編譯選項個數
內核的編譯選項的個數非常多, v2.6.38的內核中就有 12 000 個左右的設置選項(這是包含所有arch的配置選項).
內核編譯選項不僅多, 有些編譯選項之間還存在依賴關系, 所以手動設置編譯選項幾乎是不可能的.
值得慶幸的是, 只要知道自己需要設置的那些選項, 就可以使用 make ***config 來進行設置, 它還會自動處理依賴關系.
配置編譯選項:
設置內核編譯選項是通過 kconfig 這個工具來完成的.
kconfig 的源碼就是內核代碼中 script/kconfig 目錄下
各個編譯選項的選擇有3種方式:
編譯方法:
make menuconfig :: 源碼根目錄下生成 .config (沒有會自動生成), .config中就是各個內核編譯選項的選擇狀況.
make defconfig :: 根據當前系統的架構默認 .config 生成內核源碼目錄下的 .config (每個架構的配置文件: ex. arch/x86/configs/x86_64_defconfig)
make oldconfig :: 將已有的 .config 放到源碼根目錄下後執行, 目的是為了復用之前的內核編譯選項的配置.
make xconfig :: 圖形化配置, 需要qt3, 個人覺得沒有必要, 有 make menuconfig 就足夠了.
make localmodconfig :: 生成以正在使用的內核模塊為對象的 .config
=y :: 直接編譯到內核中
=m :: 以模塊方式編譯到內核中
不設置 :: 不編譯
『貳』 剛剛開始學習Linux,不知道Make menuconfig怎麼使用
Linux內核的make menuconfig實際上是執行了:
scripts/kconfig/mconf arch/mips/Kconfig
mconf表示是 menuconfig,如果是用基於QT的配置工具,則執行的將會是qconf,arch/mips/Kconfig是要讀取的Kconfig文件,這個會因平台而異,這里因為針對的是MIPS平台,故讀取的是arch/mips/目錄下的Kconfig文件。
如果Linux源碼樹頂層目錄下已有.config文件,make menuconfig則從.config文件取默認參數,如果沒有.config則從各個Kconfig中取默認參數。
mconf會把用戶的選擇保存到Linux源碼樹頂層目錄的.config文件中,然後解析該文件並將解析結果寫入到include/linux/autoconf.h 中。include/linux/autoconf.h將會被include/linux/config.h包含,因此,需要關心配置情況的內核源文件只需要#include <linux/config.h>即可。
mconf解析.config文件時所採用的規則具體要仔細分析mconf.c源代碼。
『叄』 linux0.12內核代碼多少行
27852148行租銷。Linux是一種自由和開放源代碼的類UNIX操作系統,從統計數據來看,Linux0.12內核源碼樹共有27852148行,包括文檔、Kconfig文兆改件、樹中的用戶空間實用程序等。Linux也是自由軟體和弊猜游開放源代碼軟體發展中最著名的例子。
『肆』 如何編譯linux版本
編譯安裝內核
下載並解壓內核
解壓內核:tar xf linux-2.6.XX.tar.xz
定製內核:make menuconfig
參見makefile menuconfig過程講解
編譯內核和模塊:make
生成內核模塊和vmlinuz,initrd.img,Symtem.map文件
安裝內核和模塊:sudo make moles_install install
復制模塊文件到/lib/moles目錄下、復制config,vmlinuz,initrd.img,Symtem.map文件到/boot目錄、更新grub
其他命令:
make mrprobe:命令的作用是在每次配置並重新編譯內核前需要先執行「make mrproper」命令清理源代碼樹,包括過去曾經配置的內核配置文件「.config」都將被清除。即進行新的編譯工作時將原來老的配置文件給刪除到,以免影響新的內核編譯。
make dep:生成內核功能間的依賴關系,為編譯內核做好准備。
幾個重要的Linux內核文件介紹
config
使用make menuconfig 生成的內核配置文件,決定將內核的各個功能系統編譯進內核還是編譯為模塊還是不編譯。
