導航:首頁 > 源碼編譯 > 編譯器開發的語言自然語言

編譯器開發的語言自然語言

發布時間:2023-03-18 20:23:20

編程都有哪些語言

如果你是軟體開發領域的新手,那麼你會想到的第一個問題是「如何開始?」編程語言有數百種可供選擇,但是你怎麼發現哪個最適合你,你的興趣和職業目標又在哪裡呢?選擇最佳編程語言以學習的最簡單方法之一,是通過市場反響、技術趨勢的發展…
閱讀下文,你會發現一些用於Web開發,移動開發,游戲開發等的優秀、專業的編程語言。最後,你將清楚地了解哪種編程語言可以在未來幾年甚至更長時間內幫助你的職業發展。讓我們來看一看……
1、javaScript
如今,如果連JavaScript都不會用,那麼你不可能稱之為一名合格的軟體開發人員。榜單中的第一個是JavaScript,根本無法想像沒有JavaScript的軟體開發會是怎樣的世界。從Stack Overflow的2019年開發人員調查中可以看出,JavaScript已經連續7年成為開發人員中最受歡迎的語言。過去一年中,大約有75%的人使用了這種語言。
首先,JavaScript是輕量級的,可解釋的,並且在前端開發中起著重要作用的一門語言。甚至一些主要的社交媒體平台都認為JavaScript提供了一種輕松創建互動式網頁的簡便方法,並且是由職業驅動的。最受青睞的是JavaScript,因為它與所有主要瀏覽器兼容,並且其語法確實很靈活。作為一種前端語言,JavaScript還通過Node.js在伺服器端使用。
JavaScript是初學者中最可愛的編程語言。
2、python
這可能會讓你感到驚訝;python出現在第二位。在許多調查中,它可能都放在第5上。但是,我一定會讓你相信,這是為什麼呢?在我的list中,Python是通用的,用戶友好的編程語言之一。為什麼這么說?像Java一樣,Python語法清晰,直觀並且幾乎類似於英語。Python的「基於對象」子集類似於JavaScript。根據Stack Overflow的說法,有一個部分說「被採用或被遷移,或者遷移得太早」,廣泛來說,遷移到python的人接近42%,這表明它排名第二。
如果你有興趣從事後端開發工作,例如Django –開放源代碼框架,則是使用python編寫的,這使得它易於學習且功能豐富,但卻很受歡迎。另外,python具有多種應用程序,使其功能強大。在科學計算,機器學習和工程學等領域中,Python支持一種編程樣式,該樣式使用簡單的函數和變數,而無需過多地查詢類定義。
人生苦短,我用Python!
再者,因為人工智慧這幾年大熱,而python尤其在大數據和人工智慧領域有廣泛的使用。
python本身面向對象語言,具有豐富和強大的庫,輕松地使用C語言、C++、Cython來編寫擴充模塊,所以很多稱它為「膠水語言」。當然僅僅知道這些還是不夠的。
3、Java
如果有人問為什麼Java,最常出現的句子是「寫一遍,哪都可以運行」 – Java在過去20年來一直是統治性的編程語言。Java是99%面向對象的,並且很強大,因為Java對象不包含對自身外部數據的引用。它比C ++更簡單,因為Java使用自動內存分配和垃圾回收。
Java具有高度的跨平台兼容性或平台無關性。由於你可以在任何地方(我指的是所有設備)進行編碼,因此可以編譯為低級機器代碼,最後,可以使用JVM – Java虛擬機(取決於平台)在任何平台上執行。
Java構成了Android操作系統的基礎,並選擇了約90%的財富500強公司來製作各種後端應用程序。我會毫不猶豫地採用由Amazon Web Services和Windows Azure運行的最大的Apache Hadoop數據處理。有許多充分的理由和廣泛的業務應用程序,擁有巨大的靈活性,而Java一直是初學者的最愛。
4、C / C++
「越老越吃香」 – C用不同的方式證明了這句話。C語言於1970年代後期被引入,為編程世界做出了巨大貢獻。C是少數幾種語言的母語。有些是從C派生的,或者是從其語法,構造和範例(包括Java,Objective-C和C#)啟發而來的。
即使在當今,可以看出,每當需要構建高性能應用程序時,C仍然是最受歡迎的選擇。linux OS是基於C的。CPP是C的混合版本。C ++是一種基於C的面向對象的編程語言。因此,在設計更高級別的應用程序時,它比其他方法更可取。
C ++比動態類型的語言具有更好的性能,因為在真正執行代碼之前先對代碼進行類型檢查。開發的核心領域是虛擬現實,游戲,計算機圖形等。
5、php
這個事實會讓你感到非常驚奇,這種語言是為維護Rasmus的個人主頁(PHP)而創建的,實際上到今天已佔據了全球83%的網站。PHP代表超文本預處理器,是一種通用編程語言。顯然,PHP是一種腳本語言,可在伺服器上運行,並且用於創建以HTML編寫的網頁。它之所以受歡迎,是因為它免費,而且易於設置並且易於新程序員使用。
對於全球的Web開發人員來說,PHP是一個非常強大的選擇。它被廣泛用於創建動態網頁內容以及網站上使用的圖像。由於使用范圍廣泛,因此排名第五。另外,PHP可以很好地用於WordPress CMS(內容管理系統)。
它位於第五的原因之一,是英文PHP降低了網站性能並影響了載入時間。(無奈)
6、Swift
接下來是是Swift。Swift就像它的名字一樣流暢,是Apple Inc.開發的一種通用、開放源代碼的、已編譯的編程語言。如果你正在尋找針對本機iOS或Mac OS應用程序的開發,則Swift就是首選。Swift受Python和Ruby的影響很深,並且被設計為對初學者友好且易於使用。與它的前一個Objective-C相比,Swift被認為是一種更快,更安全,更易於閱讀和調試的工具。
與Objective-C不同,Swift需要更少的代碼,類似於自然的英語。因此,來自JavaScript,Java,Python,C#和C ++的現有技術人員可以更輕松地切換到Swift。
除此之外,人才儲備有限是它面臨的一個挑戰。與其他開源語言相比,你周圍可能找不到很多Swift開發人員。最近的調查表明,在78,000名受訪者中,只有8.1%的人使用Swift,這比其他人要少。並且由於頻繁的更新,Swift被認為在每個新版本中都不太穩定。
7、C#(C-shap)
C-sharp是Microsoft 2000年開發的功能強大的面向對象的編程語言。C-sharp用於開發桌面應用程序和最近的Windows 8/10應用程序,並且需要.NET框架來運行。微軟開發了C#作為Java的競爭對手。實際上,Sun不想讓微軟的干擾來改變Java,於是C#誕生了。
C#具有多種功能,使初學者更容易學習。與C ++相比,代碼是一致且合乎邏輯的。由於C#是靜態類型的語言,因此在C#中發現錯誤很容易,因為在將代碼轉到應用程序之前會先檢查代碼。
簡而言之,它是開發Web應用程序、桌面應用程序的完美選擇,並且在VR,2D和3D游戲中也得到了證明。像Xamarin這樣的跨平台工具已經用C#編寫,使其與所有設備兼容。
8、Ruby
一種開源的動態編程語言,著重簡單性和生產率,於1990年中在日本開發。它的設計主題是簡化編程環境並增加樂趣。Ruby在全棧Web框架Ruby on Rails框架中流行。Ruby具有動態類型化的語言,它沒有硬性規定,並且是一種高級語言,在很大程度上類似於英語。
簡而言之,你可以使用更少的代碼來構建應用程序。但是Ruby面臨的挑戰是動態類型化的語言,它不容易維護,並且靈活性使其運行緩慢。
9、Objective-C
Objective-C(ObjC)是一種面向對象的編程語言。Apple將其用於OS X和iOS操作系統及其應用程序編程介面(API)。它開發於1980年代,並在某些最早的操作系統中得到使用。Objective-C是面向對象的通用對象。你可以將其稱為混合C,因為它為C編程語言添加了功能。
10、SQL
SQL(es-que-el)代表結構化查詢語言,是一種用於操作資料庫的編程語言。它包括存儲,處理和檢索存儲在關系資料庫中的數據。SQL保持數據的准確性和安全性,並且無論其大小如何,都有助於維護資料庫的完整性。
今天,SQL已在Web框架和資料庫應用程序中使用。如果你精通SQL,則可以更好地掌握數據探索和有效的決策制定。
如果你打算選擇資料庫管理作為你的職業,請首先使用C或C++。SQL開發人員的需求量很大,而且薪水也不低。

