導航:首頁 > 源碼編譯 > 混合語言編譯原理

混合語言編譯原理

發布時間:2023-03-09 03:21:00

編譯過程分為哪幾個階段各階段的遵循的原則、識別機構、使用的文法編譯原理

編譯原理中的遍概念
編譯階段也常常劃分為兩大步驟,分析步驟和綜合步驟 分析步驟和綜合步驟 分析步驟是指對源程序的分析 -線性分析(詞法分析或掃描) -層次分析(語法分析) -語義分析 綜合步驟是指後端的工作,為目標程序的生成而進行的綜合

你分析過嗎?若按照這種組合方式實現編譯程序,可以設想,某一編譯程序的前端加上相應不同的後 端則可以為不同的機器構成同一個源語言的編譯程序。也可以設想,不同語言編譯的前端生成同一種中間 語言,再使用一個共同的後端,則可為同一機器生成幾個語言的編譯程序。

一個編譯過程可由一遍、兩遍或多遍完成。所謂"遍",也稱作"趟",是對源程序或其等價的中間語言程 序從頭到尾掃視並完成規定任務的過程。每一遍掃視可完成上述一個階段或多個階段的工作。例如一遍可 以只完成詞法分析工作;一遍完成詞法分析和語法分析工作;甚至一遍完成整個編譯工作。對於多遍的編 譯程序,第一遍的輸入是用戶書寫的源程序,最後一遍的輸出是目標語言程序,其餘是上一遍的輸出為下 一遍的輸入。

在實際的編譯系統的設計中,編譯的幾個階段的工作究竟應該怎樣組合,即編譯程序究竟分成幾遍, 參考的因素主要是源語言和機器(目標機)的特徵。比如源語言的結構直接影響編譯的遍的劃分;像 PL/1 或 ALGOL 68 那樣的語言,允許名字的說明出現在名字的使用之後,那麼在看到名字之前是不便為包含該名 字的表達式生成代碼的,這種語言的編譯程序至少分成兩遍才容易生成代碼。另外機器的情況,即編譯程 序工作的環境也影響編譯程序的遍數的劃分。遍數多一點,整個編譯程序的邏輯結構可能清晰些,但遍數 多即意味著增加讀寫中間文件的次數,勢必消耗較多時間,一般會比一遍的編譯要慢。

② 匯編語言用什麼編譯器來編寫,編譯原理這門課程講的到底是什麼

很多的,例如MASM編譯器。
編譯原理內容包括語言和文法、詞法分析、語法分析、語法制導翻譯、中間代碼生成、存儲管理、代碼優化和目標代碼生成等,這門課大部分人聽起來比較困難,介紹編譯程序構造的一般原理和基本方法,雖然只有少數人從事編譯方面的工作,但是這門課在理論、技術、方法上都對我們提供了系統而有效的訓練,有利於提高軟體人員的素質和能力。

③ 如何C語言與匯編混編

c語言可以嵌套匯編:
按照TC2.0的幫助系統所以說的,在TC2.0下是可以用匯編的,方法是使用asm關鍵字:其格式是:
asm opcode <operands> <;newline>,如同別的注釋一樣,<>之間的表示可選的;例如:

main()
{
char *c="hello,world/n/r$";
asm mov ah,9;asm mov dx,c;asm int 33;
printf("You sucessed!/n");

}
或者是:

main()
{
char *c="hello,world/n/r$";
asm mov ah,9
asm mov dx,c
asm int 33
printf("You sucessed!");
}
兩種格式其實是一種.如果你用的是第一種的樣式,記住:
每一句匯編語句都要以asm開頭,如果一行內有多個句子,
那麼千萬不要忘記在兩個句子之間的這個semicolon(分號),
但是最後一句匯編後面(如果後面沒有其它的語句)的分號可有可無,象第一個例子中的
asm int 33;後面的分號就可以不要,因為它的後面沒有其它
的語句了.但如果是這樣:
asm mov ah,9; asm mov dx,c;asm int 33; printf("You sucessed!");
那麼asm int 33;後面的分號便還是留下好,以免出現編譯錯誤!
在這一點上頗象C語言.

