導航:首頁 > 源碼編譯 > python演算法庫安裝

python演算法庫安裝

發布時間:2023-04-24 07:35:54

A. 如何卸載python 安裝 anaconda

一、安裝Python
雙擊下載的安裝包,安裝過程需要注意修改添加程序到環境變數。

二、 Anaconda科學計算包
Python是一種強大的編程語言,其提供了很多用於科學計算的模塊,常見的包括numpy、scipy和matplotlib。
要利用Python進行科學計算,就需要一一安裝所需的模塊,而這些模塊可能又依賴於其它的軟體包或庫,因而安裝和使用起來相對麻煩。
幸好有人專門在做這一類事情,將科學計算所需要的模塊都編譯好,然後打包以發行版的形式供用戶使用,Anaconda就是其中一個常用的科學計算發行版。
同類的還有Python(x,y)、Canopy,相較而言還是比較推薦Anaconda。當然Anaconda除了集成常用的包外,它也擁有spyder IDE、IPython、Jupyter Notebook,可以滿足你多種使用環境提高便利性。
1.下載Anaconda
根據版本選擇合適的安裝包,需要注意的是,如果前面裝了python需要卸載掉,因為Anaconda自帶python環境,同樣的也分Python2.x和Python3.x,這里我們選擇Python3.5。

2.安裝Anaconda
注意這里選擇Just Me,否則可能導致快捷啟動找不到程序。

如果你已經安裝好Anaconda,恭喜你可以省掉很多安裝第三方庫的時間。

三、使用建議
如果你不怕折騰可以使用Python官方安裝包自行安裝第三方庫,再使用sublime文本便捷器來寫入代碼;如果你對計算機不是特別了解則推薦安裝Anaconda可以省掉很多不必要的麻煩,再搭配Pycharm使用即可。
四、 第三方庫的安裝及卸載
python中,安裝第三方模塊,是通過管理工具pip完成的。
可使用已經安裝好的Anaconda去安裝第三方庫(SimpleITK)
運行打開 Anaconda Prompt
pip install SimpleITK

安裝常用的Python Imaging Library(PIL),這是Python下非常強大的處理圖像的工具庫。不過,PIL目前只支持到Python 2.7,並且有年頭沒有更新了,因此,基於PIL的Pillow項目開發非常活躍,並且支持最新的Python 3。
因此,安裝Pillow的命令就是
pip install Pillow

有了Pillow,處理圖片易如反掌。隨便找個圖片生成縮略圖:
>>> from PIL import Image
>>> im = Image.open('test.png')
>>> print(im.format, im.size, im.mode)
PNG (400, 300) RGB
>>> im.thumbnail((200, 100))
>>> im.save('thumb.jpg', 'JPEG')

卸載第三方庫
pip uninstall SimpleITK

B. 建議收藏!10 種 Python 聚類演算法完整操作示例

聚類或聚類分析是無監督學習問題。它通常被用作數據分析技術,用於發現數據中的有趣模式,例如基於其行為的客戶群。有許多聚類演算法可供選擇,對於所有情況,沒有單一的最佳聚類演算法。相反,最好探索一系列聚類演算法以及每種演算法的不同配置。在本教程中,你將發現如何在 python 中安裝和使用頂級聚類演算法。完成本教程後,你將知道:

聚類分析,即聚類,是一項無監督的機器學習任務。它包括自動發現數據中的自然分組。與監督學習(類似預測建模)不同,聚類演算法只解釋輸入數據,並在特徵空間中找到自然組或群集。

群集通常是特徵空間中的密度區域,其中來自域的示例(觀測或數據行)比其他群集更接近群集。群集可以具有作為樣本或點特徵空間的中心(質心),並且可以具有邊界或范圍。

聚類可以作為數據分析活動提供幫助,以便了解更多關於問題域的信息,即所謂的模式發現或知識發現。例如:

聚類還可用作特徵工程的類型,其中現有的和新的示例可被映射並標記為屬於數據中所標識的群集之一。雖然確實存在許多特定於群集的定量措施,但是對所識別的群集的評估是主觀的,並且可能需要領域專家。通常,聚類演算法在人工合成數據集上與預先定義的群集進行學術比較,預計演算法會發現這些群集。