vmlinuz 和 vmlinux
vmlinuz是可引導的、壓縮的內核,「vm」代表「Virtual Memory」。Linux 支持虛擬內存,不像老的操作系統比如DOS有640KB內存的限制,Linux能夠使用硬碟空間作為虛擬內存,因此得名「vm」。vmlinuz是可執行的Linux內核,vmlinuz的建立有兩種方式:一是編譯內核時通過「make zImage」創建,zImage適用於小內核的情況,它的存在是為了向後的兼容性;二是內核編譯時通過命令make bzImage創建,bzImage是壓縮的內核映像,需要注意,bzImage不是用bzip2壓縮的,bzImage中的bz容易引起誤解,bz表示「big zImage」,bzImage中的b是「big」意思。 zImage(vmlinuz)和bzImage(vmlinuz)都是用gzip壓縮的。它們不僅是一個壓縮文件,而且在這兩個文件的開頭部分內嵌有gzip解壓縮代碼,所以你不能用gunzip 或 gzip –dc解包vmlinuz。 內核文件中包含一個微型的gzip用於解壓縮內核並引導它。兩者的不同之處在於,老的zImage解壓縮內核到低端內存(第一個640K),bzImage解壓縮內核到高端內存(1M以上)。如果內核比較小,那麼可以採用zImage 或bzImage之一,兩種方式引導的系統運行時是相同的。大的內核採用bzImage,不能採用zImage。 vmlinux是未壓縮的內核,vmlinuz是vmlinux的壓縮文件。
initrd.img
initrd是「initial ramdisk」的簡寫。initrd一般被用來臨時的引導硬體到實際內核vmlinuz能夠接管並繼續引導的狀態。比如initrd- 2.4.7-10.img主要是用於載入ext3等文件系統及scsi設備的驅動。如果你使用的是scsi硬碟,而內核vmlinuz中並沒有這個 scsi硬體的驅動,那麼在裝入scsi模塊之前,內核不能載入根文件系統,但scsi模塊存儲在根文件系統的/lib/moles下。為了解決這個問題,可以引導一個能夠讀實際內核的initrd內核並用initrd修正scsi引導問題,initrd-2.4.7-10.img是用gzip壓縮的文件。initrd映象文件是使用mkinitrd創建的,mkinitrd實用程序能夠創建initrd映象文件,這個命令是RedHat專有的,其它Linux發行版或許有相應的命令。這是個很方便的實用程序。具體情況請看幫助:man mkinitrd
System.map是一個特定內核的內核符號表,由「nm vmlinux」產生並且不相關的符號被濾出。
下面幾行來自/usr/src/linux-2.4/Makefile:
nm vmlinux | grep -v '(compiled)|(.o$$)|( [aUw] )|(..ng$$)|(LASH[RL]DI)' | sort > System.map
在進行程序設計時,會命名一些變數名或函數名之類的符號。Linux內核是一個很復雜的代碼塊,有許許多多的全局符號, Linux內核不使用符號名,而是通過變數或函數的地址來識別變數或函數名,比如不是使用size_t BytesRead這樣的符號,而是像c0343f20這樣引用這個變數。 對於使用計算機的人來說,更喜歡使用那些像size_t BytesRead這樣的名字,而不喜歡像c0343f20這樣的名字。內核主要是用c寫的,所以編譯器/連接器允許我們編碼時使用符號名,而內核運行時使用地址。 然而,在有的情況下,我們需要知道符號的地址,或者需要知道地址對應的符號,這由符號表來完成,符號表是所有符號連同它們的地址的列表。
Linux 符號表使用到2個文件: /proc/ksyms 、System.map 。/proc/ksyms是一個「proc file」,在內核引導時創建。實際上,它並不真正的是一個文件,它只不過是內核數據的表示,卻給人們是一個磁碟文件的假象,這從它的文件大小是0可以看 出來。然而,System.map是存在於你的文件系統上的實際文件。當你編譯一個新內核時,各個符號名的地址要發生變化,你的老的System.map 具有的是錯誤的符號信息,每次內核編譯時產生一個新的System.map,你應當用新的System.map來取代老的System.map。