Ⅱ 編譯原理的發展歷程


在20世紀40年代,由於馮·諾伊曼在存儲-程序計算機方面的先鋒作用,編寫一串代碼或程序已成必要,這樣計算機就可以執行所需的計算。開始時,這些程序都是用機器語言 (machine language )編寫的。機器語言就是表示機器實際操作的數字代碼,例如:
C7 06 0000 0002 表示在IBM PC 上使用的Intel 8x86處理器將數字2移至地址0 0 0 0 (16進制)的指令。
但編寫這樣的代碼是十分費時和乏味的,這種代碼形式很快就被匯編語言(assembly language )代替了。在匯編語言中,都是以符號形式給出指令和存儲地址的。例如,匯編語言指令 MOV X,2 就與前面的機器指令等價(假設符號存儲地址X是0 0 0 0 )。匯編程序(assembler )將匯編語言的符號代碼和存儲地址翻譯成與機器語言相對應的數字代碼。
匯編語言大大提高了編程的速度和准確度,人們至今仍在使用著它,在編碼需要極快的速度和極高的簡潔程度時尤為如此。但是,匯編語言也有許多缺點:編寫起來也不容易,閱讀和理解很難;而且匯編語言的編寫嚴格依賴於特定的機器,所以為一台計算機編寫的代碼在應用於另一台計算機時必須完全重寫。
發展編程技術的下一個重要步驟就是以一個更類似於數學定義或自然語言的簡潔形式來編寫程序的操作,它應與任何機器都無關,而且也可由一個程序翻譯為可執行的代碼。例如,前面的匯編語言代碼可以寫成一個簡潔的與機器無關的形式 x = 2。
在1954年至1957年期間,IBM的John Backus帶領的一個研究小組對FORTRAN語言及其編譯器的開發,使得上面的擔憂不必要了。但是,由於當時處理中所涉及到的大多數程序設計語言的翻譯並不為人所掌握,所以這個項目的成功也伴隨著巨大的辛勞。幾乎與此同時,人們也在開發著第一個編譯器, Noam Chomsky開始了他的自然語言結構的研究。他的發現最終使得編譯器結構異常簡單,甚至還帶有了一些自動化。Chomsky的研究導致了根據語言文法(grammar ,指定其結構的規則)的難易程度以及識別它們所需的演算法來為語言分類。正如現在所稱的-與喬姆斯基分類結構(Chomsky hierarchy )一樣-包括了文法的4個層次:0型、1型、2型和3型文法,且其中的每一個都是其前者的專門化。2型(或上下文無關文法(context-free grammar ))被證明是程序設計語言中最有用的,而且今天它已代表著程序設計語言結構的標准方式。
分析問題( parsing problem ,用於限定上下文無關語言的識別的有效演算法)的研究是在20世紀60年代和70年代,它相當完善地解決了這一問題, 現在它已是編譯理論的一個標准部分。它們與喬姆斯基的3型文法相對應。對它們的研究與喬姆斯基的研究幾乎同時開始,並且引出了表示程序設計語言的單詞(或稱為記號)的符號方式。
人們接著又深化了生成有效的目標代碼的方法,這就是最初的編譯器,它們被一直使用至今。人們通常將其誤稱為優化技術(optimization technique ),但因其從未真正地得到過被優化了的目標代碼而僅僅改進了它的有效性,因此實際上應稱作代碼改進技術(code improvement technique )。
這些程序最初被稱為編譯程序-編譯器,但更確切地應稱為分析程序生成器 (parser generator ),這是因為它們僅僅能夠自動處理編譯的一部分。這些程序中最著名的是 Yacc (yet another compiler- compiler),它是由Steve Johnson在1975年為Unix系統編寫的。
類似地,有窮自動機的研究也發展了另一種稱為掃描程序生成器 (scanner generator )的工具,Lex (與Yacc同時,由Mike Lesk為Unix系統開發的)是這其中的佼佼者。在20世紀70年代後期和80年代早期,大量的項目都關注於編譯器其他部分的生成自動化,這其中就包括代碼生成。這些嘗試並未取得多少成功,這大概是因為操作太復雜而人們又對其不甚了解。
編譯器設計最近的發展包括:首先,編譯器包括了更為復雜的演算法的應用程序,它用於推斷或簡化程序中的信息;這又與更為復雜的程序設計語言(可允許此類分析)的發展結合在一起。其中典型的有用於函數語言編譯的Hindle y - Milner類型檢查的統一演算法。
其次,編譯器已越來越成為基於窗口的交互開發環境(interactive development environment,IDE )的一部 分,它包括了編輯器、鏈接程序、調試程序以及項目管理程序。這樣的IDE的標准並沒有多少, 但是已沿著這一方向對標準的窗口環境進行開發了。

Ⅲ 編譯語言那幾種詳講!

