導航:首頁 > 源碼編譯 > df核心演算法有哪些

df核心演算法有哪些

發布時間:2023-03-12 07:43:12

❶ 數據挖掘的經典演算法

1. C4.5:是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法。
2. K-means演算法:是一種聚類演算法。
3.SVM:一種監督式學習的方法,廣泛運用於統計分類以及回歸分析中
4.Apriori :是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。
5.EM:最大期望值法。
6.pagerank:是google演算法的重要內容。
7. Adaboost:是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器然後把弱分類器集合起來,構成一個更強的最終分類器。
8.KNN:是一個理論上比較成熟的的方法,也是最簡單的機器學習方法之一。
9.Naive Bayes:在眾多分類方法中,應用最廣泛的有決策樹模型和樸素貝葉斯(Naive Bayes)
10.Cart:分類與回歸樹,在分類樹下面有兩個關鍵的思想,第一個是關於遞歸地劃分自變數空間的想法,第二個是用驗證數據進行減枝。
關聯規則規則定義
在描述有關關聯規則的一些細節之前,我們先來看一個有趣的故事: 尿布與啤酒的故事。
在一家超市裡,有一個有趣的現象:尿布和啤酒赫然擺在一起出售。但是這個奇怪的舉措卻使尿布和啤酒的銷量雙雙增加了。這不是一個笑話,而是發生在美國沃爾瑪連鎖店超市的真實案例,並一直為商家所津津樂道。沃爾瑪擁有世界上最大的數據倉庫系統,為了能夠准確了解顧客在其門店的購買習慣,沃爾瑪對其顧客的購物行為進行購物籃分析,想知道顧客經常一起購買的商品有哪些。沃爾瑪數據倉庫里集中了其各門店的詳細原始交易數據。在這些原始交易數據的基礎上,沃爾瑪利用數據挖掘方法對這些數據進行分析和挖掘。一個意外的發現是:跟尿布一起購買最多的商品竟是啤酒!經過大量實際調查和分析,揭示了一個隱藏在尿布與啤酒背後的美國人的一種行為模式:在美國,一些年輕的父親下班後經常要到超市去買嬰兒尿布,而他們中有30%~40%的人同時也為自己買一些啤酒。產生這一現象的原因是:美國的太太們常叮囑她們的丈夫下班後為小孩買尿布,而丈夫們在買尿布後又隨手帶回了他們喜歡的啤酒。
按常規思維,尿布與啤酒風馬牛不相及,若不是藉助數據挖掘技術對大量交易數據進行挖掘分析,沃爾瑪是不可能發現數據內在這一有價值的規律的。
數據關聯是資料庫中存在的一類重要的可被發現的知識。若兩個或多個變數的取值之間存在某種規律性,就稱為關聯。關聯可分為簡單關聯、時序關聯、因果關聯。關聯分析的目的是找出資料庫中隱藏的關聯網。有時並不知道資料庫中數據的關聯函數,即使知道也是不確定的,因此關聯分析生成的規則帶有可信度。關聯規則挖掘發現大量數據中項集之間有趣的關聯或相關聯系。Agrawal等於1993年首先提出了挖掘顧客交易資料庫中項集間的關聯規則問題,以後諸多的研究人員對關聯規則的挖掘問題進行了大量的研究。他們的工作包括對原有的演算法進行優化,如引入隨機采樣、並行的思想等,以提高演算法挖掘規則的效率;對關聯規則的應用進行推廣。關聯規則挖掘在數據挖掘中是一個重要的課題,最近幾年已被業界所廣泛研究。

❷ 大數據核心演算法有哪些

1、A* 搜索演算法——圖形搜索演算法,從給定起點到給定終點計算出路徑。其中使用了一種啟發式的估算,為每個節點估算通過該節點的最佳路徑,並以之為各個地點排定次序。演算法以得到的次序訪問這些節點。因此,A*搜索演算法是最佳優先搜索的範例。
2、集束搜索(又名定向搜索,Beam Search)——最佳優先搜索演算法的優化。使用啟發式函數評估它檢查的每個節點的能力。不過,集束搜索只能在每個深度中發現最前面的m個最符合條件的節點,m是固定數字——集束的寬度。

