導航:首頁 > 源碼編譯 > 迪傑斯特拉演算法解決問題

迪傑斯特拉演算法解決問題

發布時間:2023-03-06 16:48:06

㈠ 圖遍歷演算法之最短路徑Dijkstra演算法

最短路徑問題是圖論研究中一個經典演算法問題,旨在尋找圖中兩節點或單個節點到其他節點之間的最短路徑。根據問題的不同,演算法的具體形式包括:

常用的最短路徑演算法包括:Dijkstra演算法,A 演算法,Bellman-Ford演算法,SPFA演算法(Bellman-Ford演算法的改進版本),Floyd-Warshall演算法,Johnson演算法以及Bi-direction BFS演算法。本文將重點介紹Dijkstra演算法的原理以及實現。

Dijkstra演算法,翻譯作戴克斯特拉演算法或迪傑斯特拉演算法,於1956年由荷蘭計算機科學家艾茲赫爾.戴克斯特拉提出,用於解決賦權有向圖的 單源最短路徑問題 。所謂單源最短路徑問題是指確定起點,尋找該節點到圖中任意節點的最短路徑,演算法可用於尋找兩個城市中的最短路徑或是解決著名的旅行商問題。

問題描述 :在無向圖 中, 為圖節點的集合, 為節點之間連線邊的集合。假設每條邊 的權重為 ,找到由頂點 到其餘各個節點的最短路徑(單源最短路徑)。

為帶權無向圖,圖中頂點 分為兩組,第一組為已求出最短路徑的頂點集合(用 表示)。初始時 只有源點,當求得一條最短路徑時,便將新增頂點添加進 ,直到所有頂點加入 中,演算法結束。第二組為未確定最短路徑頂點集合(用 表示),隨著 中頂點增加, 中頂點逐漸減少。

以下圖為例,對Dijkstra演算法的工作流程進行演示(以頂點 為起點):

註:
01) 是已計算出最短路徑的頂點集合;
02) 是未計算出最短路徑的頂點集合;
03) 表示頂點 到頂點 的最短距離為3
第1步 :選取頂點 添加進


第2步 :選取頂點 添加進 ,更新 中頂點最短距離




第3步 :選取頂點 添加進 ,更新 中頂點最短距離




第4步 :選取頂點 添加進 ,更新 中頂點最短距離





第5步 :選取頂點 添加進 ,更新 中頂點最短距離



第6步 :選取頂點 添加進 ,更新 中頂點最短距離



第7步 :選取頂點 添加進 ,更新 中頂點最短距離

示例:node編號1-7分別代表A,B,C,D,E,F,G

(s.paths <- shortest.paths(g, algorithm = "dijkstra"))輸出結果:

(s.paths <- shortest.paths(g,4, algorithm = "dijkstra"))輸出結果:

示例:

找到D(4)到G(7)的最短路徑:

[1] 維基網路,最短路徑問題: https://zh.wikipedia.org/wiki/%E6%9C%80%E7%9F%AD%E8%B7%AF%E9%97%AE%E9%A2%98 ;
[2]CSDN,Dijkstra演算法原理: https://blog.csdn.net/yalishadaa/article/details/55827681 ;
[3]RDocumentation: https://www.rdocumentation.org/packages/RNeo4j/versions/1.6.4/topics/dijkstra ;
[4]RDocumentation: https://www.rdocumentation.org/packages/igraph/versions/0.1.1/topics/shortest.paths ;
[5]Pypi: https://pypi.org/project/Dijkstar/

㈡ 在解決最短路徑優化問題中,Dijkstra演算法有哪些優.缺點

優點:演算法簡明、能得到最優解
缺點:效率低(特別是有時候不需要最優解)、運算中佔用空間大

㈢ 解釋一下dijkstra演算法這個計算過程的意思 怎麼算的

最近也看到這個演算法,不過主要是通過C語言介紹的,不太一樣,但基本思想差不多。下面只是我個人的看法不一定準確。
Dijkstra演算法主要解決指定某點(源點)到其他頂點的最短路徑問題。
基本思想:每次找到離源點最近的頂點,然後以該頂點為中心(過渡頂點),最終找到源點到其餘頂點的最短路。

t=1:令源點(v_0)的標號為永久標號(0,λ)(右上角加點), 其他為臨時(+無窮,λ). 就是說v_0到v_0的距離是0,其他頂點到v_0的距離為+無窮。t=1時,例5.3上面的步驟(2)(3)並不能體現

t=2:第1步v_0(k=0)獲得永久標號,記L_j為頂點標號當前的最短距離(比如v_0標號(0,λ)中L_0=0), 邊(v_k,v_j)的權w_kj. 步驟(2)最關鍵,若v_0與v_j之間存在邊,則比較L_k+w_kj與L_j, 而L_k+w_kj=L_0+w_0j<L_j=+無窮。
這里只有v_1,v_2與v_0存在邊,所以當j=1,2時修改標號, 標號分別為(L_1, v_0)=(1, v_0), (L_2, v_0)=(4, v_0), 其他不變。步驟(3)比較所有臨時標號中L_j最小的頂點, 這里L_1=1最小,v_1獲得永久標號(右上角加點)。

