❶ 分治的設計步驟
1. 劃分步:把輸入的問題劃分為k個子問題,並盡量使這k個子問題的規模大致相同。
2. 治理步:當問題的規模大於某個預定的閾值n0時,治理步由k個遞歸調用組成。
3. 組合步:組合步把各個子問題的解組合起來,它對分治演算法的實際性能至關重要,演算法的有效性很大地依賴於組合步的實現。
分治法的關鍵是演算法的組合步。究竟應該怎樣合並,目前沒有統一的模式,因此需要對具體問題進行具體分析,以得出比較好的合並演算法。
❷ 分治法指的是什麼呢
分治法指的是將原問題遞歸地分成若干個子問題,直到子問題滿足邊界條件,停止遞歸,將子問題逐個解決(一般是同種方法),將已經解決的子問題合並,最後,演算法會層層合並得到原問題的答案。
分治演算法步驟:
分:遞歸地將問題分解為各個的子問題(性質相同的,相互獨立的子問題)。
治:將這些規模更小的子問題逐個擊破。
合:將已解決的問題逐層合並,最終得出原問題的解。
分治法適用條件
1、問題的規模縮小到一定的規模就可以較容易地解決。
2、問題可以分解為若干個規模較小的模式相同的子問題,即該問題具有最優子結構性質。
3、合並問題分解出的子問題的解可以得到問題的解。
4、問題所分解出的各個子問題之間是獨立的,即子問題之間不存在公共的子問題。
❸ 什麼是分治演算法
分治法就是將一個復雜的問題分成多個相對簡單的獨立問題進行求解,並且綜合所有簡單問題的解可以組成這個復雜問題的解。
例如快速排序演算法就是一個分治法的例子。即將一個大的無序序列排序成有序序列,等於將兩個無序的子序列排序成有序,且兩個子序列之間滿足一個序列的元素普遍大於另一個序列中的元素。
❹ 分治法的步驟
分治法在每一層遞歸上都有三個步驟:
分解:將原問題分解為若干個規模較小,相互獨立,與原問題形式相同的子問題;
解決:若子問題規模較小而容易被解決則直接解,否則遞歸地解各個子問題;
合並:將各個子問題的解合並為原問題的解。
它的一般的演算法設計模式如下:
Divide-and-Conquer(P)
1. if |P|≤n0
2. then return(ADHOC(P))
3. 將P分解為較小的子問題 P1 ,P2 ,...,Pk
4. for i←1 to k
5. do yi ← Divide-and-Conquer(Pi) △ 遞歸解決Pi
6. T ← MERGE(y1,y2,...,yk) △ 合並子問題
7. return(T)
其中|P|表示問題P的規模;n0為一閾值,表示當問題P的規模不超過n0時,問題已容易直接解出,不必再繼續分解。ADHOC(P)是該分治法中的基本子演算法,用於直接解小規模的問題P。因此,當P的規模不超過n0時直接用演算法ADHOC(P)求解。演算法MERGE(y1,y2,...,yk)是該分治法中的合並子演算法,用於將P的子問題P1 ,P2 ,...,Pk的相應的解y1,y2,...,yk合並為P的解。
根據分治法的分割原則,原問題應該分為多少個子問題才較適宜?
各個子問題的規模應該怎樣才為適當?
答: 但人們從大量實踐中發現,在用分治法設計演算法時,最好使子問題的規模大致相同。換句話說,將一個問題分成大小相等的k個子問題的處理方法是行之有效的。許多問題可以取 k = 2。這種使子問題規模大致相等的做法是出自一種平衡(balancing)子問題的思想,它幾乎總是比子問題規模不等的做法要好。
出處:網路
實踐題目:
給定一個順序表,編寫一個求出其最大值和最小值的分治演算法。
分析:
由於順序表的結構沒有給出,作為演示分治法這里從簡順序表取一整形數組數組大小由用戶定義,數據隨機生成。我們知道如果數組大小為 1 則可以直接給出結果,如果大小為 2則一次比較即可得出結果,於是我們找到求解該問題的子問題即: 數組大小 <= 2。到此我們就可以進行分治運算了,只要求解的問題數組長度比 2 大就繼續分治,否則求解子問題的解並更新全局解
以下是代碼。
*/
/*** 編譯環境TC ***/
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#define M 40
/* 分治法獲取最優解 */
void PartionGet(int s,int e,int *meter,int *max,int *min){
/* 參數:
* s 當前分治段的開始下標
* e 當前分治段的結束下標
* meter 表的地址
* max 存儲當前搜索到的最大值
* min 存儲當前搜索到的最小值
*/
int i;
if(e-s <= 1){ /* 獲取局部解,並更新全局解 */
if(meter[s] > meter[e]){
if(meter[s] > *max)
*max = meter[s];
if(meter[e] < *min)
*min = meter[e];
}
else{
if(meter[e] > *max)
*max = meter[e];
if(meter[s] < *min)
*min = meter[s];
}
return ;
}
i = s + (e-s)/2; /* 不是子問題繼續分治,這里使用了二分,也可以是其它 */
