路由器的延時(或者其他重要的網路參數,比如平均流量)。為做到這一點,路由器向整個網路發送響應分組數據包。每個接收到數據包的路由器返回一個應答分組數據包。將路程往返時間除以2,路由器便可以計算出延時。(路程往返時間是網路當前延遲的量度,通過一個分組數據包從遠程主機返回的時間來測量。)該時間包括了傳輸和處理兩部分的時間——也就是將分組數據包發送到目的地的時間以及接收方處理分組數據包和應答的時間。
步驟三:向網路中的其他路由器廣播自己的信息,同時也接收其他路由器的信息。
在這一步中,所有的路由器共享它們的知識並且將自身的信息廣播給其他每一個路由器。這樣,每一個路由器都能夠知道網路的結構以及狀態。
步驟四:使用一個合適的演算法,確定網路中兩個節點之間的最佳路由。
路由演算法有哪些類型?路由演算法與路由協議的區別
在這一步中,路由器選擇通往每一個節點的最佳路由。它們使用一個演算法來實現這一點,如Dijkstra最短路徑演算法。在這個演算法中,一個路由器通過收集到的其他路由器的信息,建立一個網路圖。這個圖描述網路中的路由器的位置以及它們之間的鏈接關系。每個鏈接都有一個數字標注,稱為權值或成本。這個數字是延時和平均流量的函數,有時它僅僅表示節點間的躍點數。例如,如果一個節點與目的地之間有兩條鏈路,路由器將選擇權值最低的鏈路。
二、動態路由演算法
1.距離向量路由演算法
距離向量路由演算法,也叫做最大流量演演算法,其被距離向量協議作為一個演算法,如RIP、BGP、ISO IDRP、NOVELL IPX。使用這個演算法的路由器必須掌握這個距離表(它是一個一維排列-「一個向量」),它告訴在網路中每個節點的最遠和最近距離。在距離表中的這個信息是根據臨近接點信息的改變而時時更新的。表中數據的量和在網路中的所有的接點(除了它自己本身)是等同的。這個表中的列代表直接和它相連的鄰居,行代表在網路中的所有目的地。每個數據包括傳送數據包到每個在網上的目的地的路徑和距離/或時間在那個路徑上來傳輸(我們叫這個為「成本」)。這個在那個演算法中的度量公式是跳躍的次數,等待時間,流出數據包的數量,等等。在距離向量路由演算法中,相鄰路由器之間周期性地相互交換各自的路由表備份。當網路拓撲結構發生變化時,路由器之間也將及時地相互通知有關變更信息。其優點是演算法簡單容易實現。缺點是慢收斂問題,路由器的路徑變化需要像波浪一樣從相鄰路由器傳播出去,過程緩慢。
每一個相鄰路由器發送過來的路由表都要經過以下步驟:
步驟一:對地址為X的路由器發過來的路由表,先修改此路由表中的所有項目:把」下一跳」欄位中的地址改為X,並把所有」距離」欄位都加1。
步驟二:對修改後的路由表中的每一個項目,進行以下步驟:
(1)將X的路由表(修改過的),與S的路由表的目的網路進行對比。若在X中出現,在S中沒出現,則將X路由表中的這一條項目添加到S的路由表中。
(2)對於目的網路在S和X路由表中都有的項目進行下面步驟:
1)在S的路由表中,若下一跳地址是x,則直接用X路由表中這條項目替換S路由表中的項目。
2)在S的路由表中,若下一跳地址不是x,若X路由表項目中的距離d小於S路由表中的距離,則進行更新。
步驟三:若3分鍾還沒有收到相鄰路由器的更新表,則把此相鄰路由器記為不可到達路由器,即把距離設置為16。
2.鏈路狀態最短路由優先演算法SPF
1)發現鄰居結點,並學習它們的網路地址;
2)測量到各鄰居節點的延遲或者開銷;
3)創建鏈路狀態分組;
4)使用擴散法發布鏈路狀態分組;
5)計算到每個其它路由器的最短路徑。
㈣ 神經網路演算法是什麼
Introction
--------------------------------------------------------------------------------
神經網路是新技術領域中的一個時尚詞彙。很多人聽過這個詞,但很少人真正明白它是什麼。本文的目的是介紹所有關於神經網路的基本包括它的功能、一般結構、相關術語、類型及其應用。
「神經網路」這個詞實際是來自於生物學,而我們所指的神經網路正確的名稱應該是「人工神經網路(ANNs)」。在本文,我會同時使用這兩個互換的術語。
一個真正的神經網路是由數個至數十億個被稱為神經元的細胞(組成我們大腦的微小細胞)所組成,它們以不同方式連接而型成網路。人工神經網路就是嘗試模擬這種生物學上的體系結構及其操作。在這里有一個難題:我們對生物學上的神經網路知道的不多!因此,不同類型之間的神經網路體系結構有很大的不同,我們所知道的只是神經元基本的結構。
The neuron
--------------------------------------------------------------------------------