C/C++:C/C++ 自從C發明了以後,它就取代了匯編語言在操作系統編程的領導地位。從性能上說,除了匯編語言,C語言是最接近機器的語言。各種操作系統的編程介面的默認語言都是C語言。因此,用C語言編程,可以最大限度發揮操作系統的能力。同時,由於絕大部分的商品軟體都是C或與C兼容的C++實現的,都有C編程介面,可以說,沒有C不能實現的功能。 C++是C語言的加強版,C++增加了面向對象和其他有用的功能,但它的效能並沒有大減,編程更方便輕松;而C++亦支援大部分C的程序,令C++和C變得近乎不可分割,大部分的C編譯器也支援C++。假如要在學C或學C++選擇,學C++是明智的選擇
Delphi(Object Pasacal):
Delphi是Borland公司研製的新一代可視化開發工具,可在Windows3.x、Windows95、WindowsNT等環境下使用。它擁有一個可視化的集成開發環境(IDE),採用面向對象的編程語言ObjectPascal和基於部件的開發結構框架。Delphi它提供了100多個可供使用的構件,利用這些部件,開發人員可以快速地構造出應用系統。開發人員也可以根據自己的需要修改部件或用Delphi本身編寫自己的部件。主要特點如下: (1)直接編譯生成可執行代碼,編譯速度快。由於Delphi編譯器採用了條件編譯和選擇鏈接技術,使用它生成的執行文件更加精煉,運行速度更快。在處理速度和存取伺服器方面,Delphi的性能遠遠高於其他同類產品。 (2)支持將存取規則分別交給客戶機或伺服器處理的兩種方案,而且允許開發人員建立一個簡單的部件或部件集合,封裝起所有的規則,並獨立於伺服器和客戶機,所有的數據轉移通過這些部件來完成。這樣,大大減少了對伺服器的請求和網路上的數據傳輸量,提高了應用處理的速度。 (3)提供了許多快速方便的開發方法,使開發人員能用盡可能少的重復性工作完成各種不同的應用。利用項目模板和專家生成器可以很快建立項目的構架,然後根據用戶的實際需要逐步完善。 (4)具有可重用性和可擴展性。開發人員不必再對諸如標簽、按鈕及對話框等Windows的常見部件進行編程。Delphi包含許多可以重復使用的部件,允許用戶控制Windows的開發效果。 (5)具有強大的數據存取功能。它的數據處理工具BDE(BorlandDatabaseEngine)是一個標準的中介軟體層,可以用來處理當前流行的數據格式,如xBase、Paradox等,也可以通過BDE的SQLLink直接與Sybase、SQLServer、Informix、Oracle等大型資料庫連接。 Delphi既可用於開發系統軟體,也適合於應用軟體的開發。

Ⅳ 編譯器一般由哪種語言開發

其實我在想為什麼匯編語言生成一個簡單的編譯器後,可以用新生成的編譯器再次生成編譯器,例如,C語言開發C的編譯器呢?
這是一個遞歸的思想,舉個例子一看就明白了
用一個大的模具可以生成一個A模具,A模具可以做出來B模具,依次往下推,最終這個小模具可以做出來小盒子用來裝東西。
第一個大模具肯定是手工做出來的第一個模具,但是有了這個大模具後,後面就可以用他自動的生成更多的模具,後面的各種模具加起來又可以造出來更精緻的模具,
所以,自動第一個大模具造出來模具的時候,大模具就可以被拋棄了。
我們都知道編譯程序通常分為下面五個階段:
1)詞法分析
2)語法分析
3)語義分析與中間代碼產生
4)優化
5)目標代碼生成
當然最難的一點就是目標代碼的生成,這一階段實現了最終的翻譯,就是真正把原碼翻譯成可以被CPU直接計算的機器碼(NativeCode)。

Ⅳ 計算機程序設計語言分為四類

計算機程序設計語言分為四類

為了讓計算機解決實際問題,人們從一開始就不斷地開展程序設計工作,這里的「程序」就是計算機能夠執行的指令代碼(機器碼和其它代碼)。程序設計人員還必須在一個被稱為「計算機程序設計語言(也可以稱為編譯或解釋性語言)」的環境中開展編程。

計算機程序設計語言

是指程序設計人員和計算機都可以識別的程序代碼(包括0和1機器代碼)規則,是人與計算機進行交流的工具,可以把程序設計語言分為以下四類。

1.機器語言

機器語言是一種CPU指令系統, 被稱為CPU的機器語言, 它是CPU可以識別的一組由0和1序列構成的指令碼。用機器語言編程序, 就是從所使用的CPU的指令系統中挑選合適的指令,組成一個指令序列。這種程序可以被機器直接理解並執行,速度很快,但由於不直觀、難記、難以理解、不易查錯、開發周期長,很難推廣應用下去,因此,只有專業人員在編制對於執行速度有很高要求的程序時才採用這種代碼。

2.匯編語言

為了減輕編程者的勞動強度,人們使用一些用於幫助記憶的符號來代替機器語言中的0、1機器指令代碼序列,使得編程效率和質量得到極大的提高。把這些助記符組成的指令系統稱為匯編語言。匯編語言是指令與機器語言指令基本上是一一對應的。由於這些助記符號不能被機器直接識別,所以匯編語言代碼程序必須被編譯成機器語言程序才能被機器理解和執行。編譯之前的程序被稱為「源程序」,編譯之後的被稱為「目標程序」。