PartionGet(s,i,meter,max,min);
PartionGet(i+1,e,meter,max,min);
}
int main(){
int i,meter[M];
int max = INT_MIN; /* 用最小值初始化 */
int min = INT_MAX; /* 用最大值初始化 */
printf(The array's element as followed:
);
rand(); /* 初始化隨機數發生器 */
for(i = 0; i < M; i ++){ /* 隨機數據填充數組 */
meter[i] = rand()%10000;
if(!((i+1)%10)) /* 輸出表的隨機數據 */
printf(%-6d
,meter[i]);
else
printf(%-6d,meter[i]);
}
PartionGet(0,M - 1,meter,&max,&min); /* 分治法獲取最值 */
printf(
Max : %d
Min : %d
,max,min);
system(pause);
return 0;
}
❺ 分治演算法時間復雜度
一:分治演算法和遞歸
1.簡述遞歸
我們要講到分治演算法,我覺得有必要說一下遞歸,他們就像一對孿生兄弟,經常同時應用在演算法設計中,並由此產生許多高效的演算法。
直接或間接的調用自身的演算法稱為遞歸演算法。用函數自身給出定義的函數稱為遞歸函數。
int fibonacci(int n){
if (n <= 1) return 1;
return fibonacci(n-1)+fibonacci(n-2);
}
先簡單看一下經典的遞歸例子,博主會找個時間系統詳細的總結一下關於遞歸的內容。
2.簡述分治
分治法的設計思想是:
分–將問題分解為規模更小的子問題;
治–將這些規模更小的子問題逐個擊破;
合–將已解決的子問題合並,最終得出「母」問題的解;
一個先自頂向下,再自底向上的過程。
凡治眾如治寡,分數是也。—孫子兵法
3.分治法與遞歸的聯系
由分治法產生的子問題往往是原問題的較小模式,這就為使用遞歸技術提供了方便。在這種情況下,反復應用分治手段,可以使子問題與原問題類型一致而其規模卻不斷縮小,最終使子問題縮小到很容易直接求出其解。這自然導致遞歸過程的產生。
二:分治法的適用條件
分治法所能解決的問題一般具有以下幾個特徵:
1) 該問題的規模縮小到一定的程度就可以容易地解決
2) 該問題可以分解為若干個規模較小的相同問題,即該問題具有最優子結構性質。
3) 利用該問題分解出的子問題的解可以合並為該問題的解;
4) 該問題所分解出的各個子問題是相互獨立的,即子問題之間不包含公共的子子問題。
第一條特徵是絕大多數問題都可以滿足的,因為問題的復雜性一般是隨著問題規模的增加而增加;
第二條特徵是應用分治法的前提它也是大多數問題可以滿足的,此特徵反映了遞歸思想的應用;、
第三條是關鍵,能否利用分治法完全取決於問題是否具有第三條特徵,如果具備了第一條和第二條特徵,而不具備第三條特徵,則可以考慮用貪心法或動態規劃法。
第四條特徵涉及到分治法的效率,如果各子問題是不獨立的則分治法要做許多不必要的工作,重復地解公共的子問題,此時雖然可用分治法,但一般用動態規劃法較好
三:分治法的基本步驟
分解問題:將原問題分解為若干個規模較小,相互獨立,與原問題形式相同的子問題;(自頂向下)
這里涉及到一個平衡子問題的思想:人們從大量實踐中發現,在用分治法設計演算法時,最好使子問題的規模大致相同。即將一個問題分成大小相等的k個子問題的處理方法是行之有效的。這種使子問題規模大致相等的做法是出自一種平衡子問題的思想,它幾乎總是比子問題規模不等的做法要好。
解決問題:如果問題規模較小而容易被解決則直接解,否則遞歸地解各個子問題,以得到小問題的解。
合並結果:將各個子問題的解合並為原問題的解:(自底向上)。
它的一般演算法設計模式如下:
divide-and-conquer(P){
if ( | P | <= n0) adhoc(P); //(2)解決問題:遞歸到小問題,則解決小規模的問題(自頂向下)
divide P into smaller subinstances P1,P2,...,Pk;//(1)分解問題
for (i=1,i<=k,i++)
yi=divide-and-conquer(Pi); //利用遞歸的解各子問題
return merge(y1,...,yk); //將各子問題的解合並為原問題的解(自底向上)
}
四:分治法的復雜性分析
從分治法的一般設計模式可以看出,用他設計出的程序一般是遞歸演算法。因此分治法的計算效率通常可以用遞歸方程來進行分析。
一個分治法將規模為n的問題分成k個規模為n/m的子問題去解。設分解閥值(表示當問題P規模不超過n0時,問題已容易解出,不必再繼續分解)n0=1,且adhoc解規模為1的問題耗費1個單位時間。再設將原問題分解為k個子問題以及用merge將k個子問題的解合並為原問題的解需用f(n)個單位時間。用T(n)表示該分治法解規模為|P|=n的問題所需的計算時間,則有:
通常可以用展開遞歸式的方法來解這類遞歸方程,反復帶入求解得