雖然已經確認在我們的大腦中有大約50至500種不同的神經元,但它們大部份都是基於基本神經元的特別細胞。基本神經元包含有synapses、soma、axon及dendrites。Synapses負責神經元之間的連接,它們不是直接物理上連接的,而是它們之間有一個很小的空隙允許電子訊號從一個神經元跳到另一個神經元。然後這些電子訊號會交給soma處理及以其內部電子訊號將處理結果傳遞給axon。而axon會將這些訊號分發給dendrites。最後,dendrites帶著這些訊號再交給其它的synapses,再繼續下一個循環。
如同生物學上的基本神經元,人工的神經網路也有基本的神經元。每個神經元有特定數量的輸入,也會為每個神經元設定權重(weight)。權重是對所輸入的資料的重要性的一個指標。然後,神經元會計算出權重合計值(net value),而權重合計值就是將所有輸入乘以它們的權重的合計。每個神經元都有它們各自的臨界值(threshold),而當權重合計值大於臨界值時,神經元會輸出1。相反,則輸出0。最後,輸出會被傳送給與該神經元連接的其它神經元繼續剩餘的計算。
Learning
--------------------------------------------------------------------------------
正如上述所寫,問題的核心是權重及臨界值是該如何設定的呢?世界上有很多不同的訓練方式,就如網路類型一樣多。但有些比較出名的包括back-propagation, delta rule及Kohonen訓練模式。
由於結構體系的不同,訓練的規則也不相同,但大部份的規則可以被分為二大類別 - 監管的及非監管的。監管方式的訓練規則需要「教師」告訴他們特定的輸入應該作出怎樣的輸出。然後訓練規則會調整所有需要的權重值(這是網路中是非常復雜的),而整個過程會重頭開始直至數據可以被網路正確的分析出來。監管方式的訓練模式包括有back-propagation及delta rule。非監管方式的規則無需教師,因為他們所產生的輸出會被進一步評估。
Architecture
--------------------------------------------------------------------------------
在神經網路中,遵守明確的規則一詞是最「模糊不清」的。因為有太多不同種類的網路,由簡單的布爾網路(Perceptrons),至復雜的自我調整網路(Kohonen),至熱動態性網路模型(Boltzmann machines)!而這些,都遵守一個網路體系結構的標准。
一個網路包括有多個神經元「層」,輸入層、隱蔽層及輸出層。輸入層負責接收輸入及分發到隱蔽層(因為用戶看不見這些層,所以見做隱蔽層)。這些隱蔽層負責所需的計算及輸出結果給輸出層,而用戶則可以看到最終結果。現在,為免混淆,不會在這里更深入的探討體系結構這一話題。對於不同神經網路的更多詳細資料可以看Generation5 essays
盡管我們討論過神經元、訓練及體系結構,但我們還不清楚神經網路實際做些什麼。
The Function of ANNs
--------------------------------------------------------------------------------
神經網路被設計為與圖案一起工作 - 它們可以被分為分類式或聯想式。分類式網路可以接受一組數,然後將其分類。例如ONR程序接受一個數字的影象而輸出這個數字。或者PPDA32程序接受一個坐標而將它分類成A類或B類(類別是由所提供的訓練決定的)。更多實際用途可以看Applications in the Military中的軍事雷達,該雷達可以分別出車輛或樹。
聯想模式接受一組數而輸出另一組。例如HIR程序接受一個『臟』圖像而輸出一個它所學過而最接近的一個圖像。聯想模式更可應用於復雜的應用程序,如簽名、面部、指紋識別等。
The Ups and Downs of Neural Networks
--------------------------------------------------------------------------------
神經網路在這個領域中有很多優點,使得它越來越流行。它在類型分類/識別方面非常出色。神經網路可以處理例外及不正常的輸入數據,這對於很多系統都很重要(例如雷達及聲波定位系統)。很多神經網路都是模仿生物神經網路的,即是他們仿照大腦的運作方式工作。神經網路也得助於神經系統科學的發展,使它可以像人類一樣准確地辨別物件而有電腦的速度!前途是光明的,但現在...