匯編語言與機器語言都是因CPU的不同而不同, 所以統稱為「面向機器的語言」。使用這類語言,可以編出效率極高的程序,但對程序設計人員的要求也很高。他們不僅要考慮解題思路,還要熟悉機器的內部結構,一般的人很難掌握這類程序設計語言,還是不能大范圍推廣應用。

3.面向過程的語言

面向過程思想是一種以過程為中心的編程思想,是以什麼正在發生為主要目標進行編程。面向過程就是分析出解決問題所需要的步驟,然後用函數把這些步驟一步一步實現,使用的時候一個一個依次調用就可以了。

把解題的過程看做是數據被加工的過程,這種程序設計語言稱為面向過程的程序設計語言。常用的面向過程的語言有C、Fortran、Basic、Pascal等。使用這類編程語言,程序設計者可以不關心機器的內部結構甚至工作原理,把主要精力集中在解決問題的思路和方法上。這類擺脫了硬體束縛的程序設計語言被統稱為高級語言。高級語言的出現大大地提高了編程效率,使人們能夠開發出越來越大、功能越來越強的程序。要運行使用面向過程語言編制的程序,一般有兩種方法:(1)解釋型,(2)編譯型。

解釋型語言在程序編制完成之後,按照程序編排的順序一條條地把指令語句轉換為機器代碼然後執行。因為每次運行中每條語句都要進行轉換和執行這兩個步驟,所以解釋型語言的執行速度不快,並且每次執行都離不開語言環境。

編譯型語言在程序設計完成之後,使用語言本身提供的編譯(Compile)程序與連接(Link)程序把源程序編譯連接成為可執行文件(擴展名一般為「.exe」)。可執行文件就能脫離語言設計環境獨立運行了。當前比較流行的程序設計語言多數是編譯型的。也有些語言既可以解釋型地運行程序,也可以對程序進行編譯連接。

解釋型運行往往用在程序的調試過程中,而設計完成之後就可以把它編譯成為獨立的可執行文件。

計算機只能識別0、1,並不能能識別其他的語言。程序員在開發的時候,可以使用很多種語言,如c語言,java,python。使用不同的語言開發出來的程序,如果想要執行,那麼最終必須要變成機器語言才能執行。那怎麼樣變成機器語言,我們大家可以找一個翻譯。這個翻譯就專門負責把編寫的代碼翻譯成機器能夠識別的機器語言,叫做編譯器,不同的編譯器,就負責把不同的語言翻譯成計算機能夠識別的機器語言來,這個就是編譯器的作用。

根據編譯器對源代碼翻譯的方式不同,編譯器分成兩種類型,一種類型叫編譯器。而另一種類型叫做解釋器。

使用編譯器編譯的語言,通常稱為編譯性語言,而使用解釋器解釋的語言叫做解釋性語什麼又是編譯性語言,什麼又是解釋性語言?

這兩種語言到底是怎麼工作的?最典型的代表就是C語言、C 這種語言都叫做編譯性語言。編譯性語言是怎麼工作的,人們來看c語言或者C 的程序在自己的開發環境內來編寫代碼。那當程序開發完成之後,成員就把開發完成的源代碼統一交給編譯器。編譯器對所有源代碼進行翻譯。翻譯成機器語言,並且最終保存成一個可執行的文件,當我們需要執行這個文件的時候,在windows下最常見的操作就是雙擊一下可執行文件的圖標,就可以把這個文件交給CPU去執行。編譯性語言的特點,程序員在自己的開發環境內開發程序開發完成之後,統一交給編譯器。編譯器統一進行翻譯,並且最終生成一個獨立的可執行文件。用戶在需要的時候,就可以執行可執行文件看到最終的效果。

解釋性語言的特點,python語言就是一個解釋性語言,那解釋性語言在開發的時候,跟編譯性語言並沒有太大的區別,成員仍然是在自己的開發環境內來編寫代碼。假設現在寫了三行代碼,那這三行代碼怎麼運行啊?要想運行解釋性語言,我們就把這個源程序丟給解釋器。解釋器拿到源程序之後,會按照從上向下的方式逐一讀取代碼中央解釋器稱一行一行來翻譯的。首先讀出第一行代碼,就立刻翻譯成機器碼。翻譯完成之後,就丟給CPU去執行CPU在執行的過程中,解釋器在讀取第二行代碼進行翻譯。翻譯完成之後,再交給CPU去執行,然後依次類推,從上到下一次讀取每行代碼讀取一行。翻譯一行執行一行。

編譯性語言是統一編譯一次性執行。

解釋性語言是一行一行代碼進行翻譯,翻譯一行執行一行,編譯性語言最終產生的文件執行速度快,解釋性語言執行速度慢。因為最終生成的可執行文件中不需要任何的介入。

解釋性語言不同。解釋語言在執行的時候,必須是翻譯一行執行一行。解釋性語言的執行速度就相對慢一些,需要考慮的因素就所謂跨平台,就是我們開發完成的程序,既可以在windows上運行,也可以在linux上運行,還可以在MAC上運行一次編寫在任何一個平台上都能運行,這種方式就叫做跨平台。

如果我們使用的編譯器是在windows平台上編譯的程序,那麼最終生成的可執行文件只能在windows平台上運行,它並不能夠在linux上運行,並不能也不能在MAC上運行,這個是編譯性語言的特點。如果使用某一個操作系統的編譯器,那麼,這個編譯器最終生成的可執行文件就只能在這個操作系統上運行,而不能在其他操作系統上運行。

解釋性語言相對來說就簡單了,程序員仍按照習慣的方式來編寫代碼,程序編寫完成之後,如果想要執行,如果是windows,就在windows上安裝一套windows的解釋器,如果想在linux上執行呢,就在linux上安裝一套linux的解釋器,就是在不同的操作系統上安裝不同的解釋器。既然在每個操作系統上都已經安裝了解釋器,那源代碼就不需要任何的修改。這個就是解釋性語言在跨平台上的優勢。至於程序的執行是解釋器的工作,只需要在不同操作系統中安裝不同的解釋器同一份代碼就可以在不同操作系統中執行了。