3、二分查找(Binary Search)——在線性數組中找特定值的演算法,每個步驟去掉一半不符合要求的數據。

4、分支界定演算法(Branch and Bound)——在多種最優化問題中尋找特定最優化解決方案的演算法,特別是針對離散、組合的最優化。

5、Buchberger演算法——一種數學演算法,可將其視為針對單變數最大公約數求解的歐幾里得演算法和線性系統中高斯消元法的泛化。

6、數據壓縮——採取特定編碼方案,使用更少的位元組數(或是其他信息承載單元)對信息編碼的過程,又叫來源編碼。

7、Diffie-Hellman密鑰交換演算法——一種加密協議,允許雙方在事先不了解對方的情況下,在不安全的通信信道中,共同建立共享密鑰。該密鑰以後可與一個對稱密碼一起,加密後續通訊。

8、Dijkstra演算法——針對沒有負值權重邊的有向圖,計算其中的單一起點最短演算法。

9、離散微分演算法(Discrete differentiation)。

❸ 立體通的六大核心演算法引擎是什麼

瞳孔跟蹤演算法引擎、高精度AI給圖演算法引擎、自動補償演算法引擎、收錄演算法引擎、橫豎屏切換演算法引擎、自動校準演算法引擎,它們與裸視三維智慧膜相結合實現了:無需黃金視角,任意角度觀看;解決困擾3D顯示多年的重影、眩暈問題;低成本爆品,便於快速消費普及;一鏈自動校準,使用簡單方便;適配全球主流存量、增量手機,人人手機均可秒變3D神機;橫豎屏切換自由,滿足觀影、游戲、直播、購物等不同場景需求

❹ 區塊鏈技術的六大核心演算法

區塊鏈技術的六大核心演算法
區塊鏈核心演算法一:拜占庭協定
拜占庭的故事大概是這么說的:拜占庭帝國擁有巨大的財富,周圍10個鄰邦垂誕已久,但拜占庭高牆聳立,固若金湯,沒有一個單獨的鄰邦能夠成功入侵。任何單個鄰邦入侵的都會失敗,同時也有可能自身被其他9個鄰邦入侵。拜占庭帝國防禦能力如此之強,至少要有十個鄰邦中的一半以上同時進攻,才有可能攻破。然而,如果其中的一個或者幾個鄰邦本身答應好一起進攻,但實際過程出現背叛,那麼入侵者可能都會被殲滅。於是每一方都小心行事,不敢輕易相信鄰國。這就是拜占庭將軍問題。
在這個分布式網路里:每個將軍都有一份實時與其他將軍同步的消息賬本。賬本里有每個將軍的簽名都是可以驗證身份的。如果有哪些消息不一致,可以知道消息不一致的是哪些將軍。盡管有消息不一致的,只要超過半數同意進攻,少數服從多數,共識達成。
由此,在一個分布式的系統中,盡管有壞人,壞人可以做任意事情(不受protocol限制),比如不響應、發送錯誤信息、對不同節點發送不同決定、不同錯誤節點聯合起來干壞事等等。但是,只要大多數人是好人,就完全有可能去中心化地實現共識
區塊鏈核心演算法二:非對稱加密技術
在上述拜占庭協定中,如果10個將軍中的幾個同時發起消息,勢必會造成系統的混亂,造成各說各的攻擊時間方案,行動難以一致。誰都可以發起進攻的信息,但由誰來發出呢?其實這只要加入一個成本就可以了,即:一段時間內只有一個節點可以傳播信息。當某個節點發出統一進攻的消息後,各個節點收到發起者的消息必須簽名蓋章,確認各自的身份。
在如今看來,非對稱加密技術完全可以解決這個簽名問題。非對稱加密演算法的加密和解密使用不同的兩個密鑰.這兩個密鑰就是我們經常聽到的」公鑰」和」私鑰」。公鑰和私鑰一般成對出現, 如果消息使用公鑰加密,那麼需要該公鑰對應的私鑰才能解密; 同樣,如果消息使用私鑰加密,那麼需要該私鑰對應的公鑰才能解密。
區塊鏈核心演算法三:容錯問題
我們假設在此網路中,消息可能會丟失、損壞、延遲、重復發送,並且接受的順序與發送的順序不一致。此外,節點的行為可以是任意的:可以隨時加入、退出網路,可以丟棄消息、偽造消息、停止工作等,還可能發生各種人為或非人為的故障。我們的演算法對由共識節點組成的共識系統,提供的容錯能力,這種容錯能力同時包含安全性和可用性,並適用於任何網路環境。
區塊鏈核心演算法四:Paxos 演算法(一致性演算法)
Paxos演算法解決的問題是一個分布式系統如何就某個值(決議)達成一致。一個典型的場景是,在一個分布式資料庫系統中,如果各節點的初始狀態一致,每個節點都執行相同的操作序列,那麼他們最後能得到一個一致的狀態。為保證每個節點執行相同的命令序列,需要在每一條指令上執行一個「一致性演算法」以保證每個節點看到的指令一致。一個通用的一致性演算法可以應用在許多場景中,是分布式計算中的重要問題。節點通信存在兩種模型:共享內存和消息傳遞。Paxos演算法就是一種基於消息傳遞模型的一致性演算法。
區塊鏈核心演算法五:共識機制
區塊鏈共識演算法主要是工作量證明和權益證明。拿比特幣來說,其實從技術角度來看可以把PoW看做重復使用的Hashcash,生成工作量證明在概率上來說是一個隨機的過程。開采新的機密貨幣,生成區塊時,必須得到所有參與者的同意,那礦工必須得到區塊中所有數據的PoW工作證明。與此同時礦工還要時時觀察調整這項工作的難度,因為對網路要求是平均每10分鍾生成一個區塊。
區塊鏈核心演算法六:分布式存儲
分布式存儲是一種數據存儲技術,通過網路使用每台機器上的磁碟空間,並將這些分散的存儲資源構成一個虛擬的存儲設備,數據分散的存儲在網路中的各個角落。所以,分布式存儲技術並不是每台電腦都存放完整的數據,而是把數據切割後存放在不同的電腦里。就像存放100個雞蛋,不是放在同一個籃子里,而是分開放在不同的地方,加起來的總和是100個。