有許多類型的聚類演算法。許多演算法在特徵空間中的示例之間使用相似度或距離度量,以發現密集的觀測區域。因此,在使用聚類演算法之前,擴展數據通常是良好的實踐。

一些聚類演算法要求您指定或猜測數據中要發現的群集的數量,而另一些演算法要求指定觀測之間的最小距離,其中示例可以被視為「關閉」或「連接」。因此,聚類分析是一個迭代過程,在該過程中,對所識別的群集的主觀評估被反饋回演算法配置的改變中,直到達到期望的或適當的結果。scikit-learn 庫提供了一套不同的聚類演算法供選擇。下面列出了10種比較流行的演算法:

每個演算法都提供了一種不同的方法來應對數據中發現自然組的挑戰。沒有最好的聚類演算法,也沒有簡單的方法來找到最好的演算法為您的數據沒有使用控制實驗。在本教程中,我們將回顧如何使用來自 scikit-learn 庫的這10個流行的聚類演算法中的每一個。這些示例將為您復制粘貼示例並在自己的數據上測試方法提供基礎。我們不會深入研究演算法如何工作的理論,也不會直接比較它們。讓我們深入研究一下。

在本節中,我們將回顧如何在 scikit-learn 中使用10個流行的聚類演算法。這包括一個擬合模型的例子和可視化結果的例子。這些示例用於將粘貼復制到您自己的項目中,並將方法應用於您自己的數據。

1.庫安裝

首先,讓我們安裝庫。不要跳過此步驟,因為你需要確保安裝了最新版本。你可以使用 pip Python 安裝程序安裝 scikit-learn 存儲庫,如下所示:

接下來,讓我們確認已經安裝了庫,並且您正在使用一個現代版本。運行以下腳本以輸出庫版本號。

運行該示例時,您應該看到以下版本號或更高版本。

2.聚類數據集

我們將使用 make _ classification ()函數創建一個測試二分類數據集。數據集將有1000個示例,每個類有兩個輸入要素和一個群集。這些群集在兩個維度上是可見的,因此我們可以用散點圖繪制數據,並通過指定的群集對圖中的點進行顏色繪制。這將有助於了解,至少在測試問題上,群集的識別能力如何。該測試問題中的群集基於多變數高斯,並非所有聚類演算法都能有效地識別這些類型的群集。因此,本教程中的結果不應用作比較一般方法的基礎。下面列出了創建和匯總合成聚類數據集的示例。

運行該示例將創建合成的聚類數據集,然後創建輸入數據的散點圖,其中點由類標簽(理想化的群集)著色。我們可以清楚地看到兩個不同的數據組在兩個維度,並希望一個自動的聚類演算法可以檢測這些分組。

已知聚類著色點的合成聚類數據集的散點圖接下來,我們可以開始查看應用於此數據集的聚類演算法的示例。我已經做了一些最小的嘗試來調整每個方法到數據集。3.親和力傳播親和力傳播包括找到一組最能概括數據的範例。

它是通過 AffinityPropagation 類實現的,要調整的主要配置是將「 阻尼 」設置為0.5到1,甚至可能是「首選項」。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,我無法取得良好的結果。

數據集的散點圖,具有使用親和力傳播識別的聚類

4.聚合聚類

聚合聚類涉及合並示例,直到達到所需的群集數量為止。它是層次聚類方法的更廣泛類的一部分,通過 AgglomerationClustering 類實現的,主要配置是「 n _ clusters 」集,這是對數據中的群集數量的估計,例如2。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以找到一個合理的分組。

使用聚集聚類識別出具有聚類的數據集的散點圖

5.BIRCHBIRCH

聚類( BIRCH 是平衡迭代減少的縮寫,聚類使用層次結構)包括構造一個樹狀結構,從中提取聚類質心。

它是通過 Birch 類實現的,主要配置是「 threshold 」和「 n _ clusters 」超參數,後者提供了群集數量的估計。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以找到一個很好的分組。

使用BIRCH聚類確定具有聚類的數據集的散點圖

6.DBSCANDBSCAN

聚類(其中 DBSCAN 是基於密度的空間聚類的雜訊應用程序)涉及在域中尋找高密度區域,並將其周圍的特徵空間區域擴展為群集。

它是通過 DBSCAN 類實現的,主要配置是「 eps 」和「 min _ samples 」超參數。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,盡管需要更多的調整,但是找到了合理的分組。

使用DBSCAN集群識別出具有集群的數據集的散點圖

7.K均值

K-均值聚類可以是最常見的聚類演算法,並涉及向群集分配示例,以盡量減少每個群集內的方差。

它是通過 K-均值類實現的,要優化的主要配置是「 n _ clusters 」超參數設置為數據中估計的群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以找到一個合理的分組,盡管每個維度中的不等等方差使得該方法不太適合該數據集。