開發完成的源程序要想執行,就必須找一個翻譯性語言要找的翻譯叫做編譯器,解釋性語言要找的翻譯叫做解釋器,而從執行效率上講,編譯性語言執行效率要比解釋性語言執行效率高,但是從跨平台來講解釋性語言跨平台能力要比邊形語言跨平台能力要強好。

4.面向對象的程序設計語言

隨著像Windows這樣具有圖形用戶界面的操作系統的廣泛使用,人們又形成了一種面向對象的程序設計思想。這種思想把整個現實世界或是其一部分看做是由不同種類對象(Object)組成的有機整體。同一類型的對象既有共同點,又有各自不同的特性。各種類型的對象之間通過發送消息進行聯系,消息能夠激發對象做出相應的反應,從而構成了一個運動的整體。採用了面向對象思想的程序設計語言就是面向對象的程序設計語言,當前使用較多的面向對象語言有Visual_Basic、C++、Java等。

面向對象語言:是一類以對象作為基本程序結構單位的程序設計語言,指用於描述的設計是以對象為核心,而對象是程序運行時刻的基本成分。面向對象語言:系統中的基本構件可識認為一組可識別的離散對象,在基本層次關系的不同類中共享數據和操作。

Python是一個完全面向對象的語言,那什麼又是面向對象?

面向對象是一種思維方式,同時也是一門程序設計技術。程序員每天的工作是使用自己熟悉的語言來解決一個又一個問題,那在解決問題的時候,有兩種方式,第一種方式要解決這個問題,自己一步一步把這個問題解決掉,自己來逐步的解決一個問題。第二種方式就是面向對象的這種解決問題的方法,用面向對象來解決一個問題的時候,通常我們要首先考慮由誰(這里指對象,而其具備解決該問題能力)來做。找一個別人來幫助自己做事情,而我們找到了這個對象,已經具備了解決這個問題的能力。這個對象做完之後,問題也同樣得到了解決。這個就是面向對象的解決方法。

第一種方式自己逐步來解決問題的每一個步驟,第二種方式我們來找一個對象替自己做事情,對象又具有做這件事情的能力。

如果開發程序,當然更傾向於第二種方式。找個對象來完成,這個思路就是面向對象的思維方式。在做事情的時候,找一個具有能力的對象,幫我們把問題解決掉就好了。這個就是從思維方式角度所謂面向對象的概念。

python是一個完全面向對象的語言。在python中,無論是函數,模塊,數字以及字元串等等等等,全部都是對象。在python中所有的東西都是對象,python這門語言中已經提供有各種各樣,具有很強大能力的對象。在工作中遇到不同的問題,就找不同的對象來幫我們解決問題就可以。這個是python面向對象語言的一個特點,同時大家在看第二個特點。Python應用一個強大的標准庫,所以強大的標准庫在python這門語言中已經內置有非常非常多,是具有強大能力的對象。當在開發時遇到不同的問題,可以在標准庫中來找不同的對象,幫我們把問題解決掉就好,在python的標准庫中提供有類似於系統管理,網路文本處理等,它的功能還是非常強大的。第三個特點:Python社區提供了大量的第三方模塊,什麼又是第三方模塊?所謂第三方模塊就是跟標准庫類似的一個庫,但是第三方模塊並不是由官方來開發的,而是由網路上非常非常多python愛好者來開發的。那這些愛好者為什麼要開發第三方模塊原因很簡單,因為標准估雖然很強大,但是標准庫的力量有限,而全世界有非常多的python愛好者以及開發團隊或者公司。針對當今市場上最主流的一些應用技術開發有非常多的模塊,把自己開發好的這些模塊開源出來。這些模塊都涉及到哪些領域,分別包括有科學計算,人工智慧機器學習,以及web開發大數據等。在python社區中有大量的第三方模塊,而這些第三方模塊在使用的,基本的方式是跟標准庫類似的,python這門語言既有一個能力非常強大的標准庫,又有一個非常非常豐富的第三方模塊。那麼,作為python的成員在開發的時候是不就非常容易了。面向對象的思維方式,就是在做事情之前,先找一個具有能力的對象,幫我們來解決問題。而python的標准庫也好。Python第三方模塊也好,實際上內置有大量的具有強大能力的對象,我們在使用python進行日常開發時,只需要從標准庫中或者第三方模塊中找到。能夠幫我們解決問題的對象,並且使用對象已經具有的能力,通常就可以快速的把我們日常開發中需要解決的問題搞定了,Python提供有強大的標准庫和第三方模塊。在開發時,只需要找到相應具有能力的對象,就可以解決日常工作中遇到的問題了。

程序設計語言的支持環境

操作系統是計算機最重要的一類軟體,其他程序的運行都要在操作系統支持與控制下進行。設計者編制的源程序並不能直接操作計算機,而要在要具體的程序設計語言的支持下通過操作系統來完成。它們之間如何相互配合,因語言、操作系統、計算機硬體的不同而不同。大多數情況下,編程人員沒必要關心程序每一個細節。

Ⅵ 常用的編程語言及相應的軟體開發工具有哪些

編程語言俗稱「計算機語言」,種類非常的多,總的來說可以分 成機器語言、匯編語言、高級語言三大類。電腦每做的一次動作,一個步驟,都是按照已經用計算機語言編好的程序來執行的,程序是計算機要執行的指令的集合, 而程序全部都是用我們所掌握的語言來編寫的。所以人們要控制計算機一定要通過計算機語言向計算機發出命令。其中簡單的,可以分為低級語言和高級語言。
低級語言:是一種更接近計算機的語言(二進制語言),比如說匯編語言,效率高(速度快,完成同樣功能需要的代碼少),但不好學,不好編。
高級語言:更接近人類的自然語言 (編譯器),比如:
Fortran,Delphi,PowerBuilder,VB:比較過時
C,C++:運行效率高
asp,php:編寫web程序,就是網站
vbscript,javascript,python:腳本語言
HTML:標記語言,用於編寫網頁
css:樣式表語言,用於定義網頁的樣式風格
sql:用於操作資料庫中的數據 bigdata 海量數據
J2EE(java),.Net(C#,VB.Net,J#,...Asp.Net) JAVA 2 Enterprise Edition Sun公司 1995,Microsoft 2002年,具有後發優勢。
另外:
Android安卓開發(主要用Java語言)
IOS開發(用Objective C)