t=3: 第2步中v_1獲得永久標號(k=1), 同第2步一樣,通過例5.3上面的步驟(2)(3),得到永久標號。 步驟(2),若v_1與v_j(j=2,3,4,5(除去獲得永久標號的頂點))之間存在邊,則比較L_1+w_1j與L_j。這里v_1與v_2,v_3,v_,4存在邊,
對於v_2, L_1+w_12=1+2=3<L_2=4, 把v_2標號修改為(L_1+w_12, v_1)=(3, v_1);
對於v_3, L_1+w_13=1+7=8<L_3=+無窮, 把v_3標號修改為(L_1+w_13, v_1)=(8, v_1);
對於v_4, L_1+w_14=1+5=6<L_4=+無窮, 把v_4標號修改為(L_1+w_14, v_1)=(6, v_1);
v_5與v_1不存在邊,標號不變。步驟(3), 找這些標號L_j最小的頂點,這里v_2標號最小

t=4: k=2, 與v_2存在邊的未獲得永久標號的頂點只有v_4, 比較L_2+w_24=3+1=4<L_4=6, 把v_4標號修改為(L_2+w_24, v_2)=(4, v_2); 其他不變。步驟(3), L_4=4最小。

t=5: k=4, 同理先找v_4鄰接頂點,比較,修改標號,找L_j最小
t=6: 同理

啰嗦的這么多,其實步驟(2)是關鍵,就是通過比較更新最短路徑,右上角標點的就是距離源點最近的頂點,之後每一步就添加一個新的」源點」,再找其他頂點與它的最短距離。

迪傑斯特拉演算法(Dijkstra)(網路):
http://ke..com/link?url=gc_mamV4z7tpxwqju6BoqxVOZ_josbPNcGKtLYJ5GJsJT6U28koc_#4
裡面有個動圖,更形象地說明了該演算法的過程。(其中每次標注的一個紅色頂點out就和你的這本書中獲得永久標號是相似的)

㈣ 迪傑斯特拉演算法的本質是貪心還是動態規劃

貪心是一種特殊的動態規劃,動態規劃的本質是獨立的子問題,而貪心則是每次可以找到最優的獨立子問題。
貪心和動歸不是互斥的,而是包含的,貪心更快,但約束更強,適應范圍更小。
動歸和bfs的關系也是一樣的。

展開一點講,在求解最優化問題時,有多個解。而求解的過程類似一個樹,我們稱之為求解樹。

一般的求解樹真的是一棵樹,所以我們只能用bfs來搜索,頂多剪枝。

有些特殊的求解樹,中間很多結點是重合的,結點個數比所有搜索分支的個數少很多個數量級。這類問題較特殊,我們可以保存中間的搜索過程。而記憶化搜索和動態規劃本質上就是一個東西,快就快在可以不用重復計算很多中間結果(所謂的最優子問題)。

還有一些特殊的求解樹,更特殊,它們不止有很多重復結點,而且每次選擇分支的時候,我們可以證明只要選擇一個分支,這個分支的解就一定比其他選擇更優。這類問題就是貪心了,

所以bfs,dp,貪心三個方法都是解決最優化問題的方法,根據問題的不同,約束越大的問題可以用越快的方法,越慢的方法可以解決的問題越普適。

動態規劃的狀態轉移函數,可以抽象成這樣一種函數:

f(x)=g(f(x1), f(x2), f(x3), ... f(xn))

其中f就是我們說的獨立問題,每個f都有一個唯一值,也就是沒有後效性。

貪心也是這個函數,但可以證明:

f(xi) >= f(x1|x2|...|xn)

那麼我們就不用再去計算除了f(xi)以外的任何子狀態了,所以就更快

而標準的bfs,雖然也有

f(x)=g(f(x1), f(x2), f(x3), ... f(xn))

但是因為對於任意的f(x),它的子問題f(xi)的輸入狀態xi都不同(換一種思路也可以說f(xi)在不同的路徑下值都不同,本質上是我們怎麼定義xi,到底是狹義的參數還是廣義的狀態),所以無法使用內存去換取時間,就只能去遍歷所有狀態了。

㈤ 迪傑斯特拉演算法的介紹

迪傑斯特拉演算法是由荷蘭計算機科學家狄克斯特拉於1959 年提出的,因此又叫狄克斯特拉演算法。是從一個頂點到其餘各頂點的最短路徑演算法,解決的是有向圖中最短路徑問題。迪傑斯特拉演算法主要特點是以起始點為中心向外層層擴展,直到擴展到終點為止。

閱讀全文

與迪傑斯特拉演算法解決問題相關的資料

熱點內容
螺桿式壓縮冷凝機組 瀏覽:297
p在單片機里什麼意思 瀏覽:25
linuxwireshark使用教程 瀏覽:656
手機訪問阿里伺服器地址 瀏覽:678
程序員可以干什麼 瀏覽:70
績效考核權重分配演算法 瀏覽:524
android應用logo 瀏覽:898
光遇安卓服墓土商店什麼時候開 瀏覽:566
月收益翻倍的源碼 瀏覽:638
asop源碼放在哪裡 瀏覽:989
電腦伺服器密碼怎麼找 瀏覽:574
jdp轉換pdf 瀏覽:749
把pdf導入iphone 瀏覽:508
米哈游租賃的雲伺服器是哪個 瀏覽:524
android直接打電話 瀏覽:1018
ubuntu停止命令 瀏覽:285
cnc攻絲編程 瀏覽:870
換個手機號碼app怎麼注冊 瀏覽:321
怎麼下載小猴口算app 瀏覽:117
輕鏈app的貨怎麼樣 瀏覽:627