❺ 數據挖掘核心演算法之一--回歸

數據挖掘核心演算法之一--回歸
回歸,是一個廣義的概念,包含的基本概念是用一群變數預測另一個變數的方法,白話就是根據幾件事情的相關程度,用其中幾件來預測另一件事情發生的概率,最簡單的即線性二變數問題(即簡單線性),例如下午我老婆要買個包,我沒買,那結果就是我肯定沒有晚飯吃;復雜一點就是多變數(即多元線性,這里有一點要注意的,因為我最早以前犯過這個錯誤,就是認為預測變數越多越好,做模型的時候總希望選取幾十個指標來預測,但是要知道,一方面,每增加一個變數,就相當於在這個變數上增加了誤差,變相的擴大了整體誤差,尤其當自變數選擇不當的時候,影響更大,另一個方面,當選擇的倆個自變數本身就是高度相關而不獨立的時候,倆個指標相當於對結果造成了雙倍的影響),還是上面那個例子,如果我丈母娘來了,那我老婆就有很大概率做飯;如果在加一個事件,如果我老丈人也來了,那我老婆肯定會做飯;為什麼會有這些判斷,因為這些都是以前多次發生的,所以我可以根據這幾件事情來預測我老婆會不會做晚飯。
大數據時代的問題當然不能讓你用肉眼看出來,不然要海量計算有啥用,所以除了上面那倆種回歸,我們經常用的還有多項式回歸,即模型的關系是n階多項式;邏輯回歸(類似方法包括決策樹),即結果是分類變數的預測;泊松回歸,即結果變數代表了頻數;非線性回歸、時間序列回歸、自回歸等等,太多了,這里主要講幾種常用的,好解釋的(所有的模型我們都要注意一個問題,就是要好解釋,不管是參數選擇還是變數選擇還是結果,因為模型建好了最終用的是業務人員,看結果的是老闆,你要給他們解釋,如果你說結果就是這樣,我也不知道問什麼,那升職加薪基本無望了),例如你發現日照時間和某地葡萄銷量有正比關系,那你可能還要解釋為什麼有正比關系,進一步統計發現日照時間和葡萄的含糖量是相關的,即日照時間長葡萄好吃,另外日照時間和產量有關,日照時間長,產量大,價格自然低,結果是又便宜又好吃的葡萄銷量肯定大。再舉一個例子,某石油產地的咖啡銷量增大,國際油價的就會下跌,這倆者有關系,你除了要告訴領導這倆者有關系,你還要去尋找為什麼有關系,咖啡是提升工人精力的主要飲料,咖啡銷量變大,跟蹤發現工人的工作強度變大,石油運輸出口增多,油價下跌和咖啡銷量的關系就出來了(單純的例子,不要多想,參考了一個根據遙感信息獲取船舶信息來預測糧食價格的真實案例,感覺不夠典型,就換一個,實際油價是人為操控地)。
回歸利器--最小二乘法,牛逼數學家高斯用的(另一個法國數學家說自己先創立的,不過沒辦法,誰讓高斯出名呢),這個方法主要就是根據樣本數據,找到樣本和預測的關系,使得預測和真實值之間的誤差和最小;和我上面舉的老婆做晚飯的例子類似,不過我那個例子在不確定的方面只說了大概率,但是到底多大概率,就是用最小二乘法把這個關系式寫出來的,這里不講最小二乘法和公式了,使用工具就可以了,基本所有的數據分析工具都提供了這個方法的函數,主要給大家講一下之前的一個誤區,最小二乘法在任何情況下都可以算出來一個等式,因為這個方法只是使誤差和最小,所以哪怕是天大的誤差,他只要是誤差和裡面最小的,就是該方法的結果,寫到這里大家應該知道我要說什麼了,就算自變數和因變數完全沒有關系,該方法都會算出來一個結果,所以主要給大家講一下最小二乘法對數據集的要求:
1、正態性:對於固定的自變數,因變數呈正態性,意思是對於同一個答案,大部分原因是集中的;做回歸模型,用的就是大量的Y~X映射樣本來回歸,如果引起Y的樣本很凌亂,那就無法回歸
2、獨立性:每個樣本的Y都是相互獨立的,這個很好理解,答案和答案之間不能有聯系,就像擲硬幣一樣,如果第一次是反面,讓你預測拋兩次有反面的概率,那結果就沒必要預測了
3、線性:就是X和Y是相關的,其實世間萬物都是相關的,蝴蝶和龍卷風(還是海嘯來著)都是有關的嘛,只是直接相關還是間接相關的關系,這里的相關是指自變數和因變數直接相關
4、同方差性:因變數的方差不隨自變數的水平不同而變化。方差我在描述性統計量分析裡面寫過,表示的數據集的變異性,所以這里的要求就是結果的變異性是不變的,舉例,腦袋軸了,想不出例子,畫個圖來說明。(我們希望每一個自變數對應的結果都是在一個盡量小的范圍)
我們用回歸方法建模,要盡量消除上述幾點的影響,下面具體講一下簡單回歸的流程(其他的其實都類似,能把這個講清楚了,其他的也差不多):
first,找指標,找你要預測變數的相關指標(第一步應該是找你要預測什麼變數,這個話題有點大,涉及你的業務目標,老闆的目的,達到該目的最關鍵的業務指標等等,我們後續的話題在聊,這里先把方法講清楚),找相關指標,標准做法是業務專家出一些指標,我們在測試這些指標哪些相關性高,但是我經歷的大部分公司業務人員在建模初期是不靠譜的(真的不靠譜,沒思路,沒想法,沒意見),所以我的做法是將該業務目的所有相關的指標都拿到(有時候上百個),然後跑一個相關性分析,在來個主成分分析,就過濾的差不多了,然後給業務專家看,這時候他們就有思路了(先要有東西激活他們),會給一些你想不到的指標。預測變數是最重要的,直接關繫到你的結果和產出,所以這是一個多輪優化的過程。
第二,找數據,這個就不多說了,要麼按照時間軸找(我認為比較好的方式,大部分是有規律的),要麼按照橫切面的方式,這個就意味橫切面的不同點可能波動較大,要小心一點;同時對數據的基本處理要有,包括對極值的處理以及空值的處理。
第三, 建立回歸模型,這步是最簡單的,所有的挖掘工具都提供了各種回歸方法,你的任務就是把前面准備的東西告訴計算機就可以了。
第四,檢驗和修改,我們用工具計算好的模型,都有各種假設檢驗的系數,你可以馬上看到你這個模型的好壞,同時去修改和優化,這里主要就是涉及到一個查准率,表示預測的部分裡面,真正正確的所佔比例;另一個是查全率,表示了全部真正正確的例子,被預測到的概率;查准率和查全率一般情況下成反比,所以我們要找一個平衡點。
第五,解釋,使用,這個就是見證奇跡的時刻了,見證前一般有很久時間,這個時間就是你給老闆或者客戶解釋的時間了,解釋為啥有這些變數,解釋為啥我們選擇這個平衡點(是因為業務力量不足還是其他的),為啥做了這么久出的東西這么差(這個就尷尬了)等等。
回歸就先和大家聊這么多,下一輪給大家聊聊主成分分析和相關性分析的研究,然後在聊聊數據挖掘另一個利器--聚類。

❻ 數據挖掘演算法有哪些

以下主要是常見的10種數據挖掘的演算法,數據挖掘分為:分類(Logistic回歸模型、神經網路、支持向量機等)、關聯分析、聚類分析、孤立點分析。每一大類下都有好幾種演算法,這個具體可以參考數據挖掘概論這本書(英文最新版)

❼ 核心演算法是什麼它對機器人有多重要

核心演算法是什麼?

