導航:首頁 > 源碼編譯 > 演算法和計算機練習

演算法和計算機練習

發布時間:2023-03-16 12:34:36

㈠ 中學計算機演算法

幫助別人,不求回報!雖然我幫不了你,但是總有人會幫你的!

㈡ 求《計算機演算法設計與分析第5版習題及答案》全文免費下載百度網盤資源,謝謝~

《計算機演算法設計與分析第5版習題及答案》網路網盤pdf最新全集下載:
鏈接:https://pan..com/s/1oxH2d3SdEUN0rx6LJRNBoA

?pwd=8i4l 提取碼:8i4l
簡介:本書是與「十二五」普通高等教育本科國家級規劃教材《計算機演算法設計與分析(第5版)》配套的輔助教材和國家精品課程教材,分別對主教材中的演算法分析題和演算法實現題給出了解答或解題思路提示。為了提高學生靈活運用演算法設計策略解決實際問題的能力,本書還將主教材中的許多習題改造成演算法實現題,要求學生設計出求解演算法並上機實現。本書教學資料包含各章演算法實現題、測試數據和答案,可在華信教育資源網免費注冊下載。本書內容豐富,理論聯系實際,可作為高等學校計算機科學與技術、軟體工程、信息安全、信息與計算科學等專業本科生和研究生學習計算機演算法設計的輔助教材,也是工程技術人員和自學者的參考書。

㈢ 大學計算機演算法的題,求解答

顯然選B
因為題目問的是最壞情況,如果m不在這一堆數答余雹中,順序查找可能要將所有的n個數都比較一遍,才能確清帆認這裡面沒有m。
還有什麼疑毀殲問嗎?

㈣ CRC演算法模擬 計算機網路基礎課程 高分求解 正解追加200

引言

CRC的全稱為Cyclic Rendancy Check,中文名稱為循環冗餘校驗。它是一類重要的線性分組碼,編碼和解碼方法簡單,檢錯和糾錯能力強,在通信領域廣泛地用於實現差錯控制。實際上,除數據通信外,CRC在其它很多領域也是大有用武之地的。例如我們讀軟盤上的文件,以及解壓一個ZIP文件時,偶爾會碰到「Bad CRC」錯誤,由此它在數據存儲方面的應用可略見一斑。

差錯控制理論是在代數理論基礎上建立起來的。這里我們著眼於介紹CRC的演算法與實現,對原理只能捎帶說明一下。若需要進一步了解線性碼、分組碼、循環碼、糾錯編碼等方面的原理,可以閱讀有關資料。

利用CRC進行檢錯的過程可簡單描述為:在發送端根據要傳送的k位二進制碼序列,以一定的規則產生一個校驗用的r位監督碼(CRC碼),附在原始信息後邊,構成一個新的二進制碼序列數共k+r位,然後發送出去。在接收端,根據信息碼和CRC碼之間所遵循的規則進行檢驗,以確定傳送中是否出錯。這個規則,在差錯控制理論中稱為「生成多項式」。

1 代數學的一般性演算法

在代數編碼理論中,將一個碼組表示為一個多項式,碼組中各碼元當作多氏悉項式的系數。例如 1100101 表示為
1·x6+1·x5+0·x4+0·x3+1·x2+0·x+1,即 x6+x5+x2+1。

設編碼前的原始信息多項式為P(x),P(x)的最高冪次加1等於k;生成多項式為G(x),G(x)的最高冪次等於r;CRC多項式為R(x);編碼後的帶CRC的信息多項式為T(x)。

發送方編碼方法:將P(x)乘以猛頌xr(即對應的二進制碼序列左移r位),再除以G(x),所得余式即為R(x)。用公式表示為
T(x)=xrP(x)+R(x)

接收方解碼方法:將T(x)除以G(x),如果余數為0,則說明傳輸中無錯誤發生,否則說明傳輸有誤。

舉例來說,設信息碼為1100,生成多項式為1011,即P(x)=x3+x2,G(x)=x3+x+1,計算CRC的過程為

xrP(x) x3(x3+x2) x6+x5 x
-------- = ---------- = -------- = (x3+x2+x) + --------
G(x) x3+x+1 x3+x+1 x3+x+1

即 R(x)=x。注意到G(x)最高冪次r=3,得出CRC為010。

如果用豎式除法,計算過程為

1110
-------
1011 /1100000 (1100左移3位)
1011
----
1110
1011
-----
1010
1011
-----
0010
0000
----
010