還有一種格式是
asm{ assembly language statement},這種格式應該被普遍的歡迎.
它們的例子如下(其中的語句排列格式與上面兩種相同):
asm{
mov ax,var1
add ax,var2
......
}
但是要注意這種格式TC2.0是不支持的!
只有後來的TC++3.0及後來的IDE支持!

工具的使用:
一旦你的C源文件里包括了這些好東西,則必須用TCC.EXE的COMMAND-LINE來編譯,具體的命令參數TCC.EXE已經提供,這里不復闡述了.最簡單的是:TCC C源文件名(使用這個方法,TCC會自動調用TASM.EXE和TLINK.EXE,並且能夠使TLINK.EXE正確的找到需要的.obj和.lib文件,如果你單步編譯的話,可能會碰到很多的問題,主要是TLINK.EXE它自己並不會去找.obj和.lib文件,你自己可以建一個.bat文件,如果要指定.lib文件的目錄的話可以用/L參數,在文章的後面有一個例子).但大家要注意了,看一下你的TC目錄下面到底是否有TASM.EXE文件,並在TURBOC.CFG(這個文件包括TCC.EXE運行期參數,這裡面所有參數在運很期都將被自動TCC.EXE使用,例如:-IH:/TC/INCLUDE/
-LH:/TC/LIB/)文件中設置好一些參數,並確認TASM.EXE的版本號要2.0以上,以及是否能夠向下兼容.但是在大多數的情況下TC的目錄是沒有TASM.EXE的,或是版本不正常.
如果你有TASM.EXE文件並且TURBOC.CFG文件也已經寫好了,但是還要注意一個
問題:運行TCC.EXE時要在獨立的DOS SHELL下面(不要害怕,這不是一個新東西,我的意思
是,不在諸如TC下的DOS SHELL下面運行,我曾經敗在這個問題下,當我發現時直想揍電腦
一頓,還好沒有,不然就沒有這篇文件了.)
還有一句重要的話:TC2.0支持大部分8086指令(當然用法有一些約定,不過現在我並不打算
進行詳細說明,因為那是一件很繁雜的事,以後有時間或許會寫出來----如果大家需要的話).
如果說上面我所說的那些約定很繁雜的話,那麼下面的方法該是多麼簡單啊!
讓我們使用Borland為TC2.0內建的變數來進行偽匯編.
或許你還不知道在TC2.0中還有一些內建的pseudo寄存器(可以看作是register 型的變數,但是它們比register型的變數好用的多)
_AX,_AH,_AL,
_BX,_BH,_BL,
_CX,_CH,_CL,
_DX,_DH,_DL,
_DI,_SI,_SP,
_CS,_DS,_ES,_SS
注意這些寄存器的size,_AX,_BX,_CX,_DX,_CS,_DS,_ES,_SS,_SI,_DI,_SP等都是16位的寄存器相當於C語言的unsigned int類型,其餘的都是8位的寄存器(相當於unsigned char)(TC怎麼可能支持32位的寄存呢,所以EAX等是不能用的,FS,GS和IP寄存器都是無效的),還有就是在傳遞參數的時候千萬不要忘記使用強制類型轉換.
中斷調用指令是:__int__(interrupt_#)(注意int的前輟和後輟都是兩個underscores)
For example:
#include<dos.h>
unsigned int _stklen=0x200;
unsigned int _heaplen=0;

main()
{
_DX=(unsigned int)"Hello,world./r/n$";
_AX=0x900;
__int__(0x21);