機器人的演算法大方向可以分為感知演算法與控制演算法,感知演算法一般是環境感知、路徑規劃,而控制演算法一般分為決策演算法、運動控制演算法。環境感知演算法獲取環境各種數據,通常指以機器人的視覺所見的圖像識別等 。

核心演算法對機器人的重要性

雖然對於工業機器人來說,要想實現高速下穩定精確的運動軌跡,精密的配件必不可少,如電機,伺服系統,還有非常重要的減速機等等。但是這些都只是硬體的需求,僅僅只有好的硬體,沒有相應的核心演算法,也就是缺少了控制硬體的大腦,那麼工業機器人使用再好的硬體,也只能完成一些精確度要求不高的簡單工作,而且還容易出問題。而這就是中國機器人製造商面臨的最大問題。

作為工業級產品,衡量機器人優劣主要有兩個標准:穩定性和精確性。核心控制器是影響穩定性的關鍵部件,有著工業機器人“大腦”之稱。而軟體相當於語言,把“大腦”的想法傳遞出去。 要講好這門“語言”,就需要底層核心演算法。

好的演算法,幾千行就能讓機器人穩定運行不出故障;差的演算法,幾萬行也達不到人家的水準。不掌握核心演算法,生產精度需求不高的產品還勉強可以,但倘若應用到航天航空、軍工等高端領域,就只能依賴進口工業機器人了。

對於機器人來說,每一個動作都需要核心控制器、伺服驅動器和伺服電機協同動作,而現在的機器人通常擁用多個伺服器,因此多台伺服系統更需要核心演算法提前進行計算。只有通過底層演算法,國外核心控制器才可以通過伺服系統的電流環直接操作電機,實現高動態多軸非線性條件下的精密控制,同時還能滿足極短響應延時的需求。這也是為何如今在中國的機器人市場上,6軸以上的高端機器人幾乎被國外的機器人公司壟斷。

❽ 數據挖掘的十大經典演算法,總算是講清楚了,想提升自己的趕快收藏

一個優秀的數據分析師,除了要掌握基本的統計學、數據分析思維、數據分析工具之外,還需要掌握基本的數據挖掘思想,幫助我們挖掘出有價值的數據,這也是數據分析專家和一般數據分析師的差距所在。

國際權威的學術組織the IEEE International Conference on Data Mining (ICDM) 評選出了數據挖掘領域的十大經典演算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART.

不僅僅是選中的十大演算法,其實參加評選的18種演算法,實際上隨便拿出一種來都可以稱得上是經典演算法,它們在數據挖掘領域都產生了極為深遠的影響。今天主要分享其中10種經典演算法,內容較干,建議收藏備用學習。

1. C4.5

C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法. C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:

1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;

2) 在樹構造過程中進行剪枝;

3) 能夠完成對連續屬性的離散化處理;

4) 能夠對不完整數據進行處理。

C4.5演算法有如下優點:產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效(相對的CART演算法只需要掃描兩次數據集,以下僅為決策樹優缺點)。

2. The k-means algorithm 即K-Means演算法

k-means algorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k < n。它與處理混合正態分布的最大期望演算法很相似,因為他們都試圖找到數據中自然聚類的中心。它假設對象屬性來自於空間向量,並且目標是使各個群組內部的均 方誤差總和最小。

3. Support vector machines

支持向量機,英文為Support Vector Machine,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,它廣泛的應用於統計分類以及回歸分析中。支持向量機將向量映射到一個更 高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化。假定平行超平面間的距離或差距越大,分類器的總誤差越小。一個極好的指南是C.J.C Burges的《模式識別支持向量機指南》。van der Walt 和 Barnard 將支持向量機和其他分類器進行了比較。

4. The Apriori algorithm

Apriori演算法是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。

5. 最大期望(EM)演算法

在統計計算中,最大期望(EM,Expectation–Maximization)演算法是在概率(probabilistic)模型中尋找參數最大似然 估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variabl)。最大期望經常用在機器學習和計算機視覺的數據集聚(Data Clustering)領域。

