⑴ 多目標智能優化演算法及其應用的目錄
《智能科學技術著作叢書》序
前言
第1章 緒論
1.1 進化演算法
1.1.1 進化演算法的基本框架
1.1.2 遺傳演算法
1.1.3 進化策略
1.1.4 進化規劃
1.2 粒子群演算法
1.2.1 標准粒子群演算法
1.2.2 演算法解析
1.3 蟻群演算法
1.3.1 蟻群演算法的基本思想
1.3.2 蟻群演算法的實現過程
1.3.3 蟻群演算法描述
1.3.4 蟻群優化的特點
1.4 模擬退火演算法122
1.4.1 模擬退火演算法的基本原理
1.4.2 模擬退火演算法描述
1.5 人工免疫系統
1.5.1 生物免疫系統
1.5.2 人工免疫系統
1.6 禁忌搜索
1.7 分散搜索
1.8 多目標優化基本概念
參考文獻
第2章 多目標進化演算法
2.1 基本原理
2.1.1 MOEA模型
2.1.2 性能指標與測試函數
2.2 典型多目標進化演算法
2.2.1 VEGA、MOGA、NPGA和NSGA
2.2.2 SPEA和SPEA2
2.2.3 NSGA2
2.2.4 PAES
2.2.5 其他典型MOEA
2.3 多目標混合進化演算法
2.3.1 多目標遺傳局部搜索
2.3.2 J—MOGLS
2.3.3 M PAES
2.3.4 多目標混沌進化演算法
2.4 協同多目標進化演算法
2.5 動態多目標進化演算法
2.5.1 IMOEA
2.5.2 動態MOEA(DMOEA)
2.6 並行多目標進化演算法
2.6.1 並行多目標進化演算法的基本原理
2.6.2 多解析度多目標遺傳演算法
2.6.3 並行單前端遺傳演算法
2.7 其他多目標進化演算法
2.7.1 高維多目標優化的NSGA2改進演算法
2.7.2 動態多目標優化的進化演算法
2.8 結論與展望
參考文獻
第3章 多目標粒子群演算法
3.1 基本原理
3.2 典型多目標粒子群演算法
3.2.1 CMOPSO
3.2.2 多目標全面學習粒子群演算法
3.2.3 Pareto檔案多目標粒子群優化
3.3 多目標混合粒子群演算法
3.3.1 模糊多目標粒子群演算法
3.3.2 基於分散搜索的多目標混合粒子群演算法
3.4 交互粒子群演算法
3.5 結論
參考文獻
第4章 其他多目標智能優化演算法
4.1 多目標模擬退火演算法
4.2 多目標蟻群演算法
4.2.1 連續優化問題的多目標蟻群演算法
4.2.2 組合優化問題的多目標蟻群演算法
4.3 多目標免疫演算法
4.4 多目標差分進化演算法
4.5 多目標分散搜索
4.6 結論
參考文獻
第5章 人工神經網路優化
5.1 Pareto進化神經網路
5.2 徑向基神經網路優化與設計
5.3 遞歸神經網路優化與設計
5.4 模糊神經網路多目標優化
5.5 結論
參考文獻
第6章 交通與物流系統優化
6.1 物流配送路徑優化
6.1.1 多目標車輛路徑優化
6.1.2 多目標隨機車輛路徑優化
6.2 城市公交路線網路優化
6.3 公共交通調度
6.3.1 概述
6.3.2 多目標駕駛員調度
6.4 結論
參考文獻
第7章 多目標生產調度
7.1 生產調度描述_
7.1.1 車間調度問題
7.1.2 間隙生產調度
7.1.3 動態生產調度
7.1.4 批處理機調度和E/T調度
7.2 生產調度的表示方法
7.3 基於進化演算法的多目標車間調度
7.3.1 多目標流水車間調度
7.3.2 多目標作業車間調度
7.4 基於進化演算法的多目標模糊調度
7.4.1 模糊調度:Sakawa方法
7.4.2 模糊作業車間調度:cMEA方法
7.5 基於進化演算法的多目標柔性調度
7.5.1 混合遺傳調度方法
7.5.2 混合遺傳演算法
7.6 基於粒子群優化的多目標調度
7.6.1 基於粒子群優化的多目標作業車間調度
7.6.2 多目標柔性調度的混合粒子群方法
7.7 多目標隨機調度
7.8 結論與展望
參考文獻
第8章 電力系統優化及其他
8.1 電力系統優化
8.1.1 基於免疫演算法的多目標無功優化
8.1.2 基於分層優化的多目標電網規劃
8.1.3 基於NSGA2及協同進化的多目標電網規劃
8.2 多播Qos路由優化
8.3 單元製造系統設計
8.3.1 概述
8.3.2 基於禁忌搜索的多目標單元構造
8.3.3 基於並行禁忌搜索的多目標單元構造
8.4 自動控制系統設計
8.4.1 概述
8.4.2 混合動力學系統控制
8.4.3 魯棒PID控制器設計
8.5 結論
參考文獻
附錄 部分測試函數
……