是的,神經網路也有些不好的地方。這通常都是因為缺乏足夠強大的硬體。神經網路的力量源自於以並行方式處理資訊,即是同時處理多項數據。因此,要一個串列的機器模擬並行處理是非常耗時的。
神經網路的另一個問題是對某一個問題構建網路所定義的條件不足 - 有太多因素需要考慮:訓練的演算法、體系結構、每層的神經元個數、有多少層、數據的表現等,還有其它更多因素。因此,隨著時間越來越重要,大部份公司不可能負擔重復的開發神經網路去有效地解決問題。
NN 神經網路,Neural Network
ANNs 人工神經網路,Artificial Neural Networks
neurons 神經元
synapses 神經鍵
self-organizing networks 自我調整網路
networks modelling thermodynamic properties 熱動態性網路模型
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
網格演算法我沒聽說過
好像只有網格計算這個詞
網格計算是伴隨著互聯網技術而迅速發展起來的,專門針對復雜科學計算的新型計算模式。這種計算模式是利用互聯網把分散在不同地理位置的電腦組織成一個「虛擬的超級計算機」,其中每一台參與計算的計算機就是一個「節點」,而整個計算是由成千上萬個「節點」組成的「一張網格」, 所以這種計算方式叫網格計算。這樣組織起來的「虛擬的超級計算機」有兩個優勢,一個是數據處理能力超強;另一個是能充分利用網上的閑置處理能力。簡單地講,網格是把整個網路整合成一台巨大的超級計算機,實現計算資源、存儲資源、數據資源、信息資源、知識資源、專家資源的全面共享。
㈤ 關於動態規劃演算法,哪位可以講一下自己心得體會
動態規劃的特點及其應用
安徽 張辰
動態規劃 階段
動態規劃是信息學競賽中的常見演算法,本文的主要內容就是分析它的特點。
文章的第一部分首先探究了動態規劃的本質,因為動態規劃的特點是由它的本質所決定的。第二部分從動態規劃的設計和實現這兩個角度分析了動態規劃的多樣性、模式性、技巧性這三個特點。第三部分將動態規劃和遞推、搜索、網路流這三個相關演算法作了比較,從中探尋動態規劃的一些更深層次的特點。
文章在分析動態規劃的特點的同時,還根據這些特點分析了我們在解題中應該怎樣利用這些特點,怎樣運用動態規劃。這對我們的解題實踐有一定的指導意義。
動態規劃是編程解題的一種重要的手段,在如今的信息學競賽中被應用得越來越普遍。最近幾年的信息學競賽,不分大小,幾乎每次都要考察到這方面的內容。因此,如何更深入地了解動態規劃,從而更為有效地運用這個解題的有力武器,是一個值得深入研究的問題。
要掌握動態規劃的應用技巧,就要了解它的各方面的特點。首要的,是要深入洞悉動態規劃的本質。
§1動態規劃的本質
動態規劃是在本世紀50年代初,為了解決一類多階段決策問題而誕生的。那麼,什麼樣的問題被稱作多階段決策問題呢?
§1.1多階段決策問題
說到多階段決策問題,人們很容易舉出下面這個例子。
[例1] 多段圖中的最短路徑問題:在下圖中找出從A1到D1的最短路徑。
仔細觀察這個圖不難發現,它有一個特點。我們將圖中的點分為四類(圖中的A、B、C、D),那麼圖中所有的邊都處於相鄰的兩類點之間,並且都從前一類點指向後一類點。這樣,圖中的邊就被分成了三類(AàB、BàC、CàD)。我們需要從每一類中選出一條邊來,組成從A1到D1的一條路徑,並且這條路徑是所有這樣的路徑中的最短者。
從上面的這個例子中,我們可以大概地了解到什麼是多階段決策問題。更精確的定義如下:
多階段決策過程,是指這樣的一類特殊的活動過程,問題可以按時間順序分解成若干相互聯系的階段,在每一個階段都要做出決策,全部過程的決策是一個決策序列[1]。要使整個活動的總體效果達到最優的問題,稱為多階段決策問題。
從上述的定義中,我們可以明顯地看出,這類問題有兩個要素。一個是階段,一個是決策。
§1.2階段與狀態
階段:將所給問題的過程,按時間或空間特徵分解成若干相互聯系的階段,以便按次序去求每階段的解。常用字母k表示階段變數。[1]
階段是問題的屬性。多階段決策問題中通常存在著若干個階段,如上面的例子,就有A、B、C、D這四個階段。在一般情況下,階段是和時間有關的;但是在很多問題(我的感覺,特別是信息學問題)中,階段和時間是無關的。從階段的定義中,可以看出階段的兩個特點,一是「相互聯系」,二是「次序」。
階段之間是怎樣相互聯系的?就是通過狀態和狀態轉移。
狀態:各階段開始時的客觀條件叫做狀態。描述各階段狀態的變數稱為狀態變數,常用sk表示第k階段的狀態變數,狀態變數sk的取值集合稱為狀態集合,用Sk表示。[1]
狀態是階段的屬性。每個階段通常包含若干個狀態,用以描述問題發展到這個階段時所處在的一種客觀情況。在上面的例子中,行人從出發點A1走過兩個階段之後,可能出現的情況有三種,即處於C1、C2或C3點。那麼第三個階段就有三個狀態S3=。