6. PageRank

PageRank是Google演算法的重要內容。2001年9月被授予美國專利,專利人是Google創始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指網頁,而是指佩奇,即這個等級方法是以佩奇來命名的。

PageRank根據網站的外部鏈接和內部鏈接的數量和質量倆衡量網站的價值。PageRank背後的概念是,每個到頁面的鏈接都是對該頁面的一次投票, 被鏈接的越多,就意味著被其他網站投票越多。這個就是所謂的「鏈接流行度」——衡量多少人願意將他們的網站和你的網站掛鉤。PageRank這個概念引自 學術中一篇論文的被引述的頻度——即被別人引述的次數越多,一般判斷這篇論文的權威性就越高。

7. AdaBoost

Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器(弱分類器),然後把這些弱分類器集合起來,構成一個更強的最終分類器 (強分類器)。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權 值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。

8. kNN: k-nearest neighbor classification

K最近鄰(k-Nearest Neighbor,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。

9. Naive Bayes

在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)。 樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以及穩定的分類效率。

同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。 但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬 性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。

10. CART: 分類與回歸樹

CART, Classification and Regression Trees。 在分類樹下面有兩個關鍵的思想。第一個是關於遞歸地劃分自變數空間的想法(二元切分法);第二個想法是用驗證數據進行剪枝(預剪枝、後剪枝)。在回歸樹的基礎上的模型樹構建難度可能增加了,但同時其分類效果也有提升。

參考書籍:《機器學習實戰》

❾ 大數據挖掘的演算法有哪些

大數據挖掘的演算法:
1.樸素貝葉斯,超級簡單,就像做一些數數的工作。如果條件獨立假設成立的話,NB將比鑒別模型收斂的更快,所以你只需要少量的訓練數據。即使條件獨立假設不成立,NB在實際中仍然表現出驚人的好。
2. Logistic回歸,LR有很多方法來對模型正則化。比起NB的條件獨立性假設,LR不需要考慮樣本是否是相關的。與決策樹與支持向量機不同,NB有很好的概率解釋,且很容易利用新的訓練數據來更新模型。如果你想要一些概率信息或者希望將來有更多數據時能方便的更新改進模型,LR是值得使用的。
3.決策樹,DT容易理解與解釋。DT是非參數的,所以你不需要擔心野點(或離群點)和數據是否線性可分的問題,DT的主要缺點是容易過擬合,這也正是隨機森林等集成學習演算法被提出來的原因。
4.支持向量機,很高的分類正確率,對過擬合有很好的理論保證,選取合適的核函數,面對特徵線性不可分的問題也可以表現得很好。SVM在維數通常很高的文本分類中非常的流行。

如果想要或許更多更詳細的訊息,建議您去參加CDA數據分析課程。大數據分析師現在有專業的國際認證證書了,CDA,即「CDA 數據分析師」,是在數字經濟大背景和人工智慧時代趨勢下,面向全行業的專業權威國際資格認證, 旨在提升全民數字技能,助力企業數字化轉型,推動行業數字化發展。 「CDA 數據分析師」具體指在互聯網、金融、零售、咨詢、電信、醫療、旅遊等行業專門從事數據的採集、清洗、處理、分析並能製作業務報告、 提供決策的新型數據分析人才。點擊預約免費試聽課。

閱讀全文

與df核心演算法有哪些相關的資料

熱點內容
db2如何連接伺服器資料庫 瀏覽:628
wordtopdf轉換 瀏覽:840
雲伺服器在哪設置ftp 瀏覽:620
黑客社會工程學攻擊pdf 瀏覽:996
專業中穎單片機程序開發 瀏覽:424
python多進程多線程實例 瀏覽:637
山東濟南生產伺服器雲主機 瀏覽:310
演算法員跳槽四年 瀏覽:730
秦九昭演算法v0怎麼求 瀏覽:384
斗魚java 瀏覽:896
程序員對老師的感謝 瀏覽:29
什麼app能查看銀行卡照片 瀏覽:24
win7pdf虛擬列印 瀏覽:332
程序員喜歡的女生條件 瀏覽:123
阿里雲伺服器ip搭建教程 瀏覽:85
解壓和拉伸這一動畫的原理是什麼 瀏覽:740
tbc戰士的命令怒吼 瀏覽:481
idea快捷鍵看源碼 瀏覽:976
手機碎屏解壓工具 瀏覽:245
jsonrpcphp使用 瀏覽:566