Ⅶ 怎麼研發一款編程語言

編程語言,作為人與計算機溝通的橋梁,有著重要和深遠的意義。有過計算機編程經驗的人,多少學習或掌握過一到多種編程語言。計算機專業領域的編程語言成百上千種,主流的編程語言也有數十種之多。每種編程語言面向的領域和特性都不盡相同,不過歸根結底是為了解決人與計算機之間溝通的效率問題,提高計算機的生產力。想必有不少人對那些主流編程語言的創造者十分傾佩,也相信有不少人會好奇一門編程語言是如何誕生的。那麼如何創造一門編程語言呢?
總的來看,創造一門編程語言需要有以下幾個過程:
(1)設計語言的特性。
(2)定義語言的單詞、語法和語義。
(3)實現編譯器或者解釋器將程序翻譯為計算機底層表示。
(4)生成計算機程序的二進制存儲格式。
(5)完善語言的運行時環境和標准庫。

一、語言特性設計
所謂語言特性,就是編程語言為開發者提供了什麼樣的原子性功能特徵。比如是否支持數學表達式計算、字元串處理,是否支持變數、函數和遞歸,是否支持分支、循環復合語句等。語言的變數類型是強類型、弱類型,還是動態類型,程序是過程式、函數式,還是面向對象的。是否支持模板、泛型和反射機制,是否支持多線程和並發特性,是否支持錯誤和異常處理機制等等。
語言特性設計是一門編程語言最關鍵的環節,直接決定了語言的基本特徵和雛形。當然,這也是最難的一個環節,因為語言設計是面向具體問題領域的,是語言設計者從大量的編程實踐中的獲得的總結和升華。比如C語言設計者希望面向計算機底層,擁有對操作系統和硬體的直接操縱能力。而Python的設計者則希望盡可能地減少操作計算機資源的繁瑣過程,以獲得語言的簡潔性、高度的靈活性和擴展性。SQL的設計者面向具體的數據查詢和分析領域,希望幫助開發者獲得快速檢索和操縱數據的能力。而Go語言的設計者則希望在保留C語言優秀功能的基礎上,擴展編程語言對高並發環境的支持,並擁有垃圾回收和快速編譯的能力。
凡此種種,編程語言特性的設計都是面向具體的問題領域的,是語言設計者構建於開發者和計算機之間的中間層,是對開發過程中重復功能邏輯的原子性「封裝」,最終的目的是為了提升具體問題領域內的軟體開發效率。

二、單詞、語法和語義
和人類使用的自然語言類似,編程語言也有自身的單詞、語法和語義,專業上稱為詞法記號、語言文法和語義。
常見的詞法記號可以分為數字、字元、字元串、標識符、關鍵字,以及用於連接表達式的運算符、分割語句或者程序段落的界符等符號。這些是編程語言程序的基本單位,通過它們的有序組合,構建出了一門編程語言形形色色的代碼片段。
編程語言的文法是用來描述語言的語法規則的,具體來說是規定詞法記號之間的排列組合的順序與規則。它描述了編程語言程序的基本模式,不符合該模式的詞法記號的排列被擋在了合法語言程序的大門之外。同時,它也是各種編程語言對於開發者最明顯的差異化特徵。一個有經驗的開發者可以很容易地通過掃視一段代碼,就能分辨出這是哪種編程語言編寫的計算機程序。
編程語言的語義描述了一段符合語言語法的程序,對於計算機而言的真正含義,是開發者最終要傳達給計算機的意願和指令。語言的語義必須是准確的、無二義性的,編譯器也正是通過語義的指導,將計算機程序翻譯為計算機可識別的表達形式。

三、程序的翻譯
計算機程序是用來供人閱讀和修改的,計算機硬體並不能理解程序內的思想和含義。因此,必須有一個翻譯轉換的過程,將人所表達的意願准確無誤地傳遞給計算機,讓計算機明確並執行人下發的指令。實現這種翻譯工作的工具就是編譯器或解釋器。
對於編譯器來說,它的輸入是人類書寫的計算機語言程序,輸出則是計算機可識別的底層表示。首先,它需要識別出程序中的單詞,即詞法分析。然後,根據單詞的組合模式識別出程序的語法結構,即語法分析。最後,根據不同的語法結構對應的語義,將程序按照每個語法模塊的形式轉換為計算機可識別的指令序列,即語義分析和目標代碼生成。
眾所周知編譯器的實現具有一定的復雜度,其根本原因來自於語言語法的結構靈活性和計算機底層表達形式的多樣性,這也是創造一門編程語言最核心的環節。

四、二進制存儲
編譯器將語言程序翻譯轉換後,需要將轉換後的結果存儲起來,以便計算機在需要的時候將其載入、執行。這里不可避免的涉及到兩個問題:
(1)轉換後的結果是什麼樣的形式?
(2)轉換後的結果保存在哪裡?
第一個問題描述的是計算機程序被轉換為怎樣的形式,才是計算機可以識別的。由於計算機中實際運行程序的硬體模塊是CPU,因此計算機程序只有被轉換為CPU的二進制指令格式才能被正確識別、執行。比如常見的Intel體系的CISC指令格式、ARM體系的RISC執行格式等。
第二個問題描述的是計算機程序轉化為二進制指令格式後,以什麼樣的方式保存在計算機的磁碟上。由於絕大多數的計算機程序是需要通過運行在計算機硬體之上的操作系統載入運行的,因此計算機程序的二進製表達形式必須以對應操作系統可識別的文件格式存儲。比如常見的Windows操作系統的PE文件格式、Linux操作系統的ELF文件格式等。

五、運行時環境和標准庫
理論上講,一門編程語言如果能提供出完備的操縱操作系統和硬體的原子性功能就已經成功了。但是不提供強大的運行時環境支持和標准庫,是很難讓一門編程語言真正的好用和流行的。沒有人希望簡單地列印一行字元串,還需要使用編程語言提供的基本特性實現調用操作系統提供的列印介面的邏輯。Java語言之所以久興不衰,正是因為它不僅提供了完善的運行時環境和開發庫支持,甚至提供了更強大的開發框架和工具支持。
因此可見,除了完備的語言特性,為開發者提供更方便好用的庫和框架支持,消除軟體構建過程中復雜和重復的邏輯,才是一門優秀編程語言的長盛之道。

六、自己動手,立即開始!
《自己動手構造編譯系統——編譯、匯編與鏈接》一書詳細闡述了一門編程語言從無到有的過程,從語言的功能特性設計,到詞法、文法、語義分析;從編譯器、匯編器的設計實現,到目標文件的鏈接生成可執行文件;甚至編譯優化器的實現、二進制指令、可執行文件格式以及語言運行時和標准庫的概念,都在書中做了認真細致地剖析。相信對本書的閱讀,將是一次不錯的獲得知識的體驗!