因此,T(x)=(x6+x5)+(x)=x6+x5+x, 即 1100000+010=1100010

如果傳輸無誤,

T(x) x6+x5+x
------ = --------- = x3+x2+x,
G(x) x3+x+1

無余式。回頭看一下上面的豎式除法,如果被除數是殲知乎1100010,顯然在商第三個1時,就能除盡。

上述推算過程,有助於我們理解CRC的概念。但直接編程來實現上面的演算法,不僅繁瑣,效率也不高。實際上在工程中不會直接這樣去計算和驗證CRC。

下表中列出了一些見於標準的CRC資料:

名稱 生成多項式 簡記式* 應用舉例
CRC-4 x4+x+1 ITU G.704
CRC-12 x12+x11+x3+x+1
CRC-16 x16+x12+x2+1 1005 IBM SDLC
CRC-ITU** x16+x12+x5+1 1021 ISO HDLC, ITU X.25, V.34/V.41/V.42, PPP-FCS
CRC-32 x32+x26+x23+...+x2+x+1 04C11DB7 ZIP, RAR, IEEE 802 LAN/FDDI, IEEE 1394, PPP-FCS
CRC-32c x32+x28+x27+...+x8+x6+1 1EDC6F41 SCTP
* 生成多項式的最高冪次項系數是固定的1,故在簡記式中,將最高的1統一去掉了,如04C11DB7實際上是104C11DB7。
** 前稱CRC-CCITT。ITU的前身是CCITT。

2 硬體電路的實現方法

多項式除法,可用除法電路來實現。除法電路的主體由一組移位寄存器和模2加法器(異或單元)組成。以CRC-ITU為例,它由16級移位寄存器和3個加法器組成,見下圖(編碼/解碼共用)。編碼、解碼前將各寄存器初始化為"1",信息位隨著時鍾移入。當信息位全部輸入後,從寄存器組輸出CRC結果。

3 比特型演算法

上面的CRC-ITU除法電路,完全可以用軟體來模擬。定義一個寄存器組,初始化為全"1"。依照電路圖,每輸入一個信息位,相當於一個時鍾脈沖到來,從高到低依次移位。移位前信息位與bit0相加產生臨時位,其中bit15移入臨時位,bit10、bit3還要加上臨時位。當全部信息位輸入完成後,從寄存器組取出它們的值,這就是CRC碼。

typedef unsigned char bit;
typedef unsigned char byte;
typedef unsigned short u16;

typedef union {
u16 val;
struct {
u16 bit0 : 1;
u16 bit1 : 1;
u16 bit2 : 1;
u16 bit3 : 1;
u16 bit4 : 1;
u16 bit5 : 1;
u16 bit6 : 1;
u16 bit7 : 1;
u16 bit8 : 1;
u16 bit9 : 1;
u16 bit10 : 1;
u16 bit11 : 1;
u16 bit12 : 1;
u16 bit13 : 1;
u16 bit14 : 1;
u16 bit15 : 1;
} bits;
} CRCREGS;

// 寄存器組
CRCREGS regs;

// 初始化CRC寄存器組:移位寄存器置為全"1"
void crcInitRegisters()
{
regs.val = 0xffff;
}

// CRC輸入一個bit
void crcInputBit(bit in)
{
bit a;

a = regs.bits.bit0 ^ in;

regs.bits.bit0 = regs.bits.bit1;
regs.bits.bit1 = regs.bits.bit2;
regs.bits.bit2 = regs.bits.bit3;
regs.bits.bit3 = regs.bits.bit4 ^ a;
regs.bits.bit4 = regs.bits.bit5;
regs.bits.bit5 = regs.bits.bit6;
regs.bits.bit6 = regs.bits.bit7;
regs.bits.bit7 = regs.bits.bit8;
regs.bits.bit8 = regs.bits.bit9;
regs.bits.bit9 = regs.bits.bit10;
regs.bits.bit10 = regs.bits.bit11 ^ a;
regs.bits.bit11 = regs.bits.bit12;
regs.bits.bit12 = regs.bits.bit13;
regs.bits.bit13 = regs.bits.bit14;
regs.bits.bit14 = regs.bits.bit15;
regs.bits.bit15 = a;
}

// 輸出CRC碼(寄存器組的值)
u16 crcGetRegisters()
{
return regs.val;
}
crcInputBit中一步一步的移位/異或操作,可以進行簡化:
void crcInputBit(bit in)
{
bit a;
a = regs.bits.bit0 ^ in;
regs.val >>= 1;
if(a) regs.val ^= 0x8408;
}

細心的話,可以發現0x8408和0x1021(CRC-ITU的簡記式)之間的關系。由於我們是從低到高輸出比特流的,將0x1021左右反轉就得到0x8408。將生成多項式寫成 G(x)=1+x5+x12+x16,是不是更好看一點?