}
dos.h它是包含__int__()內建中斷調用語句的頭文件,因此是不可
缺少的._stklen和_heaplen是定義運行期堆棧和堆大小的兩個內部
引用變數(這是個我自己想的名詞,意指如果這兩個變數在源文件中
顯式的聲明了,那麼編譯程序會自會引用來構造編譯時期的信息以產生
用戶希望的目標文件,如果不顯式的聲明則編譯程序自動確定).
這兩個變數也有一些約定,如果_stklen不顯式聲明,_heaplen賦值為零
都表示棧和堆都是defult的.
最後在TC2.0中還有一個沒有說明的標志位寄存器flags,它也是內建
pseudo寄存器是:_FLAGS,是一個16位寄存器.這些內建的寄存器都可以進行
運算,但是要注意它們所代表的類型(必要時進行類型轉換);
看起來這是不是一種好的辦法啊(而且使用這種方法只要用個一個dos.h頭文件就好,
不需要用TCC編譯,可以直接在TC20的IDE下編譯).
TC2.0中也提供了一些簡單好用的函數來實現對DOS功能的調用如:
int86(...),int86x(...)(但是這些方法實際仍然要調用函數,所以不如使用
偽寄存器,又因為要牽涉到union REGS結構的內存分配所以系統的開銷是增大了,
而使用偽寄存器是最簡潔的),埠通信函數如:inportb(...),inport(...),
outportb(...),outport(...),指針轉換函數:FP_OFF,FP_SEG,MK_FP,這些函數在
幫助系統中都有,有用時大家可以查閱.

tlinkbat.bat的例子:
rem The lib environment variable is the directory of the .obj and .lib file
set lib=h:/tc/lib/
rem 這下面的句子中的c0s(C 零S)是一個.OBJ文件,是一個C程序的STARTUP文件
tlink %lib%c0s %1,%1,%1,/L%lib%emu.lib %lib%maths.lib %lib%cs.lib
set lib=
(使用時可將以rem開頭的句子刪除)

___________________________________________________
一些約定:
我們先說一下在TC20下寫匯編(內聯匯編--自己起的名字,大家可以想叫什麼叫什麼)時的編譯器的編譯原則:
1.所有在main()函數外的的匯編語言的語句都作為數據聲明語句處理,也即在編譯器編譯時會將它放在數據段中,如:
asm string1 db "Hello",,,'world!',0ah,0xd,"$"
main()
{
asm mov dx,offset string1
asm mov ah,9
asm int 33
asm mov dx,offset string2
asm int 33
}
asm string2 db "the string can be declared after the main() function!$"
象這些樣子在main()外面的匯編語言的數據定義語句(事實上不管是什麼匯編語句,
只要是在main()之外,包括這個句子:asm mov ax,0x4c00),在編譯後都放在數據段中,而C語言的數據聲明語句仍按C的規則!
2.所有在main()函內的匯編語言的語句在編譯後都放在代碼段中,包括這個句子:
asm string2 db "the string can be declared after the main() function!$"
3.不要在以asm 開頭的語句中使用C語言的關鍵字,這會導致編譯階段的錯誤

那麼,根據這三條大家會得到什麼樣的結論呢?(先閉上眼想一想,你可能會由此變的
很贊賞自己,是的你應該這樣相信自己是對的!)
讓我們一起看一下這個結論:
1.根據編譯原則1得到:不可以在main()外面寫匯編命令語句(不要笑,正是與C語言相同才值得注意!),在任何地方都不要進行任何的段定義和宏定義(這是因為編譯後的形式決定的,也即:在TC20下所有的匯編格式的語句只能是,直接性的數據定義和語句指令)!
2根據編譯原則2得到:不可以在main()之內使用匯編的語句進行數據定義(同樣不要笑,
大多數人在第一次在TC20下寫匯編都會有這樣的錯誤的)
3.如同類強制類型這樣的事是不可以在以asm開頭的匯編語句中使用的
好了,天即朗,氣瞬清!這樣一說,一個大體的框架就出來了!只要遵守這個原則寫,就可避免很多莫名其妙的錯誤出現!
通俗的說:
匯編語句的數據定義放在main()外面,指令放在main()裡面.
如果你沒有更好的文檔,那麼記住我的這些話!