Ⅷ 編譯器是用什麼語言寫的,是用高級語言還是匯編語言

早期,用的是機器語言。
之後,才出現的匯編語言編譯器。

Ⅸ 編譯器的發展史

編譯器
編譯器,是將便於人編寫,閱讀,維護的高級計算機語言翻譯為計算機能識別,運行的低級機器語言的程序。編譯器將源程序(Source program)作為輸入,翻譯產生使用目標語言(Target language)的等價程序。源程序一般為高級語言(High-level language),如Pascal,C++等,而目標語言則是匯編語言或目標機器的目標代碼(Object code),有時也稱作機器代碼(Machine code)。

一個現代編譯器的主要工作流程如下:

源程序(source code)→預處理器(preprocessor)→編譯器(compiler)→匯編程序(assembler)→目標程序(object code)→連接器(鏈接器,Linker)→可執行程序(executables)
目錄 [隱藏]
1 工作原理
2 編譯器種類
3 預處理器(preprocessor)
4 編譯器前端(frontend)
5 編譯器後端(backend)
6 編譯語言與解釋語言對比
7 歷史
8 參見

工作原理
翻譯是從源代碼(通常為高級語言)到能直接被計算機或虛擬機執行的目標代碼(通常為低級語言或機器言)。然而,也存在從低級語言到高級語言的編譯器,這類編譯器中用來從由高級語言生成的低級語言代碼重新生成高級語言代碼的又被叫做反編譯器。也有從一種高級語言生成另一種高級語言的編譯器,或者生成一種需要進一步處理的的中間代碼的編譯器(又叫級聯)。

典型的編譯器輸出是由包含入口點的名字和地址以及外部調用(到不在這個目標文件中的函數調用)的機器代碼所組成的目標文件。一組目標文件,不必是同一編譯器產生,但使用的編譯器必需採用同樣的輸出格式,可以鏈接在一起並生成可以由用戶直接執行的可執行程序。

編譯器種類
編譯器可以生成用來在與編譯器本身所在的計算機和操作系統(平台)相同的環境下運行的目標代碼,這種編譯器又叫做「本地」編譯器。另外,編譯器也可以生成用來在其它平台上運行的目標代碼,這種編譯器又叫做交叉編譯器。交叉編譯器在生成新的硬體平台時非常有用。「源碼到源碼編譯器」是指用一種高級語言作為輸入,輸出也是高級語言的編譯器。例如: 自動並行化編譯器經常採用一種高級語言作為輸入,轉換其中的代碼,並用並行代碼注釋對它進行注釋(如OpenMP)或者用語言構造進行注釋(如FORTRAN的DOALL指令)。

預處理器(preprocessor)
作用是通過代入預定義等程序段將源程序補充完整。

編譯器前端(frontend)
前端主要負責解析(parse)輸入的源程序,由詞法分析器和語法分析器協同工作。詞法分析器負責把源程序中的『單詞』(Token)找出來,語法分析器把這些分散的單詞按預先定義好的語法組裝成有意義的表達式,語句 ,函數等等。 例如「a = b + c;」前端詞法分析器看到的是「a, =, b , +, c;」,語法分析器按定義的語法,先把他們組裝成表達式「b + c」,再組裝成「a = b + c」的語句。 前端還負責語義(semantic checking)的檢查,例如檢測參與運算的變數是否是同一類型的,簡單的錯誤處理。最終的結果常常是一個抽象的語法樹(abstract syntax tree,或 AST),這樣後端可以在此基礎上進一步優化,處理。

編譯器後端(backend)
編譯器後端主要負責分析,優化中間代碼(Intermediate representation)以及生成機器代碼(Code Generation)。

一般說來所有的編譯器分析,優化,變型都可以分成兩大類: 函數內(intraproceral)還是函數之間(interproceral)進行。很明顯,函數間的分析,優化更准確,但需要更長的時間來完成。

編譯器分析(compiler analysis)的對象是前端生成並傳遞過來的中間代碼,現代的優化型編譯器(optimizing compiler)常常用好幾種層次的中間代碼來表示程序,高層的中間代碼(high level IR)接近輸入的源程序的格式,與輸入語言相關(language dependent),包含更多的全局性的信息,和源程序的結構;中層的中間代碼(middle level IR)與輸入語言無關,低層的中間代碼(Low level IR)與機器語言類似。 不同的分析,優化發生在最適合的那一層中間代碼上。

常見的編譯分析有函數調用樹(call tree),控制流程圖(Control flow graph),以及在此基礎上的 變數定義-使用,使用-定義鏈(define-use/use-define or u-d/d-u chain),變數別名分析(alias analysis),指針分析(pointer analysis),數據依賴分析(data dependence analysis)等等。

上述的程序分析結果是編譯器優化(compiler optimization)和程序變形(compiler transformation)的前提條件。常見的優化和變新有:函數內嵌(inlining),無用代碼刪除(Dead code elimination),標准化循環結構(loop normalization),循環體展開(loop unrolling),循環體合並,分裂(loop fusion,loop fission),數組填充(array padding),等等。 優化和變形的目的是減少代碼的長度,提高內存(memory),緩存(cache)的使用率,減少讀寫磁碟,訪問網路數據的頻率。更高級的優化甚至可以把序列化的代碼(serial code)變成並行運算,多線程的代碼(parallelized,multi-threaded code)。

機器代碼的生成是優化變型後的中間代碼轉換成機器指令的過程。現代編譯器主要採用生成匯編代碼(assembly code)的策略,而不直接生成二進制的目標代碼(binary object code)。即使在代碼生成階段,高級編譯器仍然要做很多分析,優化,變形的工作。例如如何分配寄存器(register allocatioin),如何選擇合適的機器指令(instruction selection),如何合並幾句代碼成一句等等。