下面是一個典型的PPP幀。最後兩個位元組稱為FCS(Frame Check Sequence),是前面11個位元組的CRC。

FF 03 C0 21 04 03 00 07 0D 03 06 D0 3A
我們來計算這個PPP幀的CRC,並驗證它。

byte ppp[13] = {0xFF, 0x03, 0xC0, 0x21, 0x04, 0x03, 0x00, 0x07, 0x0D, 0x03, 0x06, 0x00, 0x00};
int i,j;
u16 result;

/////////// 以下計算FCS

// 初始化
crcInitRegisters();

// 逐位輸入,每個位元組低位在先,不包括兩個FCS位元組
for(i = 0; i < 11; i++)
{
for(j = 0; j < 8; j++)
{
crcInputBit((ppp[i] >> j) & 1);
}
}

// 得到CRC:將寄存器組的值求反
result = ~crcGetRegisters();

// 填寫FCS,先低後高
ppp[11] = result & 0xff;
ppp[12] = (result >> 8) & 0xff;

/////////// 以下驗證FCS

// 初始化
crcInitRegisters();

// 逐位輸入,每個位元組低位在先,包括兩個FCS位元組
for(i = 0; i < 13; i++)
{
for(j = 0; j < 8; j++)
{
crcInputBit((ppp[i] >> j) & 1);
}
}

// 得到驗證結果
result = crcGetRegisters();

可以看到,計算出的CRC等於0x3AD0,與原來的FCS相同。驗證結果等於0。初始化為全"1",以及將寄存器組的值求反得到CRC,都是CRC-ITU的要求。事實上,不管初始化為全"1"還是全"0",計算CRC取反還是不取反,得到的驗證結果都是0。

4 位元組型演算法

比特型演算法逐位進行運算,效率比較低,不適用於高速通信的場合。數字通信系統(各種通信標准)一般是對一幀數據進行CRC校驗,而位元組是幀的基本單位。最常用的是一種按位元組查表的快速演算法。該演算法基於這樣一個事實:計算本位元組後的CRC碼,等於上一位元組余式CRC碼的低8位左移8位,加上上一位元組CRC右移8位和本位元組之和後所求得的CRC碼。如果我們把8位二進制序列數的CRC(共256個)全部計算出來,放在一個表裡 ,編碼時只要從表中查找對應的值進行處理即可。

CRC-ITU的計算演算法如下:
a.寄存器組初始化為全"1"(0xFFFF)。
b.寄存器組向右移動一個位元組。
c.剛移出的那個位元組與數據位元組進行異或運算,得出一個指向值表的索引。
d.索引所指的表值與寄存器組做異或運算。
f.數據指針加1,如果數據沒有全部處理完,則重復步驟b。
g.寄存器組取反,得到CRC,附加在數據之後。

CRC-ITU的驗證演算法如下:
a.寄存器組初始化為全"1"(0xFFFF)。
b.寄存器組向右移動一個位元組。
c.剛移出的那個位元組與數據位元組進行異或運算,得出一個指向值表的索引。
d.索引所指的表值與寄存器組做異或運算。
e.數據指針加1,如果數據沒有全部處理完,則重復步驟b (數據包括CRC的兩個位元組)。
f.寄存器組的值是否等於「Magic Value」(0xF0B8),若相等則通過,否則失敗。

下面是通用的CRC-ITU查找表以及計算和驗證CRC的C語言程序:

// CRC-ITU查找表
const u16 crctab16[] =
{
0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78,
};

// 計算給定長度數據的16位CRC。
u16 GetCrc16(const byte* pData, int nLength)
{
u16 fcs = 0xffff; // 初始化

while(nLength>0)
{
fcs = (fcs >> 8) ^ crctab16[(fcs ^ *pData) & 0xff];
nLength--;
pData++;
}

return ~fcs; // 取反
}

// 檢查給定長度數據的16位CRC是否正確。
bool IsCrc16Good(const byte* pData, int nLength)
{
u16 fcs = 0xffff; // 初始化

while(nLength>0)
{
fcs = (fcs >> 8) ^ crctab16[(fcs ^ *pData) & 0xff];
nLength--;
pData++;
}

return (fcs == 0xf0b8); // 0xf0b8是CRC-ITU的"Magic Value"
}

使用位元組型演算法,前面出現的PPP幀FCS計算和驗證過程,可用下面的程序片斷實現:

byte ppp[13] = {0xFF, 0x03, 0xC0, 0x21, 0x04, 0x03, 0x00, 0x07, 0x0D, 0x03, 0x06, 0x00, 0x00};
u16 result;