每個階段的狀態都是由以前階段的狀態以某種方式「變化」而來,這種「變化」稱為狀態轉移(暫不定義)。上例中C3點可以從B1點過來,也可以從B2點過來,從階段2的B1或B2狀態走到階段3的C3狀態就是狀態轉移。狀態轉移是導出狀態的途徑,也是聯系各階段的途徑。
說到這里,可以提出應用動態規劃的一個重要條件。那就是將各階段按照一定的次序排列好之後,對於某個給定的階段狀態,它以前各階段的狀態無法直接影響它未來的發展,而只能通過當前的這個狀態。換句話說,每個狀態都是「過去歷史的一個完整總結[1]」。這就是無後效性。對這個性質,下文還將會有解釋。
§1.3決策和策略
上面的階段與狀態只是多階段決策問題的一個方面的要素,下面是另一個方面的要素——決策。
決策:當各段的狀態取定以後,就可以做出不同的決定,從而確定下一階段的狀態,這種決定稱為決策。表示決策的變數,稱為決策變數,常用uk(sk)表示第k階段當狀態為sk時的決策變數。在實際問題中,決策變數的取值往往限制在一定范圍內,我們稱此范圍為允許決策集合。常用Dk(sk)表示第k階段從狀態sk出發的允許決策集合。顯然有uk(sk) ?Dk(sk)。[1]
決策是問題的解的屬性。決策的目的就是「確定下一階段的狀態」,還是回到上例,從階段2的B1狀態出發有三條路,也就是三個決策,分別導向階段3的C1、C2、C3三個狀態,即D2(B1)=。
有了決策,我們可以定義狀態轉移:動態規劃中本階段的狀態往往是上一階段和上一階段的決策結果,由第k段的狀態sk和本階段的決策uk確定第k+1段的狀態sk+1的過程叫狀態轉移。狀態轉移規律的形式化表示sk+1=Tk(sk,uk)稱為狀態轉移方程。
這樣看來,似乎決策和狀態轉移有著某種聯系。我的理解,狀態轉移是決策的目的,決策是狀態轉移的途徑。
各段決策確定後,整個問題的決策序列就構成一個策略,用p1,n=表示。對每個實際問題,可供選擇的策略有一定范圍,稱為允許策略集合,記作P1,n,使整個問題達到最有效果的策略就是最優策略。[1]
說到這里,又可以提出運用動態規劃的一個前提。即這個過程的最優策略應具有這樣的性質:無論初始狀態及初始決策如何,對於先前決策所形成的狀態而言,其以後的所有決策應構成最優策略[1]。這就是最優化原理。簡言之,就是「最優策略的子策略也是最優策略」。
§1.4最優化原理與無後效性
這里,我把最優化原理定位在「運用動態規劃的前提」。這是因為,是否符合最優化原理是一個問題的本質特徵。對於不滿足最優化原理的一個多階段決策問題,整體上的最優策略p1,n同任何一個階段k上的決策uk或任何一組階段k1…k2上的子策略pk1,k2都不存在任何關系。如果要對這樣的問題動態規劃的話,我們從一開始所作的劃分階段等努力都將是徒勞的。
而我把無後效性定位在「應用動態規劃的條件」,是因為動態規劃是按次序去求每階段的解,如果一個問題有後效性,那麼這樣的次序便是不合理的。但是,我們可以通過重新劃分階段,重新選定狀態,或者增加狀態變數的個數等手段,來是問題滿足無後效性這個條件。說到底,還是要確定一個「序」。
在信息學的多階段決策問題中,絕大部分都是能夠滿足最優化原理的,但它們往往會在後效性這一點上來設置障礙。所以在解題過程中,我們會特別關心「序」。對於有序的問題,就會考慮到動態規劃;對於無序的問題,也會想方設法來使其有序。
§1.5最優指標函數和規劃方程
最優指標函數:用於衡量所選定策略優劣的數量指標稱為指標函數,最優指標函數記為fk(sk),它表示從第k段狀態sk採用最優策略p*k,n到過程終止時的最佳效益值[1]。
最優指標函數其實就是我們真正關心的問題的解。在上面的例子中,f2(B1)就表示從B1點到終點D1點的最短路徑長度。我們求解的最終目標就是f1(A1)。
最優指標函數的求法一般是一個從目標狀態出發的遞推公式,稱為規劃方程:
其中sk是第k段的某個狀態,uk是從sk出發的允許決策集合Dk(sk)中的一個決策,Tk(sk,uk)是由sk和uk所導出的第k+1段的某個狀態sk+1,g(x,uk)是定義在數值x和決策uk上的一個函數,而函數opt表示最優化,根據具體問題分別表為max或min。
,稱為邊界條件。
上例中的規劃方程就是:
邊界條件為
這里是一種從目標狀態往回推的逆序求法,適用於目標狀態確定的問題。在我們的信息學問題中,也有很多有著確定的初始狀態。當然,對於初始狀態確定的問題,我們也可以採用從初始狀態出發往前推的順序求法。事實上,這種方法對我們來說要更為直觀、更易設計一些,從而更多地出現在我們的解題過程中。
我們本節所討論的這些理論雖然不是本文的主旨,但是卻對下面要說的動態規劃的特點起著基礎性的作用。
§2動態規劃的設計與實現
上面我們討論了動態規劃的一些理論,本節我們將通過幾個例子中,動態規劃的設計與實現,來了解動態規劃的一些特點。
§2.1動態規劃的多樣性
[例2] 花店櫥窗布置問題(IOI99)試題見附錄
本題雖然是本屆IOI中較為簡單的一題,但其中大有文章可作。說它簡單,是因為它有序,因此我們一眼便可看出這題應該用動態規劃來解決。但是,如何動態規劃呢?如何劃分階段,又如何選擇狀態呢?