編譯語言與解釋語言對比
許多人將高級程序語言分為兩類: 編譯型語言 和 解釋型語言 。然而,實際上,這些語言中的大多數既可用編譯型實現也可用解釋型實現,分類實際上反映的是那種語言常見的實現方式。(但是,某些解釋型語言,很難用編譯型實現。比如那些允許 在線代碼更改 的解釋型語言。)

歷史
上世紀50年代,IBM的John Backus帶領一個研究小組對FORTRAN語言及其編譯器進行開發。但由於當時人們對編譯理論了解不多,開發工作變得既復雜又艱苦。與此同時,Noam Chomsky開始了他對自然語言結構的研究。他的發現最終使得編譯器的結構異常簡單,甚至還帶有了一些自動化。Chomsky的研究導致了根據語言文法的難易程度以及識別它們所需要的演算法來對語言分類。正如現在所稱的Chomsky架構(Chomsky Hierarchy),它包括了文法的四個層次:0型文法、1型文法、2型文法和3型文法,且其中的每一個都是其前者的特殊情況。2型文法(或上下文無關文法)被證明是程序設計語言中最有用的,而且今天它已代表著程序設計語言結構的標准方式。分析問題(parsing problem,用於上下文無關文法識別的有效演算法)的研究是在60年代和70年代,它相當完善的解決了這個問題。現在它已是編譯原理中的一個標准部分。

有限狀態自動機(Finite Automaton)和正則表達式(Regular Expression)同上下文無關文法緊密相關,它們與Chomsky的3型文法相對應。對它們的研究與Chomsky的研究幾乎同時開始,並且引出了表示程序設計語言的單詞的符號方式。

人們接著又深化了生成有效目標代碼的方法,這就是最初的編譯器,它們被一直使用至今。人們通常將其稱為優化技術(Optimization Technique),但因其從未真正地得到過被優化了的目標代碼而僅僅改進了它的有效性,因此實際上應稱作代碼改進技術(Code Improvement Technique)。

當分析問題變得好懂起來時,人們就在開發程序上花費了很大的功夫來研究這一部分的編譯器自動構造。這些程序最初被稱為編譯器的編譯器(Compiler-compiler),但更確切地應稱為分析程序生成器(Parser Generator),這是因為它們僅僅能夠自動處理編譯的一部分。這些程序中最著名的是Yacc(Yet Another Compiler-compiler),它是由Steve Johnson在1975年為Unix系統編寫的。類似的,有限狀態自動機的研究也發展了一種稱為掃描程序生成器(Scanner Generator)的工具,Lex(與Yacc同時,由Mike Lesk為Unix系統開發)是這其中的佼佼者。

在70年代後期和80年代早期,大量的項目都貫注於編譯器其它部分的生成自動化,這其中就包括了代碼生成。這些嘗試並未取得多少成功,這大概是因為操作太復雜而人們又對其不甚了解。

編譯器設計最近的發展包括:首先,編譯器包括了更加復雜演算法的應用程序它用於推斷或簡化程序中的信息;這又與更為復雜的程序設計語言的發展結合在一起。其中典型的有用於函數語言編譯的Hindley-Milner類型檢查的統一演算法。其次,編譯器已越來越成為基於窗口的交互開發環境(Interactive Development Environment,IDE)的一部分,它包括了編輯器、連接程序、調試程序以及項目管理程序。這樣的IDE標准並沒有多少,但是對標準的窗口環境進行開發已成為方向。另一方面,盡管近年來在編譯原理領域進行了大量的研究,但是基本的編譯器設計原理在近20年中都沒有多大的改變,它現在正迅速地成為計算機科學課程中的中心環節。

在九十年代,作為GNU項目或其它開放源代碼項目的一部分,許多免費編譯器和編譯器開發工具被開發出來。這些工具可用來編譯所有的計算機程序語言。它們中的一些項目被認為是高質量的,而且對現代編譯理論感性趣的人可以很容易的得到它們的免費源代碼。

大約在1999年,SGI公布了他們的一個工業化的並行化優化編譯器Pro64的源代碼,後被全世界多個編譯器研究小組用來做研究平台,並命名為Open64。Open64的設計結構好,分析優化全面,是編譯器高級研究的理想平台。

編譯器是一種特殊的程序,它可以把以特定編程語言寫成的程序變為機器可以運行的機器碼。我們把一個程序寫好,這時我們利用的環境是文本編輯器。這時我程序把程序稱為源程序。在此以後程序員可以運行相應的編譯器,通過指定需要編譯的文件的名稱就可以把相應的源文件(通過一個復雜的過程)轉化為機器碼了。

編譯器工作方法
首先編譯器進行語法分析,也就是要把那些字元串分離出來。然後進行語義分析,就是把各個由語法分析分析出的語法單元的意義搞清楚。最後生成的是目標文件,我們也稱為obj文件。再經過鏈接器的鏈接就可以生成最後的可執行代碼了。有些時候我們需要把多個文件產生的目標文件進行鏈接,產生最後的代碼。我們把一過程稱為交叉鏈接。

閱讀全文

與編譯器開發的語言自然語言相關的資料

熱點內容
如何查看伺服器系統版本信息 瀏覽:512
成都市土地出讓金演算法 瀏覽:702
鋼筋加密標記 瀏覽:575
ps中擴展功能在文件夾的什麼位置 瀏覽:903
雙極壓縮機為什麼要先高壓 瀏覽:527
蘋果手機伺服器填什麼 瀏覽:832
android移動動畫效果 瀏覽:691
電子和伺服器是什麼意思 瀏覽:691
phpurl中文亂碼問題 瀏覽:893
程序員那麼可愛大結局陸漓產子 瀏覽:538
java如何從雲伺服器讀取本地文件 瀏覽:923
壓縮空氣軟管製作方法 瀏覽:911
天河三號演算法 瀏覽:924
php隊列教程 瀏覽:632
洪水命令 瀏覽:529
安卓怎麼弄成蘋果在線 瀏覽:435
谷歌web伺服器地址 瀏覽:900
安卓鎖屏圖片如何刪除 瀏覽:720
python3多進程編程 瀏覽:715
證明代碼是程序員寫的 瀏覽:397