導航:首頁 > 源碼編譯 > lms151的演算法板

lms151的演算法板

發布時間:2023-03-13 21:32:13

Ⅰ LMS演算法的演算法

LMS演算法步驟:
1,、設置變數和參量:
X(n)為輸入向量,或稱為訓練樣本
W(n)為權值向量
e(n)為偏差
d(n)為期望輸出
y(n)為實際輸出
η為學習速率
n為迭代次數
2、初始化,賦給w(0)各一個較小的隨機非零值,令n=0
3、對於一組輸入樣本x(n)和對應的期望輸出d,計算
e(n)=d(n)-X(n)
W(n+1)=W(n)+ηX(n)e(n)
4、判斷是否滿足條件,若滿足演算法結束,若否n增加1,轉入第3步繼續執行。

Ⅱ LMS自適應演算法分析及在數字濾波器設計中的應用

自適應過程一般採用典型LMS自適應演算法,但當濾波器的輸入信號為有色隨機過程時,特別是當輸入信號為高度相關時,這種演算法收斂速度要下降許多,這主要是因為輸入信號的自相關矩陣特徵值的分散程度加劇將導致演算法收斂性能的惡化和穩態誤差的增大。此時若採用變換域演算法可以增加演算法收斂速度。變換域演算法的基本思想是:先對輸入信號進行一次正交變換以去除或衰減其相關性,然後將變換後的信號加到自適應濾波器以實現濾波處理,從而改善相關矩陣的條件數。因為離散傅立葉變換�DFT本身具有近似正交性,加之有FFT快速演算法,故頻域分塊LMS�FBLMS演算法被廣泛應用。

FBLMS演算法本質上是以頻域來實現時域分塊LMS演算法的,即將時域數據分組構成N個點的數據塊,且在每塊上濾波權系數保持不變。其原理框圖如圖2所示。FBLMS演算法在頻域內可以用數字信號處理中的重疊保留法來實現,其計算量比時域法大為減少,也可以用重疊相加法來計算,但這種演算法比重疊保留法需要較大的計算量。塊數據的任何重疊比例都是可行的,但以50%的重疊計算效率為最高。對FBLMS演算法和典型LMS演算法的運算量做了比較,並從理論上討論了兩個演算法中乘法部分的運算量。本文從實際工程出發,詳細分析了兩個演算法中乘法和加法的總運算量,其結果為:

復雜度之比=FBLMS實數乘加次數/LMS實數乘加次數=(25Nlog2N+2N-4)/[2N(2N-1)]�

採用ADSP的C語言來實現FBLMS演算法的程序如下:

for(i=0;i<=30;i++)

{for(j=0;j<=n-1;j++)

{in[j]=input[i×N+j;]

rfft(in,tin,nf,wfft,wst,n);

rfft(w,tw,wf,wfft,wst,n);

cvecvmlt(inf,wf,inw,n);

ifft(inw,t,O,wfft,wst,n);

for(j=0,j<=N-1;j++)

{y[i×N+j]=O[N+j].re;

e[i×N+j]=refere[i×N+j]-y[i×N+j];

temp[N+j]=e[i×N+j;}

rfft(temp,t,E,wfft,wst,n);

for(j=0;j<=n-1;j++)

{inf_conj[j]=conjf(inf[j]);}��

cvecvmlt(E,inf_conj,Ein,n);

ifft(Ein,t,Ein,wfft,wst,n);

for(j=0;j<=N-1;j++)

{OO[j]=Ein[j].re;

w[j]=w[j]+2*u*OO[j];}��

}

在EZ-KIT測試板中,筆者用匯編語言和C語言程序分別測試了典型LMS演算法的運行速度,並與FBLMS演算法的C語言運行速度進行了比較,表2所列是其比較結果,從表2可以看出濾波器階數為64時,即使是用C語言編寫的FBLMS演算法也比用匯編編寫的LMS演算法速度快20%以上,如果濾波器的階數更大,則速度會提高更多。