一些細節的問題:
在以asm開頭的內聯匯編語句中是不支持C的轉義字元的,但是用C語言聲明一個字元數組(含有轉義字元的),然後用int 33 ah=9這功能時輸出這個字元串時,其中的轉義字元是有效的(這主要是因為編譯後其內部表示形式不同造成的,自己想想會有答案的).
內聯匯編支持C的一些如數值表示,字元串聲明格式等,
如:一個十六進制的數據可以用兩種方式表示:0xa 和0ah,字元串可以是這樣:
"Hello,world!$"(如同C)也可以這樣'Hello,world!$'(用匯編自己的方式).
象C一樣你同樣要注意賦值的類型,而且要比C更嚴格(匯編從來不自己動手做
如同類型轉換啊這樣事),所以一切的事完全要你自己做好!而且你不要企圖以C的形式
做這件事,如這樣的格式 asm mov dx,(unsigned)a(a是一個這樣的東西,
char a[ ]="hello,world!";),而且這樣句子也會導致錯誤:asm mov dx,word ptr a(邏輯錯誤),不過這不是在編譯時的錯誤,而是運行期的錯誤(具體的原因自己想一想,象word label這樣的東西的運算作用和會導致的後果),你可以這樣用一個句子做"中間人"如int i=(unsigned)a;asm mov dx,i(也千萬不要用asm mov dx,(unsigned)a 這樣的句子.但是,告訴大家一個好消息,你可以用指針指向一個字元串,然後你會驚訝你竟然可以這樣:
char *p="hello,world";asm mov dx,p,然後用int 33 ah=9的功能輸出這個字元串而不會有錯誤(這也表現出指針的特點,它是一個二位元組的(TC20下)變數,含有的是一個地址,這與其指向的變數的類型是毫無關系的).
內匯匯編語句不支持->這個運算符.還有標號的問題,在最後的例子中你會年看到一些特別之處!

上面所說的只是很細小並微少的一些事(也是很常遇到的),尚有很多的細節要說,但由於本人時間有限不能一一列舉,如C的結構在內聯匯編的應用等大家可以按照其運行機理去想想一下用法;另外,由於這只是一件學習的事,所以還是大家自己學(找一下有關文檔,當然現在已經沒有什麼比較完整的了),情況會好的多,我在對內聯匯編的學習過程中領會到了不少的東西,例如編譯原理方面的知識,以及如何做會使代碼更高效,占空間最少等的方法.最後向大家推薦一種方法,在利用TCC的-S開關可以生成C源文件的匯編代碼
(或許很多的人都用過)是很好的學習材料!祝大家學有所成!

Cstarter
02-11-17

/* 由於個人的時間和能力有限,難免有錯誤和不詳細的地方,請大家見諒!
My Email:[email protected] [email protected] QQ:170594633 */
一些例子:
下面這個例子是對沈美明 溫冬嬋的
<<IBM-PC 匯編語言程序設計>>清華版第十一章程序的改寫
可直接在命令行上鍵入 tcc filename 就可以,當然你要有TASM.EXE
/*
asm mus_frep dw 330,294,262,294,3 p(330)
asm dw 3 p(294),330,392,392
asm dw 330,294,262,294,4 p(330)
asm dw 294,294,330,294,262,-1
asm mus_time dw 6 p(25),50
asm dw 2 p (25,25,50)
asm dw 12 p(25),100
*/
asm mus_frep dw 330,392,330,294,330,392,330,294,330
asm dw 330,392,330,294,262,294,330,392,294
asm dw 262,262,220,196,196,220,262,294,330,262
asm dw -1
asm mus_time dw 3 p (50),25,25,50,25,25,100
asm dw 2 p (50,50,25,25),100
asm dw 3 p (50,25,25),100

