㈠ 排序演算法有多少種
排序(Sorting) 是計算機程序設計中的一種重要操作,它的功能是將一個數據元素(或記錄)的任意序列,重新排列成一個關鍵字有序的序列。
排序就是把集合中的元素按照一定的次序排序在一起。一般來說有升序排列和降序排列2種排序,在演算法中有8中基本排序:
(1)冒泡排序;
(2)選擇排序;
(3)插入排序;
(4)希爾排序;
(5)歸並排序;
(6)快速排序;
(7)基數排序;
(8)堆排序;
(9)計數排序;
(10)桶排序。
插入排序
插入排序演算法是基於某序列已經有序排列的情況下,通過一次插入一個元素的方式按照原有排序方式增加元素。這種比較是從該有序序列的最末端開始執行,即要插入序列中的元素最先和有序序列中最大的元素比較,若其大於該最大元素,則可直接插入最大元素的後面即可,否則再向前一位比較查找直至找到應該插入的位置為止。插入排序的基本思想是,每次將1個待排序的記錄按其關鍵字大小插入到前面已經排好序的子序列中,尋找最適當的位置,直至全部記錄插入完畢。執行過程中,若遇到和插入元素相等的位置,則將要插人的元素放在該相等元素的後面,因此插入該元素後並未改變原序列的前後順序。我們認為插入排序也是一種穩定的排序方法。插入排序分直接插入排序、折半插入排序和希爾排序3類。
冒泡排序
冒泡排序演算法是把較小的元素往前調或者把較大的元素往後調。這種方法主要是通過對相鄰兩個元素進行大小的比較,根據比較結果和演算法規則對該二元素的位置進行交換,這樣逐個依次進行比較和交換,就能達到排序目的。冒泡排序的基本思想是,首先將第1個和第2個記錄的關鍵字比較大小,如果是逆序的,就將這兩個記錄進行交換,再對第2個和第3個記錄的關鍵字進行比較,依次類推,重復進行上述計算,直至完成第(n一1)個和第n個記錄的關鍵字之間的比較,此後,再按照上述過程進行第2次、第3次排序,直至整個序列有序為止。排序過程中要特別注意的是,當相鄰兩個元素大小一致時,這一步操作就不需要交換位置,因此也說明冒泡排序是一種嚴格的穩定排序演算法,它不改變序列中相同元素之間的相對位置關系。
選擇排序
選擇排序演算法的基本思路是為每一個位置選擇當前最小的元素。選擇排序的基本思想是,基於直接選擇排序和堆排序這兩種基本的簡單排序方法。首先從第1個位置開始對全部元素進行選擇,選出全部元素中最小的給該位置,再對第2個位置進行選擇,在剩餘元素中選擇最小的給該位置即可;以此類推,重復進行「最小元素」的選擇,直至完成第(n-1)個位置的元素選擇,則第n個位置就只剩唯一的最大元素,此時不需再進行選擇。使用這種排序時,要注意其中一個不同於冒泡法的細節。舉例說明:序列58539.我們知道第一遍選擇第1個元素「5」會和元素「3」交換,那麼原序列中的兩個相同元素「5」之間的前後相對順序就發生了改變。因此,我們說選擇排序不是穩定的排序演算法,它在計算過程中會破壞穩定性。
快速排序
快速排序的基本思想是:通過一趟排序演算法把所需要排序的序列的元素分割成兩大塊,其中,一部分的元素都要小於或等於另外一部分的序列元素,然後仍根據該種方法對劃分後的這兩塊序列的元素分別再次實行快速排序演算法,排序實現的整個過程可以是遞歸的來進行調用,最終能夠實現將所需排序的無序序列元素變為一個有序的序列。
歸並排序
歸並排序演算法就是把序列遞歸劃分成為一個個短序列,以其中只有1個元素的直接序列或者只有2個元素的序列作為短序列的遞歸出口,再將全部有序的短序列按照一定的規則進行排序為長序列。歸並排序融合了分治策略,即將含有n個記錄的初始序列中的每個記錄均視為長度為1的子序列,再將這n個子序列兩兩合並得到n/2個長度為2(當凡為奇數時會出現長度為l的情況)的有序子序列;將上述步驟重復操作,直至得到1個長度為n的有序長序列。需要注意的是,在進行元素比較和交換時,若兩個元素大小相等則不必刻意交換位置,因此該演算法不會破壞序列的穩定性,即歸並排序也是穩定的排序演算法。
㈡ 排序演算法比較
Private Sub Command1_Click()
Dim a(1 To 100) As Integer
For i = 1 To 100
a(i) = Int(Rnd * 101)
Next
For i = 1 To 100
For j = 1 To i
If a(i) < a(j) Then t = a(i): a(i) = a(j): a(j) = t
Next
Next
For i = 1 To 100
Print a(i);
If i Mod 10 = 0
㈢ 世界上最快的排序演算法
Timsort是一個自適應的、混合的、穩定的排序演算法,融合了歸並演算法和二分插入排序演算法的精髓,在現實世界的數據中有著特別優秀的表現。它是由Tim Peter於2002年發明的,用在Python這個編程語言裡面。這個演算法之所以快,是因為它充分利用了現實世界的待排序數據裡面,有很多子串是已經排好序的不需要再重新排序,利用這個特性並且加上合適的合並規則可以更加高效的排序剩下的待排序序列。
㈣ 排序演算法