<方法1>以花束的數目來劃分階段。在這里,階段變數k表示的就是要布置的花束數目(前k束花),狀態變數sk表示第k束花所在的花瓶。而對於每一個狀態sk,決策就是第k-1束花應該放在哪個花瓶,用uk表示。最優指標函數fk(sk)表示前k束花,其中第k束插在第sk個花瓶中,所能取得的最大美學值。
狀態轉移方程為
規劃方程為
(其中A(i,j)是花束i插在花瓶j中的美學值)
邊界條件 (V是花瓶總數,事實上這是一個虛擬的邊界)
<方法2>以花瓶的數目來劃分階段。在這里階段變數k表示的是要佔用的花瓶數目(前k個花瓶),狀態變數sk表示前k個花瓶中放了多少花。而對於任意一個狀態sk,決策就是第sk束花是否放在第k個花瓶中,用變數uk=1或0來表示。最優指標函數fk(sk)表示前k個花瓶中插了sk束花,所能取得的最大美學值。
狀態轉移方程為
規劃方程為
邊界條件為
兩種劃分階段的方法,引出了兩種狀態表示法,兩種規劃方式,但是卻都成功地解決了問題。只不過因為決策的選擇有多有少,所以演算法的時間復雜度也就不同。[2]
這個例子具有很大的普遍性。有很多的多階段決策問題都有著不止一種的階段劃分方法,因而往往就有不止一種的規劃方法。有時各種方法所產生的效果是差不多的,但更多的時候,就像我們的例子一樣,兩種方法會在某個方面有些區別。
所以,在用動態規劃解題的時候,可以多想一想是否有其它的解法。對於不同的解法,要注意比較,好的演算法好在哪裡,差一點的演算法差在哪裡。從各種不同演算法的比較中,我們可以更深刻地領會動態規劃的構思技巧。
§2.2動態規劃的模式性
這個可能做過動態規劃的人都有體會,從我們上面對動態規劃的分析也可以看出來。動態規劃的設計都有著一定的模式,一般要經歷以下幾個步驟。
劃分階段:按照問題的時間或空間特徵,把問題分為若干個階段。注意這若干個階段一定要是有序的或者是可排序的,否則問題就無法求解。
選擇狀態:將問題發展到各個階段時所處於的各種客觀情況用不同的狀態表示出來。當然,狀態的選擇要滿足無後效性。
確定決策並寫出狀態轉移方程:之所以把這兩步放在一起,是因為決策和狀態轉移有著天然的聯系,狀態轉移就是根據上一階段的狀態和決策來導出本階段的狀態。所以,如果我們確定了決策,狀態轉移方程也就寫出來了。但事實上,我們常常是反過來做,根據相鄰兩段的各狀態之間的關系來確定決策。
寫出規劃方程(包括邊界條件):在第一部分中,我們已經給出了規劃方程的通用形式化表達式。一般說來,只要階段、狀態、決策和狀態轉移確定了,這一步還是比較簡單的。
動態規劃的主要難點在於理論上的設計,一旦設計完成,實現部分就會非常簡單。大體上的框架如下:
對f1(s1)初始化(邊界條件)
for k?2 to n(這里以順序求解為例)
對每一個sk?Sk
fk(sk)?一個極值(∞或-∞)
對每一個uk(sk)?Dk(sk)
sk-1?Tk(sk,uk)
t?g(fk-1(sk-1),uk)
y t比fk(sk)更優 n
fk(sk)?t
輸出fn(sn)
這個N-S圖雖然不能代表全部,但足可以概括大多數。少數的一些特殊的動態規劃,其實現的原理也是類似,可以類比出來。我們到現在對動態規劃的分析,主要是在理論上、設計上,原因也就在此。
掌握了動態規劃的模式性,我們在用動態規劃解題時就可以把主要的精力放在理論上的設計。一旦設計成熟,問題也就基本上解決了。而且在設計演算法時也可以按部就班地來。