使用K均值聚類識別出具有聚類的數據集的散點圖

8.Mini-Batch

K-均值Mini-Batch K-均值是 K-均值的修改版本,它使用小批量的樣本而不是整個數據集對群集質心進行更新,這可以使大數據集的更新速度更快,並且可能對統計雜訊更健壯。

它是通過 MiniBatchKMeans 類實現的,要優化的主配置是「 n _ clusters 」超參數,設置為數據中估計的群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,會找到與標准 K-均值演算法相當的結果。

帶有最小批次K均值聚類的聚類數據集的散點圖

9.均值漂移聚類

均值漂移聚類涉及到根據特徵空間中的實例密度來尋找和調整質心。

它是通過 MeanShift 類實現的,主要配置是「帶寬」超參數。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以在數據中找到一組合理的群集。

具有均值漂移聚類的聚類數據集散點圖

10.OPTICSOPTICS

聚類( OPTICS 短於訂購點數以標識聚類結構)是上述 DBSCAN 的修改版本。

它是通過 OPTICS 類實現的,主要配置是「 eps 」和「 min _ samples 」超參數。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,我無法在此數據集上獲得合理的結果。

使用OPTICS聚類確定具有聚類的數據集的散點圖

11.光譜聚類

光譜聚類是一類通用的聚類方法,取自線性線性代數。

它是通過 Spectral 聚類類實現的,而主要的 Spectral 聚類是一個由聚類方法組成的通用類,取自線性線性代數。要優化的是「 n _ clusters 」超參數,用於指定數據中的估計群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,找到了合理的集群。

使用光譜聚類聚類識別出具有聚類的數據集的散點圖

12.高斯混合模型

高斯混合模型總結了一個多變數概率密度函數,顧名思義就是混合了高斯概率分布。它是通過 Gaussian Mixture 類實現的,要優化的主要配置是「 n _ clusters 」超參數,用於指定數據中估計的群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,我們可以看到群集被完美地識別。這並不奇怪,因為數據集是作為 Gaussian 的混合生成的。

使用高斯混合聚類識別出具有聚類的數據集的散點圖

在本文中,你發現了如何在 python 中安裝和使用頂級聚類演算法。具體來說,你學到了:

C. python有沒有簡單的遺傳演算法庫

首先遺傳演算法是一種優化演算法,通過模擬基因的優勝劣汰,進行計算(具體的演算法思路什麼的就不贅述了)。大致過程分為初始化編碼、個體評價、選擇,交叉,變異。

以目標式子 y = 10 * sin(5x) + 7 * cos(4x)為例,計算其最大值

首先是初始化,包括具體要計算的式子、種群數量、染色體長度、交配概率、變異概率等。並且要對基因序列進行初始化

[python]view plain

D. linux怎麼用python調用演算法包

在Linux中,有多種方法可以使用Python調用演算法包。其中一種常見的方法是通過pip命令安裝並使褲賀用第三方Python庫或模塊。例如,使用pip命令安裝numpy、scipy等數學和科學運算庫,或者使用scikit-learn、TensorFlow等機器學習和深度頌吵學習庫。安裝後,可以在Python腳本中引入相應庫或模塊,並調用包中的函數或方法來實現演算法胡櫻派。同時,也可以使用Linux系統提供的C/Python API進行調用,或者使用系統自帶的演算法包,如BLAS、LAPACK等庫。具體使用方法可以參考相應庫或模塊的文檔和示例,或者網上的相關資料和教程。

E. 使用流行的遺傳演算法python庫是哪個

建議使用由華南農業大學、暨南大學、華南理工大學高校碩博學生聯合團隊推出的Python高性能遺傳和進化演算法工具箱:Geatpy。它是目前進化計算領域與platemo、matlab遺傳演算法工具箱等有相當的權威和影響力的高性能實用型進化演算法工具箱,而其效率和易用性居於領先地位。

目前已得到多所高校研究生實驗室以及企業採用,為相關領域的研究和應用注入了全新的活力。

它支持GA、DE、ES等進化演算法,支持單目標、多目標進化優化、復雜約束優化等問題的求解,提供豐富的遺傳演算法和多目標進化優化演算法模板,採用高性能的C內核和mkl矩陣運算,提供功能強大的開源進化演算法框架,尤其適合數學建模和研究進化演算法的研究生們。

官網:Geatpy

多目標優化求解案例:

使用方法:

第一步:實例化一個問題類把待優化的問題寫在裡面。

第二步:編寫執行腳本調用遺傳或其他進化演算法模板,完成問題的求解。

官網教程:Geatpy教程

F. 如何線上部署用python基於dlib寫的人臉識別演算法

python使用dlib進行人臉檢測與人臉關鍵點標記

Dlib簡介:

首先給大家介紹一下Dlib

我使用的版本是dlib-18.17,大家也可以在我這里下載:

之後進入python_examples下使用bat文件進行編譯,編譯需要先安裝libboost-python-dev和cmake

cd to dlib-18.17/python_examples

./compile_dlib_python_mole.bat 123

之後會得到一個dlib.so,復制到dist-packages目錄下即可使用

這里大家也可以直接用我編譯好的.so庫,但是也必須安裝libboost才可以,不然python是不能調用so庫的,下載地址:

將.so復制到dist-packages目錄下

sudo cp dlib.so /usr/local/lib/python2.7/dist-packages/1

最新的dlib18.18好像就沒有這個bat文件了,取而代之的是一個setup文件,那麼安裝起來應該就沒有這么麻煩了,大家可以去直接安裝18.18,也可以直接下載復制我的.so庫,這兩種方法應該都不麻煩~

有時候還會需要下面這兩個庫,建議大家一並安裝一下

9.安裝skimage

sudo apt-get install python-skimage1

10.安裝imtools

sudo easy_install imtools1

Dlib face landmarks Demo

環境配置結束之後,我們首先看一下dlib提供的示常式序

1.人臉檢測

dlib-18.17/python_examples/face_detector.py 源程序:

#!/usr/bin/python# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt## This example program shows how to find frontal human faces in an image. In# particular, it shows how you can take a list of images from the command# line and display each on the screen with red boxes overlaid on each human# face.## The examples/faces folder contains some jpg images of people. You can run# this program on them and see the detections by executing the# following command:# ./face_detector.py ../examples/faces/*.jpg## This face detector is made using the now classic Histogram of Oriented# Gradients (HOG) feature combined with a linear classifier, an image# pyramid, and sliding window detection scheme. This type of object detector# is fairly general and capable of detecting many types of semi-rigid objects# in addition to human faces. Therefore, if you are interested in making# your own object detectors then read the train_object_detector.py example# program. ### COMPILING THE DLIB PYTHON INTERFACE# Dlib comes with a compiled python interface for python 2.7 on MS Windows. If# you are using another python version or operating system then you need to# compile the dlib python interface before you can use this file. To do this,# run compile_dlib_python_mole.bat. This should work on any operating# system so long as you have CMake and boost-python installed.# On Ubuntu, this can be done easily by running the command:# sudo apt-get install libboost-python-dev cmake## Also note that this example requires scikit-image which can be installed# via the command:# pip install -U scikit-image# Or downloaded from . import sys

import dlib

from skimage import io

detector = dlib.get_frontal_face_detector()

win = dlib.image_window()

print("a");for f in sys.argv[1:]:

print("a");

print("Processing file: {}".format(f))
img = io.imread(f)
# The 1 in the second argument indicates that we should upsample the image
# 1 time. This will make everything bigger and allow us to detect more
# faces.
dets = detector(img, 1)
print("Number of faces detected: {}".format(len(dets))) for i, d in enumerate(dets):
print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
i, d.left(), d.top(), d.right(), d.bottom()))

win.clear_overlay()
win.set_image(img)
win.add_overlay(dets)
dlib.hit_enter_to_continue()# Finally, if you really want to you can ask the detector to tell you the score# for each detection. The score is bigger for more confident detections.# Also, the idx tells you which of the face sub-detectors matched. This can be# used to broadly identify faces in different orientations.if (len(sys.argv[1:]) > 0):
img = io.imread(sys.argv[1])
dets, scores, idx = detector.run(img, 1) for i, d in enumerate(dets):
print("Detection {}, score: {}, face_type:{}".format(
d, scores[i], idx[i]))5767778798081