可能沒理解你的意思…我覺得是四次,情況是恰好五個數是從小到大排列,abcde。只要比較a<b,b<c,c<d,d<e便可以了…
㈤ 在各類演算法中那種演算法排序是最快的
說句實話,沒有最快這一說。
如果不在乎浪費空間,應該是桶排序最快
如果整體基本有序,插入排序最快
如果考慮綜合情況,快速排序更加實用常見(希爾排序、堆排序等各種排序也各有優劣)
一般情況下,冒泡這種排序僅僅是名字起的有趣罷了,不太好用
㈥ 簡述各種排序演算法的優缺點
一、冒泡排序
已知一組無序數據a[1]、a[2]、……a[n],需將其按升序排列。首先比較a[1]與 a[2]的值,若a[1]大於a[2]則交換 兩者的值,否則不變。再比較a[2]與a[3]的值,若a[2]大於a[3]則交換兩者的值,否則不變。再比 較a[3]與a[4],以此 類推,最後比較a[n-1]與a[n]的值。這樣處理一輪後,a[n]的值一定是這組數據中最大的。再對a[1]~a[n- 1]以相同方法 處理一輪,則a[n-1]的值一定是a[1]~a[n-1]中最大的。再對a[1]~a[n-2]以相同方法處理一輪,以此類推。共處理 n-1 輪 後a[1]、a[2]、……a[n]就以升序排列了。
優點:穩定;
缺點:慢,每次只能移動相鄰兩個數據。
二、選擇排序
每一趟從待排序的數據元素中選出最小(或最大)的一個元素,順序放在已排好序的數列的最後,直到全部待排序的數 據元素排完。
選擇排序是不穩定的排序方法。
n 個記錄的文件的直接選擇排序可經過n-1 趟直接選擇排序得到有序結果:
①初始狀態:無序區為R[1..n],有序區為空。
②第1 趟排序 在無序區R[1..n]中選出關鍵字最小的記錄R[k],將它與無序區的第1 個記錄R[1]交換,使R[1..1]和R[2..n]分別變 為記錄個數增加1 個的新有序區和記錄個數減少1 個的新無序區。
③第i 趟排序
第i 趟排序開始時,當前有序區和無序區分別為R[1..i-1]和R(1≤i≤n-1)。該趟 排序從當前無序區中選出關鍵字最 小的記錄 R[k],將它與無序區的第1 個記錄R 交換,使R[1..i]和R 分別變為記錄個數增加1 個的新有序區和記錄個數減少 1 個的新無序區。
這樣,n 個記錄的文件的直接選擇排序可經過n-1 趟直接選擇排序得到有序結果。
優點:移動數據的次數已知(n-1 次);
缺點:比較次數多。
三、插入排序
已知一組升序排列數據a[1]、a[2]、……a[n],一組無序數據b[1]、 b[2]、……b[m],需將二者合並成一個升序數列。 首先比較b[1]與a[1]的值,若b[1]大於a[1],則跳過,比較b[1]與a[2]的值, 若b[1]仍然大於a[2],則繼續跳過,直 到b[1]小於a 數組中某一數據a[x],則將a[x]~a[n]分別向後移動一位,將b[1]插入到原來 a[x]的位置這就完成了b[1] 的插入。b[2]~b[m]用相同方法插入。(若無數組a,可將b[1]當作n=1 的數組a)
優點:穩定,快;
缺點:比較次數不一定,比較次數越少,插入點後的數據移動越多,特別是當數據總量龐大的時候,但用鏈表可以解決 這個問題。
四、縮小增量排序
由希爾在1959 年提出,又稱希爾排序(shell 排序)。
已知一組無序數據a[1]、a[2]、……a[n],需將其按升序排列。發現當n 不大時,插入 排序的效果很好。首先取一增 量d(d<n),將a[1]、a[1+d]、a[1+2d]……列為第一組,a[2]、a[2+d]、 a[2+2d]……列為第二組……,a[d]、a[2d]、a[3d]……="" 列為最後一組以次類推,在各組內用插入排序,然後取d'<d,重復上述操="" 作,直到d="1。"
優點:快,數據移動少;=""
缺點:不穩定,d="" 的取值是多少,應取多少個不同的值,都無法確切知道,只能憑經驗來取。=""
五、快速排序=""
快速排序是冒泡排序的改進版,是目前已知的最快的排序方法。
="" 已知一組無序數據a[1]、a[2]、……a[n],需將其按升序排列。首先任取數據a[x]="" 作為基準。比較a[x]與其它數據並="" 排序,使a[x]排在數據的第k="" 位,並且使a[1]~a[k-1]中的每一個數="" 據a[x],然後采 用分治的策略分別對a[1]~a[k-1]和a[k+1]~a[n] 兩組數據進行快速排序。
優點:極快,數據移動少;
缺點:不穩定。
㈦ 計算機的排序演算法有幾種
這基礎的排序演算法有很多,有二分排序法屬性排序法,冒泡排序法
㈧ 排序演算法的實現和比較
int main()
{
int i,j,t,a[10];
printf("Please input 10 integers:\n");
for(i=0;i<10;i++)
scanf("%d",&a[i]);
for(i=0;i<9;i++) /* 冒泡法排序 */
for(j=0;j<10-i-1;j++)
if(a[j]>a[j+1])
{t=a[j];/* 交換a[i]和a[j] */
a[j]=a[j+1];
a[j+1]=t;