但是「物極必反」,太過拘泥於模式就會限制我們的思維,扼殺優良演算法思想的產生。我們在解題時,不妨發揮一下創造性,去突破動態規劃的實現模式,這樣往往會收到意想不到的效果。[3]
§2.3動態規劃的技巧性
上面我們所說的動態規劃的模式性,主要指的是實現方面。而在設計方面,雖然它較為嚴格的步驟性,但是它的設計思想卻是沒有一定的規律可循的。這就需要我們不斷地在實踐當中去掌握動態規劃的技巧,下面僅就一個例子談一點我自己的體會。
[例3] 街道問題:在下圖中找出從左下角到右上角的最短路徑,每步只能向右方或上方走。
這是一道簡單而又典型的動態規劃題,許多介紹動態規劃的書與文章中都拿它來做例子。通常,書上的解答是這樣的:
按照圖中的虛線來劃分階段,即階段變數k表示走過的步數,而狀態變數sk表示當前處於這一階段上的哪一點(各點所對應的階段和狀態已經用ks在地圖上標明)。這時的模型實際上已經轉化成了一個特殊的多段圖。用決策變數uk=0表示向右走,uk=1表示向上走,則狀態轉移方程如下:
(這里的row是地圖豎直方向的行數)
我們看到,這個狀態轉移方程需要根據k的取值分兩種情況討論,顯得非常麻煩。相應的,把它代入規劃方程而付諸實現時,演算法也很繁。因而我們在實現時,一般是不會這么做的,而代之以下面方法:
將地圖中的點規則地編號如上,得到的規劃方程如下:
(這里Distance表示相鄰兩點間的邊長)
這樣做確實要比上面的方法簡單多了,但是它已經破壞了動態規劃的本來面目,而不存在明確的階段特徵了。如果說這種方法是以地圖中的行(A、B、C、D)來劃分階段的話,那麼它的「狀態轉移」就不全是在兩個階段之間進行的了。
也許這沒什麼大不了的,因為實踐比理論更有說服力。但是,如果我們把題目擴展一下:在地圖中找出從左下角到右上角的兩條路徑,兩條路徑中的任何一條邊都不能重疊,並且要求兩條路徑的總長度最短。這時,再用這種「簡單」的方法就不太好辦了。
如果非得套用這種方法的話,則最優指標函數就需要有四維的下標,並且難以處理兩條路徑「不能重疊」的問題。
而我們回到原先「標准」的動態規劃法,就會發現這個問題很好解決,只需要加一維狀態變數就成了。即用sk=(ak,bk)分別表示兩條路徑走到階段k時所處的位置,相應的,決策變數也增加一維,用uk=(xk,yk)分別表示兩條路徑的行走方向。狀態轉移時將兩條路徑分別考慮:
在寫規劃方程時,只要對兩條路徑走到同一個點的情況稍微處理一下,減少可選的決策個數:
從這個例子中可以總結出設計動態規劃演算法的一個技巧:狀態轉移一般是在相鄰的兩個階段之間(有時也可以在不相鄰的兩個階段間),但是盡量不要在同一個階段內進行。
動態規劃是一種很靈活的解題方法,在動態規劃演算法的設計中,類似的技巧還有很多。要掌握動態規劃的技巧,有兩條途徑:一是要深刻理解動態規劃的本質,這也是我們為什麼一開始就探討它的本質的原因;二是要多實踐,不但要多解題,還要學會從解題中探尋規律,總結技巧。
§3動態規劃與一些演算法的比較
動態規劃作為諸多解題方法中的一種,必然和其他一些演算法有著諸多聯系。從這些聯系中,我們也可以看出動態規劃的一些特點。
§3.1動態規劃與遞推
——動態規劃是最優化演算法
由於動態規劃的「名氣」如此之大,以至於很多人甚至一些資料書上都往往把一種與動態規劃十分相似的演算法,當作是動態規劃。這種演算法就是遞推。實際上,這兩種演算法還是很容易區分的。