我把源代碼精簡了一下,加了一下注釋: face_detector0.1.py

# -*- coding: utf-8 -*-import sys

import dlib

from skimage import io#使用dlib自帶的frontal_face_detector作為我們的特徵提取器detector = dlib.get_frontal_face_detector()#使用dlib提供的圖片窗口win = dlib.image_window()#sys.argv[]是用來獲取命令行參數的,sys.argv[0]表示代碼本身文件路徑,所以參數從1開始向後依次獲取圖片路徑for f in sys.argv[1:]: #輸出目前處理的圖片地址
print("Processing file: {}".format(f)) #使用skimage的io讀取圖片
img = io.imread(f) #使用detector進行人臉檢測 dets為返回的結果
dets = detector(img, 1) #dets的元素個數即為臉的個數
print("Number of faces detected: {}".format(len(dets))) #使用enumerate 函數遍歷序列中的元素以及它們的下標
#下標i即為人臉序號
#left:人臉左邊距離圖片左邊界的距離 ;right:人臉右邊距離圖片左邊界的距離
#top:人臉上邊距離圖片上邊界的距離 ;bottom:人臉下邊距離圖片上邊界的距離
for i, d in enumerate(dets):
print("dets{}".format(d))
print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}"
.format( i, d.left(), d.top(), d.right(), d.bottom())) #也可以獲取比較全面的信息,如獲取人臉與detector的匹配程度
dets, scores, idx = detector.run(img, 1)
for i, d in enumerate(dets):
print("Detection {}, dets{},score: {}, face_type:{}".format( i, d, scores[i], idx[i]))

#繪制圖片(dlib的ui庫可以直接繪制dets)
win.set_image(img)
win.add_overlay(dets) #等待點擊
dlib.hit_enter_to_continue()041424344454647484950

分別測試了一個人臉的和多個人臉的,以下是運行結果:

運行的時候把圖片文件路徑加到後面就好了

python face_detector0.1.py ./data/3.jpg12

一張臉的:

兩張臉的:

這里可以看出側臉與detector的匹配度要比正臉小的很多

2.人臉關鍵點提取

人臉檢測我們使用了dlib自帶的人臉檢測器(detector),關鍵點提取需要一個特徵提取器(predictor),為了構建特徵提取器,預訓練模型必不可少。

除了自行進行訓練外,還可以使用官方提供的一個模型。該模型可從dlib sourceforge庫下載:

arks.dat.bz2

也可以從我的連接下載:

這個庫支持68個關鍵點的提取,一般來說也夠用了,如果需要更多的特徵點就要自己去訓練了。

dlib-18.17/python_examples/face_landmark_detection.py 源程序:

#!/usr/bin/python# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt## This example program shows how to find frontal human faces in an image and# estimate their pose. The pose takes the form of 68 landmarks. These are# points on the face such as the corners of the mouth, along the eyebrows, on# the eyes, and so forth.## This face detector is made using the classic Histogram of Oriented# Gradients (HOG) feature combined with a linear

G. python里怎樣裝numpy

因為對機器學習演算法進行實戰的話,python語言是必須的,所以前幾天進行了安裝和配置。說實話,相比較其他的編程語言的IDE來講,python本身問題不大,但是因為要有很多的矩陣的計算,所以要安裝numpy包!但是這個過程在我的電腦上出現了比較大的問題,所以,將這一過程記錄下來,萬一以後電腦出現了問題重新安裝的話還能做參考!!

聲明電腦配置: win7 64位

python安裝版本:Python 2.7 (也可以是python3.x 本人不習慣用最新的版本,所以選擇了2.7)

1.下載 對應版本numpy 的.whl文件 (注意:我的電腦確實是64位的,而且python也安裝的64位版本的,但是在之後的命令行安裝的時候壓根安裝不了64位的,到後面再說)

http://www.lfd.uci.e/~gohlke/pythonlibs/

閱讀全文

與python演算法庫安裝相關的資料

熱點內容
程序員考注冊會計師 瀏覽:955
怎麼使用access的命令按鈕 瀏覽:897
有點錢app在哪裡下載 瀏覽:832
博途v15解壓後無法安裝 瀏覽:203
什麼是根伺服器主機 瀏覽:436
安卓手游怎麼申請退款 瀏覽:553
安卓系統如何分享網頁 瀏覽:278
ad如何編譯pcb工程 瀏覽:412
除了滴滴app哪裡還能用滴滴 瀏覽:399
截圖怎麼保存文件夾然後壓縮 瀏覽:8
幻影伺服器怎麼樣 瀏覽:27
具體哪些廣東公司招程序員 瀏覽:870
嵌入式編譯器教程 瀏覽:306
ssl數據加密傳輸 瀏覽:86
51單片機定時器方式2 瀏覽:331
命令行查看開機時間 瀏覽:813
python微博復雜網路分析 瀏覽:550
rf3148編程器 瀏覽:505
浙江標准網路伺服器機櫃雲主機 瀏覽:589
設置網路的伺服器地址 瀏覽:601