// 計算CRC
result = GetCrc16(ppp, 11);

// 填寫FCS,先低後高
ppp[11] = result & 0xff;
ppp[12] = (result >> 8) & 0xff;

// 驗證FCS
if(IsCrc16Good(ppp, 13))
{
... ...
}

該例中數據長度為11,說明CRC計算並不要求數據2位元組或4位元組對齊。

至於查找表的生成演算法,以及CRC-32等其它CRC的演算法,可參考RFC 1661, RFC 3309等文檔。需要注意的是,雖然CRC演算法的本質是一樣的,但不同的協議、標准所規定的初始化、移位次序、驗證方法等可能有所差別。

結語

CRC是現代通信領域的重要技術之一。掌握CRC的演算法與實現方法,在通信系統的設計、通信協議的分析以及軟體保護等諸多方面,能發揮很大的作用。如在作者曾經設計的一個多串口數據傳輸系統中,每串口速率為460kbps,不加校驗時誤碼率大於10-6,加上簡單的奇偶校驗後性能改善不很明顯,利用CRC進行檢錯重傳,誤碼率降低至10-15以下,滿足了實際應用的要求。

㈤ 計算機編程,演算法練習幾題

1。悉滲 If x%7=0 Then
Print Int(x/7)
2。Else
Print "不睜攔脊能衡枯被7整除"
3。End If

㈥ 我是大三的學計算機的學生,請推薦給我幾本演算法方面的書

演算法導論(CLRS)
演算法設計 Jon Kleinberg, Eva Tardos寫的,這本書相較CLRS更適合初學自己看,而且這本書的習題感覺更好一些

㈦ 兄弟想問問你怎樣練習計算機考研時的上機題,要看演算法書嗎,還是看完C語言直接練ACM題

我也是計算機類的考研人
我給你幾點建議,可能有點片面,請包涵。
第一:上機你完全沒必要練ACM題 ,這個就相當於你扮慧要考數學但是你通過做奧數題目提高自己的解題能力,ACM題目是有相當難度的在平均每天堅持四個小時以上沒有一兩年時間你做ACM還是沒感覺的。
第二:關於語言的問題,這個你想太多了。它的上機系統至少有一下語言(C,C++,VB,JAVA)好一點的學校的可能更多,所以你只需要C這一種沒閉語言就可以搞廳察答定。
第三:上機的題目不會特別難,除非你運氣差到了極點。
第四:如何准備。看完C你可以看看數據結構(c語言版)上面的演算法足以讓你應付所有復試題目,關於上機高校的要求會不斷加深,所以你必須認真准備。要是真的一道題目都做不出來你就悲劇了,三百八九的分很高吧,但是今年還是被涮了(我們學校不是很強,計算機也不是王牌專業)老師就說因為他的實踐能力太差了

㈧ 求解計算機演算法的題!!!!!

填空1:

設M1的計算速度為x, M2的計算速度為ax,時間是t
則: x * t = 3n1, ax * t = 3n2
則: n1 : n2 = x*t : ax*t = 1 : a
既,填空1的答案是 1:a
填空2:

設M1的計算速度為x, M2的計算速度為ax,時間是t
則: x * t = 3n1², ax * t = 3n2²
則: n1² : n2² = x*t : ax*t = 1 : a

等式兩邊同時求根號,得到n1:n2的答案。
既,填空2的答案是 1:√a
碼子不易,望採納。

閱讀全文

與演算法和計算機練習相關的資料

熱點內容
jsonrpcphp使用 瀏覽:560
網上求職系統源碼 瀏覽:699
pdf數字不顯示 瀏覽:890
convertwordtopdf 瀏覽:253
程序編譯基本單位 瀏覽:23
python分析圖片角度 瀏覽:64
阿里雲伺服器能復制數據嗎 瀏覽:562
python拼音轉換文字 瀏覽:563
動畫遺傳演算法 瀏覽:63
php如何解析xml文件 瀏覽:702
如何改變appstore的語言 瀏覽:462
javahtmlxml 瀏覽:34
單片機啟動文件 瀏覽:811
橙app如何開啟聊天 瀏覽:899
訪問伺服器公網地址 瀏覽:666
pdf列印底色去掉 瀏覽:465
java快遞介面 瀏覽:399
哪個app可以教新爸爸 瀏覽:212
如何查看伺服器系統版本信息 瀏覽:526
成都市土地出讓金演算法 瀏覽:704