按解題的目標來分,信息學試題主要分四類:判定性問題、構造性問題、計數問題和最優化問題。我們在競賽中碰到的大多是最優化問題,而動態規劃正是解決最優化問題的有力武器,因此動態規劃在競賽中的地位日益提高。而遞推法在處理判定性問題和計數問題方面也是一把利器。下面分別就兩個例子,談一下遞推法和動態規劃在這兩個方面的聯系。
[例4] mod 4 最優路徑問題:在下圖中找出從第1點到第4點的一條路徑,要求路徑長度mod 4的余數最小。
這個圖是一個多段圖,而且是一個特殊的多段圖。雖然這個圖的形式比一般的多段圖要簡單,但是這個最優路徑問題卻不能用動態規劃來做。因為一條從第1點到第4點的最優路徑,在它走到第2點、第3點時,路徑長度mod 4的余數不一定是最小,也就是說最優策略的子策略不一定最優——這個問題不滿足最優化原理。
但是我們可以把它轉換成判定性問題,用遞推法來解決。判斷從第1點到第k點的長度mod 4為sk的路徑是否存在,用fk(sk)來表示,則遞推公式如下:
(邊界條件)
(這里lenk,i表示從第k-1點到第k點之間的第i條邊的長度,方括弧表示「或(or)」運算)
最後的結果就是可以使f4(s4)值為真的最小的s4值。
這個遞推法的遞推公式和動態規劃的規劃方程非常相似,我們在這里借用了動態規劃的符號也就是為了更清楚地顯示這一點。其實它們的思想也是非常相像的,可以說是遞推法借用了動態規劃的思想解決了動態規劃不能解決的問題。
有的多階段決策問題(像這一題的階段特徵就很明顯),由於不能滿足最優化原理等使用動態規劃的先決條件,而無法應用動態規劃。在這時可以將最優指標函數的值當作「狀態」放到下標中去,從而變最優化問題為判定性問題,再借用動態規劃的思想,用遞推法來解決問題。
§3.2動態規劃與搜索
——動態規劃是高效率、高消費演算法
同樣是解決最優化問題,有的題目我們採用動態規劃,而有的題目我們則需要用搜索。這其中有沒有什麼規則呢?
我們知道,撇開時空效率的因素不談,在解決最優化問題的演算法中,搜索可以說是「萬能」的。所以動態規劃可以解決的問題,搜索也一定可以解決。
把一個動態規劃演算法改寫成搜索是非常方便的,狀態轉移方程、規劃方程以及邊界條件都可以直接「移植」,所不同的只是求解順序。動態規劃是自底向上的遞推求解,而搜索則是自頂向下的遞歸求解(這里指深度搜索,寬度搜索類似)。
反過來,我們也可以把搜索演算法改寫成動態規劃。狀態空間搜索實際上是對隱式圖中的點進行枚舉,這種枚舉是自頂向下的。如果把枚舉的順序反過來,變成自底向上,那麼就成了動態規劃。(當然這里有個條件,即隱式圖中的點是可排序的,詳見下一節。)
正因為動態規劃和搜索有著求解順序上的不同,這也造成了它們時間效率上的差別。在搜索中,往往會出現下面的情況:
對於上圖(a)這樣幾個狀態構成的一個隱式圖,用搜索演算法就會出現重復,如上圖(b)所示,狀態C2被搜索了兩次。在深度搜索中,這樣的重復會引起以C2為根整個的整個子搜索樹的重復搜索;在寬度搜索中,雖然這樣的重復可以立即被排除,但是其時間代價也是不小的。而動態規劃就沒有這個問題,如上圖(c)所示。
一般說來,動態規劃演算法在時間效率上的優勢是搜索無法比擬的。(當然對於某些題目,根本不會出現狀態的重復,這樣搜索和動態規劃的速度就沒有差別了。)而從理論上講,任何拓撲有序(現實中這個條件常常可以滿足)的隱式圖中的搜索演算法都可以改寫成動態規劃。但事實上,在很多情況下我們仍然不得不採用搜索演算法。那麼,動態規劃演算法在實現上還有什麼障礙嗎?