main()
{
asm jmp start
/*設置發聲的頻率,這一段在沈美明 溫冬嬋的
<<IBM-PC 匯編語言程序設計>>清華版第十一章有詳細的說明 */

sound:
asm mov al,0b6h
asm out 43h,al
asm mov dx,12h
asm mov ax,533h*896
asm div di
asm out 42h, al
asm mov al,ah
/* 這個延時是用來防止兩次IO操作的最後一次操作的錯誤,
因為CPU比匯流排的速度快很多,所以 要延時等待第一次操作完成後再進行第二次操作*/

asm mov cx,1000
delay:
asm loop delay

asm out 42h,al
asm in al,61h
asm mov ah,al
asm or al,3
asm out 61h,al

/* 使用中斷15H功能86H延時CX:DX=微秒數*/
asm mov ax,2710h
asm mul bx
asm mov cx,dx
asm mov dx,ax
asm mov ah,86h
asm int 15h /*可用__int__(0x15);代替*/

asm mov al,ah
asm out 61h,al
asm jmp add_count
/*------------------*/
start:
asm mov si,offset mus_frep
asm lea bp,mus_time
frep:
asm mov di,[si]
asm cmp di,-1
asm je end_mus
asm mov bx,[bp]
asm jmp sound
add_count: /*標號不能用匯編語言寫*/
asm add si,2
asm add bp,2
asm jmp frep
end_mus:;

}

對於上面的程序大家可用偽寄存器的方法寫一個,要容易的多!

/*一個發聲程序!(引自<<PC技術內幕>>電力版--這個版不好,不如清華版的)*/
#include"dos.h"
main()
{
static union REGS ourregs;
outportb(0x43,0xb6);
outportb(0x42,0xee);
outportb(0x42,0);
outportb(0x61,(inportb(0x61)|0x03));
ourregs.h.ah=0x86;
ourregs.x.cx=0x001e;
ourregs.x.dx=0x8480;
int86(0x15,&ourregs,&ourregs);
outportb(0x61,(inportb(0x61)&0xfc));
}

④ 操作系統,匯編語言,編譯原理,這三門課程學習步驟是什麼 以及原因,求詳細解釋,非常感謝。

匯編語言、編譯原理、操作系統吧

1.首先編譯原理肯定要在匯編之後學的,你不會匯編編什麼譯
2.匯編語言肯定講的是實模式的內容,學完了實模式對計算機內程序有個基本概念了,研究保護模式的時候就要涉及到操作系統了
3.至於編譯原理我沒學過,姑且認為應該也是實模式的內容吧,所以放到操作系統之前學習

⑤ 匯編語言/編譯原理

應該先學匯編語言,在編譯原理中要用到匯編語言,因為匯編語言向機器語言的「翻譯」較簡單,所以編譯器會將高級語言程序代碼譯為等價的匯編語言程序,然後再由匯編器將匯編語言程序譯為機器語言代碼。

⑥ 編譯原理有有符號un-1.u=un嗎

編譯程序把源程序翻譯為目標程序。根據源程序的語言種類,翻譯程序可以分為匯編程序與編譯程序。與之相對,解釋程序是對源程序進行解釋執行的程序。相應的可以將高級語言分為

編譯型 C/C++, Swift, etc.
解釋型 Python, javascript, etc.
混合型 Java, etc.
本文重點放在編譯程序的設計上。典型的編譯程序具有 7 77 個邏輯部分

對源程序掃描一次被稱為一遍 (pass)。典型的一遍掃描編譯程序有如下形式

通常將中間代碼生成前的分析部分稱為編譯器的前端,其後的綜合部分則被稱為後端。這樣就把一個編譯程序分為了與源語言相關和與目標機有關的兩個獨立的部分,降低了程序的耦合。假設 llvm 編譯器 支持 M MM 種源語言到 N NN 種目標語言的編譯
傳統的編譯器如 gcc 可能需要開發 M × N M \times NM×N 個不同的子模塊。而 llvm 使用統一的中間語言 llvm Intermediate Representation 只需要 M MM 個前端與 N NN 個後端,大大降低了開發成本。