雖然內核本身並不真正使用System.map,但其它程序比如klogd, lsof和ps等軟體需要一個正確的System.map。如果你使用錯誤的或沒有System.map,klogd的輸出將是不可靠的,這對於排除程序故障會帶來困難。沒有System.map,你可能會面臨一些令人煩惱的提示信息。 另外少數驅動需要System.map來解析符號,沒有為你當前運行的特定內核創建的System.map它們就不能正常工作。 Linux的內核日誌守護進程klogd為了執行名稱-地址解析,klogd需要使用System.map。System.map應當放在使用它的軟體能夠找到它的地方。執行:man klogd可知,如果沒有將System.map作為一個變數的位置給klogd,那麼它將按照下面的順序,在三個地方查找System.map: /boot/System.map 、/System.map 、/usr/src/linux/System.map
System.map也有版本信息,klogd能夠智能地查找正確的映象(map)文件。
makefile menuconfig過程講解
當我們在執行make menuconfig這個命令時,系統到底幫我們做了哪些工作呢?這裡面一共涉及到了一下幾個文件我們來一一探討
Linux內核根目錄下的scripts文件夾
arch/$ARCH/Kconfig文件、各層目錄下的Kconfig文件
Linux內核根目錄下的makefile文件、各層目錄下的makefile文件
Linux內核根目錄下的的.config文件、arch/$ARCH/configs/下的文件
Linux內核根目錄下的 include/generated/autoconf.h文件
1)scripts文件夾存放的是跟make menuconfig配置界面的圖形繪制相關的文件,我們作為使用者無需關心這個文件夾的內容
2)當我們執行make menuconfig命令出現上述藍色配置界面以前,系統幫我們做了以下工作:
首先系統會讀取arch/$ARCH/目錄下的Kconfig文件生成整個配置界面選項(Kconfig是整個linux配置機制的核心),那麼ARCH環境變數的值等於多少呢?它是由linux內核根目錄下的makefile文件決定的,在makefile下有此環境變數的定義:
SUBARCH := $(shell uname -m | sed -e s/i.86/i386/ -e s/sun4u/sparc64/ \
-e s/arm.*/arm/ -e s/sa110/arm/ \
-e s/s390x/s390/ -e s/parisc64/parisc/ \
-e s/ppc.*/powerpc/ -e s/mips.*/mips/ \
-e s/sh[234].*/sh/ )
..........
export KBUILD_BUILDHOST := $(SUBARCH)
ARCH ?= $(SUBARCH)
CROSS_COMPILE ?=
或者通過 make ARCH=arm menuconfig命令來生成配置界面
比如教務處進行考試,考試科數可能有外語、語文、數學等科,這里我們選擇了arm科可進行考試,系統就會讀取arm/arm/kconfig文件生成配置選項(選擇了arm科的卷子),系統還提供了x86科、milps科等10幾門功課的考試題
3)假設教務處比較「仁慈」,為了怕某些同學做錯試題,還給我們准備了一份參考答案(默認配置選項),存放在arch/$ARCH/configs/目錄下,對於arm科來說就是arch/arm/configs文件夾:
此文件夾中有許多選項,系統會讀取哪個呢?內核默認會讀取linux內核根目錄下.config文件作為內核的默認選項(試題的參考答案),我們一般會根據開發板的類型從中選取一個與我們開發板最接近的系列到Linux內核根目錄下(選擇一個最接近的參考答案)
4).config
假設教務處留了一個心眼,他提供的參考答案並不完全正確(.config文件與我們的板子並不是完全匹配),這時我們可以選擇直接修改.config文件然後執行make menuconfig命令讀取新的選項。但是一般我們不採取這個方案,我們選擇在配置界面中通過空格、esc、回車選擇某些選項選中或者不選中,最後保存退出的時候,Linux內核會把新的選項(正確的參考答案)更新到.config中,此時我們可以把.config重命名為其它文件保存起來(當你執行make distclean時系統會把.config文件刪除),以後我們再配置內核時就不需要再去arch/arm/configs下考取相應的文件了,省去了重新配置的麻煩,直接將保存的.config文件復制為.config即可.