Ⅲ LMS演算法與最陡下降法有何不同

最陡下降法在迭代過程中與輸入信號無關,不具有有對輸入信號統計特性變化的自適應性,最陡下降法的互相關向量P和自相關矩陣R都是確定量,所以根據最陡下降法迭代式所得到的權向量w(n)也是確定的向量序列。所以,最陡下降法不是自適應演算法。
而LMS演算法中的u(n)和e(n)都是隨機過程,得到的w(n)也是隨機過程向量。LMS演算法是自適應演算法。

Ⅳ 什麼是LMS演算法,全稱是什麼

1959年,Widrow和Hof提出的最小均方(LMS )演算法對自適應技術的發展起了極
大的作用。由於LMS演算法簡單和易於實現,它至今仍被廣泛應用。對LMS演算法的性能
和改進演算法已經做了相當多的研究,並且至今仍是一個重要的研究課題。進一步的研究
工作涉及這種演算法在非平穩、相關輸入時的性能研究。當輸入相關矩陣的特徵值分散時,
LMS演算法的收斂性變差,研究的另一個方面在於如何解決步長大小與失調量之間的矛
盾。
全稱 Least mean square

Ⅳ 什麼是LMS演算法

LMS演算法是指 Least mean square 演算法的意思。
全稱 Least mean square 演算法。是最小均方演算法中文。
感知器和自適應線性元件在歷史上幾乎是同時提出的,並且兩者在對權值的調整的演算法非常相似。它們都是基於糾錯學習規則的學習演算法。感知器演算法存在如下問題:不能推廣到一般的前向網路中;函數不是線性可分時,得不出任何結果。而由美國斯坦福大學的Widrow和Hopf在研究自適應理論時提出的LMS演算法,由於其容易實現而很快得到了廣泛應用,成為自適應濾波的標准演算法。

Ⅵ lms演算法是什麼

LMS(Least mean square)演算法,即最小均方誤差演算法。

lms演算法由美國斯坦福大學的B Widrow和M E Hoff於1960年在研究自適應理論時提出,由於其容易實現而很快得到了廣泛應用,成為自適應濾波的標准演算法。在濾波器優化設計中,採用某種最小代價函數或者某個性能指標來衡量濾波器的好壞,而最常用的指標就是均方誤差,也把這種衡量濾波器好壞的方法叫做均方誤差准則。

lms演算法的特點

根據小均方誤差准則以及均方誤差曲面,自然的我們會想到沿每一時刻均方誤差 的陡下降在權向量面上的投影方向更新,也就是通過目標函數的反梯度向量來反 復迭代更新。由於均方誤差性能曲面只有一個唯一的極小值,只要收斂步長選擇恰當, 不管初始權向量在哪,後都可以收斂到誤差曲面的小點,或者是在它的一個鄰域內。

閱讀全文

與lms151的演算法板相關的資料

熱點內容
阿里雲伺服器ip搭建教程 瀏覽:85
解壓和拉伸這一動畫的原理是什麼 瀏覽:740
tbc戰士的命令怒吼 瀏覽:481
idea快捷鍵看源碼 瀏覽:976
手機碎屏解壓工具 瀏覽:245
jsonrpcphp使用 瀏覽:566
網上求職系統源碼 瀏覽:699
pdf數字不顯示 瀏覽:890
convertwordtopdf 瀏覽:253
程序編譯基本單位 瀏覽:23
python分析圖片角度 瀏覽:64
阿里雲伺服器能復制數據嗎 瀏覽:562
python拼音轉換文字 瀏覽:563
動畫遺傳演算法 瀏覽:63
php如何解析xml文件 瀏覽:702
如何改變appstore的語言 瀏覽:462
javahtmlxml 瀏覽:34
單片機啟動文件 瀏覽:812
橙app如何開啟聊天 瀏覽:900
訪問伺服器公網地址 瀏覽:667