文法
設非空有窮集合 Σ \SigmaΣ 為一字母表,則其上的符號串為 ∀ s ∈ Σ ∗ \forall s \in \Sigma^*∀s∈Σ

,其中 ∗ *∗ 表示集合的閉包。特別的記 Σ 0 = ε \Sigma^0 = {\varepsilon}Σ
0
=ε 為空串組成的集合。規則通常寫作

U : : = x  or  U → x , ∣ U ∣ = 1 , ∣ x ∣ ≥ 0 U ::= x\text{ or }U\rightarrow x,\quad |U| = 1, |x| \ge 0U::=x or U→x,∣U∣=1,∣x∣≥0

其中左部 U UU 是符號,右部 x xx 是有窮符號串。規則的集合 P PP 即可確定一個文法 G GG

<程序> ::= <常量說明><變數說明><函數說明>
<常量說明> ::= {const<常量定義>;}
<常量定義> ::= int<標識符>=<整數>{,<標識符>=<整數>}|char<標識符>=<字元>{,<標識符>=<字元>}
<變數說明> ::= {<類型標識符><變數定義>;}
<變數定義> ::= <標識符>[<下標>]{,<標識符>[<下標>]}
<下標> ::= '['<無符號整數>']' // <無符號整數>表示數組元素的個數,其值需大於0
<函數說明> ::= {(<類型標識符>|void)<函數定義>}void<主函數>
<函數定義> ::= <標識符>'('<參數表>')'<復合語句>
<參數表> ::= [<類型標識符><標識符>{,<類型標識符><標識符>}]
<主函數> ::= main'('')'<復合語句>

<復合語句> ::= '{'<常量說明><變數說明>{<語句>}'}'
<語句> ::= <條件語句>|'{'{<語句>}'}'|<函數調用語句>;|<賦值語句>;|<讀語句>;|<寫語句>;|<返回語句>;|;
<條件語句> ::= <if語句>|<while語句>|<do語句>|<for語句>
<if語句> ::= if'('<條件>')'<語句>[else<語句>]
<while語句> ::= while'('<條件>')'<語句>
<do語句> ::= do<語句>while'('<條件>')'
<for語句> ::= for'('<標識符>=<表達式>;<條件>;<標識符>=<標識符><加法運算符><無符號整數>')'<語句>
<條件> ::= <表達式>[<關系運算符><表達式>] // 表達式為0條件為假,否則為真
<函數調用語句> ::= <標識符>'('[<表達式>{,<表達式>}]')'
<賦值語句> ::= <標識符>['['<表達式>']']=<表達式>
<讀語句> ::= scanf'('<標識符>{,<標識符>}')'
<寫語句> ::= printf'('<字元串>[,<表達式>]')'|printf'('<表達式>')'
<返回語句> ::= return['('<表達式>')']

<表達式> ::= [<加法運算符>]<項>{<加法運算符><項>} // [+|-]只作用於第一個<項>
<項> ::= <因子>{<乘法運算符><因子>}
<因子> ::= <標識符>['['<表達式>']']|'('<表達式>')'|<整數>|<字元>|<函數調用語句>
<整數> ::= [<加法運算符>]<無符號整數>

<標識符> ::= <字母>{<字母>|<數字>}
<無符號整數> ::= <非零數字>{<數字>}|0
<數字> ::= 0|<非零數字>
<非零數字> ::= 1|...|9
<字元> ::= '<加法運算符>'|'<乘法運算符>'|'<字母>'|'<數字>'
<字元串> ::= "{十進制編碼為32,33,35-126的ASCII字元}"
<類型標識符> ::= int|char
<加法運算符> ::= +|-
<乘法運算符> ::= *|/
<關系運算符> ::= <|<=|>|>=|!=|==
<字母> ::= _|a|...|z|A|...|Z
復制