5)經過以上兩步,我們可以正確的讀取、配置我們需要的界面了,那麼他們如何跟makefile文件建立編譯關系呢?當你保存make menuconfig選項時,系統會除了會自動更新.config外,還會將所有的選項以宏的形式保存在Linux內核根目錄下的 include/generated/autoconf.h文件下
內核中的源代碼就都會包含以上.h文件,跟宏的定義情況進行條件編譯。
當我們需要對一個文件整體選擇如是否編譯時,還需要修改對應的makefile文件,例如:
我們選擇是否要編譯s3c2410_ts.c這個文件時,makefile會根據CONFIG_TOUCHSCREEN_S3C2410來決定是編譯此文件,此宏是在Kconfig文件中定義,當我們配置完成後,會出現在.config及autconf中,至此,我們就完成了整個linux內核的編譯過程。
最後我們會發現,整個linux內核配置過程中,留給用戶的介面其實只有各層Kconfig、makefile文件以及對應的源文件。
比如我們如果想要給內核增加一個功能,並且通過make menuconfig控制其聲稱過程
首先需要做的工作是:修改對應目錄下的Kconfig文件,按照Kconfig語法增加對應的選項;
其次執行make menuconfig選擇編譯進內核或者不編譯進內核,或者編譯為模塊,.config文件和autoconf.h文件會自動生成;
最後修改對應目錄下的makefile文件完成編譯選項的添加;
最後的最後執行make命令進行編譯。
Kconfig和Makefile
Linux內核源碼樹的每個目錄下都有兩個文檔Kconfig和Makefile。分布到各目錄的Kconfig構成了一個分布式的內核配置資料庫,每個Kconfig分別描述了所屬目錄源文檔相關的內核配置菜單。在執行內核配置make menuconfig時,從Kconfig中讀出菜單,用戶選擇後保存到.config的內核配置文檔中。在內核編譯時,主Makefile調用這 個.config,就知道了用戶的選擇。這個內容說明了,Kconfig就是對應著內核的每級配置菜單。
假如要想添加新的驅動到內核的源碼中,要修改Kconfig,這樣就能夠選擇這個驅動,假如想使這個驅動被編譯,則要修改Makefile。添加新 的驅動時需要修改的文檔有兩種(如果添加的只是文件,則只需修改當前層Kconfig和Makefile文件;如果添加的是目錄,則需修改當前層和目錄下 的共一對Kconfig和Makefile)Kconfig和Makefile。要想知道怎麼修改這兩種文檔,就要知道兩種文檔的語法結構,Kconfig的語法參見參考文獻《【linux-2.6.31】kbuild》。
Makefile 文件包含 5 部分:
Makefile 頂層的 Makefile
.config 內核配置文件
arch/$(ARCH)/Makefile 體系結構 Makefile
scripts/Makefile.* 適用於所有 kbuild Makefile 的通用規則等
kbuild Makefiles 大約有 500 個這樣的文件
頂層 Makefile 讀取內核配置操作產生的.config 文件,頂層 Makefile 構建兩個主要的目標:vmlinux(內核映像)和 moles(所有模塊文件)。它通過遞歸訪問內核源碼樹下的子目錄來構建這些目標。訪問哪些子目錄取決於內核配置。頂層 Makefile 包含一個體系結構 Makefile,由 arch/$(ARCH)/Makefile 指定。體系結構 Makefile 文件為頂層 Makefile 提供了特定體系結構的信息。每個子目錄各有一個 kbuild文件和Makefile 文件來執行從上層傳遞下來的命令。kbuild和Makefile文件利用.config 文件中的信息來構造由 kbuild 構建內建或者模塊對象使用的各種文件列表。scripts/Makefile.*包含所有的定義/規則,等等。這些信息用於使用 kbuild和 Makefile 文件來構建內核。Makefile的語法參見參考文獻《【linux-2.6.31】kbuild》。
參考文獻
【linux-2.6.31】內核編譯指南.pdf
【linux-2.6.31】kbuild.pdf
Linker script in Linux.pdf
linux內核的配置機制及其編譯過程
Linux內核編譯過程詳解
Linux Kconfig及Makefile學習
『伍』 linux內核編譯加入驅動
1、內核編譯前期make menu時有固定的硬體支持列表,你選定就行了
2、如果你的網卡驅動支持加到內核源碼,你就能在make menu是選定你的網卡驅動
3、讀一下網卡驅動源碼的INSTALL或README文檔,肯定有安裝步驟
4、一般網卡驅動編譯後,可以用insmod安裝使用
『陸』 為什麼我的ubuntu內核目錄/usr/src/linux-headers-3.16.0-30 中找不到源代碼,沒有.c文件