考慮上圖(a)所示的隱式圖,其中存在兩個從初始狀態無法達到的狀態。在搜索演算法中,這樣的兩個狀態就不被考慮了,如上圖(b)所示。但是動態規劃由於是自底向上求解,所以就無法估計到這一點,因而遍歷了全部的狀態,如上圖(c)所示。
一般說來,動態規劃總要遍歷所有的狀態,而搜索可以排除一些無效狀態。更重要的事搜索還可以剪枝,可能剪去大量不必要的狀態,因此在空間開銷上往往比動態規劃要低很多。
如何協調好動態規劃的高效率與高消費之間的矛盾呢?有一種折衷的辦法就是記憶化演算法。記憶化演算法在求解的時候還是按著自頂向下的順序,但是每求解一個狀態,就將它的解保存下來,以後再次遇到這個狀態的時候,就不必重新求解了。這種方法綜合了搜索和動態規劃兩方面的優點,因而還是很有實用價值的。
§3.3動態規劃與網路流
——動態規劃是易設計易實現演算法
由於圖的關系復雜而無序,一般難以呈現階段特徵(除了特殊的圖如多段圖,或特殊的分段方法如Floyd),因此動態規劃在圖論中的應用不多。但有一類圖,它的點卻是有序的,這就是有向無環圖。
在有向無環圖中,我們可以對點進行拓撲排序,使其體現出有序的特徵,從而據此劃分階段。在有向無還圖中求最短路徑的演算法[4],已經體現出了簡單的動態規劃思想。但動態規劃在圖論中還有更有價值的應用。下面先看一個例子。
[例6] N個人的街道問題:在街道問題(參見例3)中,若有N個人要從左下角走向右上角,要求他們走過的邊的總長度最大。當然,這里每個人也只能向右或向上走。下面是一個樣例,左圖是從出發地到目的地的三條路徑,右圖是他們所走過的邊,這些邊的總長度為5 + 4 + 3 + 6 + 3 + 3 + 5 + 8 + 8 + 7 + 4 + 5 + 9 + 5 + 3 = 78(不一定是最大)。
這個題目是對街道問題的又一次擴展。仿照街道問題的解題方法,我們仍然可以用動態規劃來解決本題。不過這一次是N個人同時走,狀態變數也就需要用N維來表示,。相應的,決策變數也要變成N維,uk=(uk,1,uk,2,…,uk,N)。狀態轉移方程不需要做什麼改動:
在寫規劃方程時,需要注意在第k階段,N條路徑所走過的邊的總長度的計算,在這里我就用gk(sk,uk)來表示了:
邊界條件為
可見將原來的動態規劃演算法移植到這個問題上來,在理論上還是完全可行的。但是,現在的這個動態規劃演算法的時空復雜度已經是關於N的指數函數,只要N稍微大一點,這個演算法就不可能實現了。
下面我們換一個思路,將N條路徑看成是網路中一個流量為N的流,這樣求解的目標就是使這個流的費用最大。但是本題又不同於一般的費用流問題,在每一條邊e上的流費用並不是流量和邊權的乘積 ,而是用下式計算:
為了使經典的費用流演算法適用於本題,我們需要將模型稍微轉化一下:
如圖,將每條邊拆成兩條。拆開後一條邊上有權,但是容量限制為1;另一條邊沒有容量限制,但是流過這條邊就不能計算費用了。這樣我們就把問題轉化成了一個標準的最大費用固定流問題。
這個演算法可以套用經典的最小費用最大流演算法,在此就不細說了。(參見附錄中的源程序)
這個例題是我仿照IOI97的「障礙物探測器」一題[6]編出來的。「障礙物探測器」比這一題要復雜一些,但是基本思想是相似的。類似的題目還有99年冬令營的「迷宮改造」[7]。從這些題目中都可以看到動態規劃和網路流的聯系。
推廣到一般情況,任何有向無環圖中的費用流問題在理論上說,都可以用動態規劃來解決。對於流量為N(如果流量不固定,這個N需要事先求出來)的費用流問題,用N維的變數sk=(sk,1,sk,2,…,sk,N)來描述狀態,其中sk,i?V(1£i£N)。相應的,決策也用N維的變數uk=(uk,1,uk,2,…,uk,N)來表示,其中uk,i?E(sk,i)(1£i£N),E(v)表示指向v的弧集。則狀態轉移方程可以這樣表示:
sk-1,i = uk,i的弧尾結點
規劃方程為
邊界條件為
但是,由於動態規劃演算法是指數級演算法,因而在實現中的局限性很大,僅可用於一些N非常小的題目。然而在競賽解題中,比如上面說到的IOI97以及99冬令營測試時,我們使用動態規劃的傾向性很明顯(「障礙物探測器」中,我們用的是貪心策略,求N=1或N=2時的局部最優解[8])。這主要有兩個原因:
一. 雖然網路流有著經典的演算法,但是在競賽中不可能出現經典的問題。如果要運用網路流演算法,則需要經過一番模型轉化,有時這個轉化還是相當困難的。因此在演算法的設計上,靈活巧妙的動態規劃演算法反而要更為簡單一些。
二. 網路流演算法實現起來很繁,這是被人們公認的。因而在競賽的緊張環境中,實現起來有一定模式的動態規劃演算法又多了一層優勢。
正由於動態規劃演算法在設計和實現上的簡便性,所以在N不太大時,也就是在動態規劃可行的情況下,我們還是應該盡量運用動態規劃。
§4結語
本文的內容比較雜,是我幾年來對動態規劃的參悟理解、心得體會。雖然主要的篇幅講的都是理論,但是根本的目的還是指導實踐。
動態規劃,據我認為,是當今信息學競賽中最靈活、也最能體現解題者水平的一類解題方法。本文內容雖多,不能涵蓋動態規劃之萬一。「紙上得來終覺淺,絕知此事要躬行。」要想真正領悟、理解動態規劃的思想,掌握動態規劃的解題技巧,還需要在實踐中不斷地挖掘、探索。實踐得多了,也就能體會到漸入佳境之妙了。
動態規劃,
演算法之常,
運用之妙,
存乎一心。