上述文法使用擴充的 BNF 表示法進行描述

符號 定義 說明
∣ \vert∣ 或 作用域由括弧限定
{ t } n m \{t\}^m_n{t}
n
m

將 t tt 重復連接 n ∼ m n \sim mn∼m 次 預設時 m = ∞ ,   n = 0 m = \infin,\ n = 0m=∞, n=0
[ t ] [t][t] 符號串 t tt 可有可無 等價於 { t } 1 \{t\}^1{t}
1

( t ) (t)(t) 局部作用域 主要用於限定 ∣ \vert∣ 范圍
相關概念有

概念 符號 定義 示例
識別符號 Z ZZ 文法中第一條規則的左部符號 <程序>
字匯表 V VV 文法中出現的全部符號 { <程序>, <常量說明>, …, 0, 1, … }
非終結符號集 V n V_nV
n

全部規則的左部組成的集合 { <程序>, <常量說明>, <變數說明>, … }
終結符號集 V t V_tV
t

V − V n V - V_nV−V
n

{ 0, 1, …, _, a, b, … }
設 U : : = u ∈ P U ::= u \in PU::=u∈P 則對於 ∀ x , y ∈ V ∗ \forall x, y \in V^*∀x,y∈V

有直接推導 x U y ⇒ x u y xUy \Rightarrow xuyxUy⇒xuy 。如果 y ∈ V t ∗ y \in V_t^*y∈V
t


則 x U y   ⤃   x u y xUy\ ⤃\ xuyxUy ⤃ xuy 稱為規范推導。直接推導序列 u 0 ⇒ u 1 ⇒ ⋯ ⇒ u n u_0 \Rightarrow u_1 \Rightarrow \cdots \Rightarrow u_nu
0

⇒u
1

⇒⋯⇒u
n

可簡記為

{ u 0 ⇒ + u n n > 0 u 0 ⇒ ∗ u n n ≥ 0 \begin{cases} u_0 \mathop\Rightarrow\limits^+ u_n & n > 0\\ u_0 \mathop\Rightarrow\limits^* u_n & n \ge 0\\ \end{cases}{
u
0


+
u
n

u
0



u
n



n
>
0
n

0


進一步定義

句型 V ∗ ∋ x ⇐ ∗ Z V^* \ni x \mathop\Leftarrow\limits^* ZV

∋x


Z
句子 V t ∗ ∋ x ⇐ + Z V_t^* \ni x \mathop\Leftarrow\limits^+ ZV
t


∋x

+
Z
語言 L ( G ) = { x ∣ x  is sentence } L(G) = \{ x| x\text{ is sentence} \}L(G)={x∣x is sentence}
如果文法 G GG 和 G ′ G'G

有 L ( G ) = L ( G ′ ) L(G) = L(G')L(G)=L(G

) ,則稱這兩個文法等價。設 w = x u y w=xuyw=xuy 為一句型,稱 u uu 為一個相對於 U ∈ V n U \in V_nU∈V
n



w ww 的短語 如果 Z ⇒ ∗ x U y ∧ U ⇒ + u Z \mathop\Rightarrow\limits^* xUy \land U \mathop\Rightarrow\limits^+ uZ


xUy∧U

+
u
w ww 的簡單短語 如果 u uu 是短語且 U ⇒ u U \mathop\Rightarrow\limits uU⇒u
句型的最左簡單短語稱為句柄。