同求呀!!!!樓主找到答案激余了沒T_T
——————
原來是還沒有安裝內核源碼,在終端用apt-get install linux-source命令,然後解壓tar.gz包,接下來的還在試驗中,祝我好運
———明畝滾———耐隱
我成功了
『柒』 請詳細說明linux內核源碼中make menuconfig命令, .config文件, Kconfig文件, Makefile文件的關系
make menuconfig是菜單配置命令,就是自己選擇配置哪些功能
.config是配置文件者余,完成配團嫌燃置後會在內核源代碼根目錄下塌虛產生該文件
Makefile,相應文件夾下的Makefile用於編譯相應文件夾下的文件
Kconfig暫時不知道
『捌』 從linux系統中提取出kernel config
師(PartitionMagicV8.05h)分出一個10G左右空間、留著給opensuse使用,這一步我試圖把我的最後一個盤符(F)重新分區,結果失敗了,所以,我乾脆把這個盤格式化了。
2、把iso提取(解壓)到一個fat32分區下面,建議用UltraISO,比如說提取到e:/suse文件夾下,記得一定是fat32,如果原有的分區都是ntfs的,可以採用分區魔術師重新格式化某個分區,在格式化時選擇「fat32」。
3、在suse文件夾下有個openSUSE10_3_LOCAL.exe文件,點擊安裝後,重新啟動電腦,就會在windows引導菜單上看到安裝suse的菜單了,點擊該菜單,就會進行安裝了。
4、安裝過程中有一步很重要,需要選擇suse文件夾所在目錄,一定要選對分區(可以根據分區的大小來判斷,然後輸入/SUSE(在windows下的e盤下,雖然是小寫,這里一定要大寫)。剩下的就和光碟機安裝一樣了,網上有很多教程,我就不詳細說了。
注意:安裝過程需要分區,分區時,如果要保留windows的分區,要選擇「更改」——「分區」——「專家」模式,然後既可以使用原來的分區,也可以進行重新分區,比如說,我原來的F盤本來就是空的,那麼我可以選擇先把該分區刪除,然後再添加,可以自己配置大小,一般需要三個新的分區,第一個「swap,裝載點/swap」,第二個「ext3,裝入點/boot」,第三個「ext3,裝入點/」就可以。
Attansic L2 驅動問題
我第一次安裝完成後,發現網卡顯示(未連接),以為自己沒有安裝好,就重新安裝了,這一次在安裝的過程中特意注意了一下網路配置,結果發現在安裝系統時,進行到網路配置這一步時,網卡的信息依舊是(未連接),更談不上編輯了,還是先跳過吧。
到網上查找相關資料,發現問這類問題的帖子倒是有一些,就是沒有太具體的答案,不過還是有了一些思路,好像是網卡驅動沒裝好,所以根本就沒有識別網卡,順便說一句,我的電腦是華碩P5G-MX主板,Attansic L2集成網卡。
到網上進行查找,找到了網卡的linux驅動,下載後,看說明(一個readme文件,全是英文,其實就是把該文件解壓,放到home/username文件夾下就行),由於本人是linux菜鳥,所以真是費了一番周折的,最後驅動放在了「home/用戶名」文件夾下,進入src目錄,在make時,報錯了,「kernel source not found」。
繼續查找,原來是要安裝linux內核源碼,通過「uname -r」命令,查看到我的系統內核是2.6.22.5-31版本的,所以到網上下載了該版本的源碼,rpm格式的,kernel-source-2.6.22.17-0.1.src.rpm,還有linux-2.6.22.5.tar.gz這種格式的,我不會裝,rpm格式的很好裝,在opensuse中,直接點擊,然後在點擊「Yast安裝」就可以了。這回又重新回到了驅動所在的src文件夾下,再次運行make命令,唉,這次顯示的是另外的錯誤「linux kernel surce not configured -missing config.h」。
繼續查找,可能我下載的驅動版本不對,於是按照帖子中說的重新下載了網卡驅動,再次make,多麼希望能成功呀,可是再次提示錯誤「Compiler not found 停止」。
原來沒裝編譯器,到網上下載gcc編譯器,ftp://mirror.switch.ch/mirror/scientificlinux/40rolling/i386/SL/RPMS/gcc-3.4.6-9.i386.rpm,安裝,再次make,還是有錯誤「『struct vlan_group』 has no member named 『vlan_devices』「,」at_main.c 1488「等等之類的。
解決辦法是:打開at_main.c文件,兩個調試函數at_vlan_rx_kill_vid at_restore_vlan 去掉函數的實現部分,直接return,這回在make,make install,成功了,高興呀!
重新啟動電腦,發現網卡真的識別了,好幾天才成功的。
『玖』 Linux 內核 net/bridge/netfilter源代碼分析求助
netfilter這種專業級問題,就別來知道了,我們研究這玩意 都刻意迴避外傳,一個勁往svn里合呢,你還上來問! 你看看有論壇啥的沒,那些版主啦 有空的技術牛人能寫博客,你搜搜去吧。
『拾』 我在電腦上安裝了linux操作系統,linux的源碼應該是在系統的某個目錄下吧,請問是在哪個目錄呢謝謝
首先研究 Linux 源代碼樹的頂層目錄,它通常(但不總是)位於 /usr/src/linux-。我們不會研究得過於詳細,因為 Linux 源代碼經常會發生變化,但是,我們將嘗試讓給出的信息足以找出特定驅動程序或函數的位置。
Makefile:這個文件是整個源代碼樹的頂層 makefile。它定義了很多實用的變數和規則,比如默認的 gcc 編譯標記。
Documentation/:這個目錄中包含很多關於配置內核、運行 ramdisk 等任務的實用信息(但通常是過時的)。不過,與不同配置選項相應的幫助條目並不在這里 —— 它們在每個源代碼目錄的 Kconfig 文件中。
arch/:所有與體系結構相關的代碼都在這個目錄以及 include/asm- 目錄中。在此目錄中,每種體系結構都有自己的目錄。例如,用於基於 PowerPC 的計算機的代碼位於 arch/ppc 目錄中。在這些目錄里,可以找到底層內存管理、中斷處理、早期初始化、匯編常式,等等。
crypto/:這是內核本身所用的加密 API。
drivers/:按照慣例,在此目錄的子目錄中可以找到運行外圍設備的代碼。包括視頻驅動程序、網卡驅動程序、底層 SCSI 驅動程序,以及其他類似的驅動程序。例如,在 drivers/net 中可以找到大部分網卡驅動程序。將一類驅動程序組合在一起的某些更高層代碼,可能會(也可能不會)像底層驅動程序本身那些包含在同一目錄中。
fs/:通用文件系統的代碼(稱做 VFS,即 Virtual File System)和各個不同文件系統的代碼都可以在這個目錄中找到。ext2 文件系統是在 Linux 中最常廣泛使用的文件系統之一;在 fs/ext2 中可以找到讀取 ext2 格式的代碼。並不是所有文件系統都會編譯或運行;對某些尋找內核項目的人而言,更生僻的文件系統永遠都是理想的候選者。
include/:在 .c 文件的開頭所包含的大部分頭文件都可以在這個目錄中找到。 asm- 目錄下是與體系結構相關的包含(include )文件。部分內核構建過程創建從 asm 指定 asm- 的符號鏈接。這樣,無需將其固定編碼到 .c 文件 #include 就可以獲得用於那個體系結構的正確文件。其他目錄中包含的是 非-體系結構-相關 的頭文件。如果在不只一個 .c 文件中使用了某個結構體、常量或者變數,那麼它可能應該放入其中一個頭文件中。
init/:這個目錄中的文件包括 main.c、創建 早期用戶空間(early userspace) 的代碼,以及其他初始化代碼。可以認為 main.c 是內核「粘合劑(glue)」。在下一部分將深入討論 main.c。早期用戶空間提供了 Linux 內核引導起來時所需要的功能,而這些功能並不需要在內核本身運行。
ipc/:IPC 的意思是 進程間通信(interprocess communication)。它包含了共享內存、信號量以及其他形式 IPC 的代碼。
kernel/:不適合放在任何其他位置的通用內核級代碼位於此處。這里有高層系統調用代碼,以及 printk() 代碼、調度程序、信號處理代碼,等等。文件名包含很多信息,所以可以使用 ls kernel/,並非能常准確地猜到每個文件的功能。
lib/:這里是對所有內核代碼都通用的實用常式。常見的字元串操作、調試常式,以及命令行解析代碼都位於此處。
mm/:這個目錄中是高層次內核管理代碼。聯合使用這些常式以及底層的與體系結構相關的常式(通常位於 arch//mm/ 目錄中)來實現虛擬內存(Virtual memory,VM)。在這里會完成早期內存管理(在內存子系統完全建立起來之前需要它),以及文件的內存映射、頁高速緩存管理、內存分配、RAM 中頁的清除(還有很多其他事情)。
net/:這里是高層網路代碼。底層網路驅動程序與此層次代碼交換數據包,這個層次的代碼可以根據數據包將數據傳遞給用戶層應用程序,或者丟棄數據,或者在內核中使用它。net/core 包含大部分不同的網路協議都可以使用的代碼,和某些位於 net/ 目錄本身中的文件一樣。特定的網路協議在 net/ 的子目錄下實現。例如,在 net/ipv4 目錄中可以找到 IP(版本 4)代碼。
scripts/:這個目錄中包含的腳本可用於內核的構建,但並不將任何代碼加入到內核本身之中。例如,各種配置工具可以將它們的文件放在這里。
security/:在這里可以找到不同 Linux 安全模型的代碼,比如 NSA Security-Enhanced Linux 以及套接字和網路安全鉤子函數(hooks),以及其他安全選項。
sound/:這里放置的是音效卡驅動程序和其他與聲音相關的代碼。
usr/:此目錄中的代碼用於構建包含 root 文件系統映像的 cpio-格式 的歸檔文件,用於早期用戶空間。