二義性
文法 G GG 是二義性的,如果 ∃ x ∈ L ( G ) \exist x \in L(G)∃x∈L(G) 使下列條件之一成立

x xx 可以對應兩顆不同的語法樹
x xx 有兩個不同的規范推導

⑦ 編譯原理與匯編語言一樣嗎

編譯原理是研究各種語言轉換(不夠專業)為機器語言的過程中的各種理論。
編譯原理是將計算機語言轉化為可以在計算機硬體上直接運行的機器語言,是翻譯語言的一種。
1、將高級語言變為機器語言,包括兩種方法,編譯是一種,另一種是解釋;
2、將匯編語言變成機器語言的,叫匯編程序.
編譯: 高級語言 --> 機器語言(指令);
匯編: 匯編指令 --> 機器指令;

⑧ C語言編譯原理是什麼

編譯共分為四個階段:預處理階段、編譯階段、匯編階段、鏈接階段。

1、預處理階段:

主要工作是將頭文件插入到所寫的代碼中,生成擴展名為「.i」的文件替換原來的擴展名為「.c」的文件,但是原來的文件仍然保留,只是執行過程中的實際文件發生了改變。(這里所說的替換並不是指原來的文件被刪除)

2、匯編階段:

插入匯編語言程序,將代碼翻譯成匯編語言。編譯器首先要檢查代碼的規范性、是否有語法錯誤等,以確定代碼的實際要做的工作,在檢查無誤後,編譯器把代碼翻譯成匯編語言,同時將擴展名為「.i」的文件翻譯成擴展名為「.s」的文件。

3、編譯階段:

將匯編語言翻譯成機器語言指令,並將指令打包封存成可重定位目標程序的格式,將擴展名為「.s」的文件翻譯成擴展名為「.o」的二進制文件。

4、鏈接階段:

在示例代碼中,改代碼文件調用了標准庫中printf函數。而printf函數的實際存儲位置是一個單獨編譯的目標文件(編譯的結果也是擴展名為「.o」的文件),所以此時主函數調用的時候,需要將該文件(即printf函數所在的編譯文件)與hello world文件整合到一起,此時鏈接器就可以大顯神通了,將兩個文件合並後生成一個可執行目標文件。

⑨ 編譯原理課程講什麼內容

《編譯原理》課程介紹編譯器構造的一般原理和基本實現方法,主要介紹編譯器的各個階段:詞法分析、語法分析、語義分析、中間代碼生成、代碼優化和目標代碼生成。本課程在介紹命令式程序設計語言實現技術的同時,強調一些相關的理論知識,如形式語言和自動機理論、語法制導的定義和屬性文法、類型論等。它們是計算機專業理論知識的重要一部分,在本書中結合應用來介紹這些知識,有助於學生較快領會和掌握。本課程強調形式化描述技術,並以語法制導定義作為翻譯的主要描述工具。本課程強調對編譯原理和技術在宏觀上的理解,作為原理性的教學,本課程主要介紹基本的理論和方法,不偏向於某種源語言或目標機器。

閱讀全文

與混合語言編譯原理相關的資料

熱點內容
編譯器用vs多少 瀏覽:316
pc單機游戲壓縮包下載 瀏覽:570
伺服器鎖定什麼意思 瀏覽:731
吐司解壓神器 瀏覽:70
程序員的電腦一般用什麼 瀏覽:934
如何從伺服器中查詢表是否存在 瀏覽:323
android首頁布局源碼 瀏覽:45
虎牙主播是怎麼安卓投屏的 瀏覽:782
redmonk編程語言排行榜 瀏覽:110
android嵌入html5 瀏覽:676
雲伺服器能永久使用嗎 瀏覽:904
linux安裝openresty 瀏覽:386
ubunt配置php 瀏覽:975
達達取貨碼在app哪裡 瀏覽:49
精靈寶可夢伺服器有什麼好玩的 瀏覽:261
開源java工作流 瀏覽:845
如何正確的刪除應用app 瀏覽:971
如何在雲伺服器上安裝用友軟體 瀏覽:983
單片機里wp是什麼意思 瀏覽:718
程序員重要的英文 瀏覽:625