導航:首頁 > 源碼編譯 > 如何計算演算法復雜度

如何計算演算法復雜度

發布時間:2023-04-27 19:00:43

1. 演算法的時間復雜度如何計算

關於時間復雜度的計算是按照運算次數來進行的,比如1題:
Sum1(
int
n
)
{
int
p=1,
sum=0,
m
;
//1次
for
(m=1;
m<=n;
m++)
//n+1次鍵滲
{
p*=m
;
//n次
sum+=p
;
}
//n次
return
(sum)
;
//1次
}
最後總的次數為
1+(n+1)+n+n+1+1=3n+3
所以時間復雜度f(o)=n;(時間復雜度只管n的最高次方,不稿並脊管他的系數和表達式中的常量)
其餘的一樣,不明蔽態白的可以來問我

2. 演算法空間復雜度具體怎麼算

數據結構中演算法空間復雜度計算方法:

一個演算法的空間復雜度只考慮在運行過程中為局部變數分配的存儲空間的大小,它包括為參數表中形參變數分配的存儲空間和為在函數體中定義的局部變數分配的存儲空間兩個部分。

若一個演算法為遞歸演算法,其空間復雜度為遞歸所使用的堆棧空間的大小,它等於一次調用所分配的臨時存儲空間的大小乘以被調用的次數(即為遞歸調用的次數加1,這個1表示開始進行的一次非遞歸調用)。

空間復雜度(Space Complexity)是對一個演算法在運行過程中臨時佔用存儲空間大小的量度,記做S(n)=O(f(n))。

而一般的遞歸演算法就要有O(n)的空間復雜度了,因為每次遞歸都要存儲返回信息。一個演算法的優劣主要從演算法的執行時間和所需要佔用的存儲空間兩個方面衡量。

3. 如何估算演算法的復雜度

就是根據程序運行的最基本的操作的次數,記為t(n)
例:演算法:
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
c[
i
][
j
]=0;
//該步驟屬於基本操作
執行次數:n的平方

for(k=1;k<=n;++k)
c[
i
][
j
]+=a[
i
][
k
]*b[
k
][
j
];
//該步驟屬於基本操作
執行次數:n的三次方

}
}
則有
t(n)=
n的平方+n的三次方,根據上面括弧里的同數量級,我們可以確定
n的三次方
為t(n)的同數量級
則有f(n)=
n的三次方,然後根據t(n)/f(n)求極限可得到常數c
則該演算法的
時間復雜度:t(n)=o(n^3)
註:n^3即是n的3次方。

4. 給出一個常見的計算演算法,說說它的計算復雜度是如何計算的

一般用循環次數和嵌套備畝程李配度來判斷哪滾指。例如一個雙層循環,內層和外層都循環n次,那麼總共循環就是n^2次,復雜度就是O(n^2)。

5. 如何計算演算法復雜度

問題一:程序中的時間復雜度是怎麼計算的? 演算法復雜度的介紹,見網路:
ke./view/7527
時間復雜度
時間頻度
一個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機運行測試才能知道。但我們不可能也沒有必要對每個演算法都上機測試,只需知道哪個演算法花費的時間多,哪個演算法花費的時間少就可以了。並且一個演算法花費的時間與演算法中語句的執行次數成正比例,哪個演算法中語句執行次數多,它花費時間就多。一個演算法中的語句執行次數稱為語句頻度或時間頻度。記為T(n)。
計算方法
1. 一般情況下,演算法的基本操作重復執行的次數是模塊n的某一個函數f(n),因此,演算法的時間復雜度記做:T(n)=O(f(n))
分析:隨著模塊n的增大,演算法執行的時間的增長率和f(n)的增長率成正比,所以f(n)越小,演算法的時間復雜度越低,演算法的效率越高。
2. 在計算時間復雜度的時候,先找出演算法的基本操作,然後根據相應的各語句確定它的執行次數,再找出T(n)的同數量級(它的同數量級有慶爛以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出後,f(n)=該數量級,若T(n)/f(n)求極限可得到一常數c,則時間復雜度T(n)=O(f(n))
例:演算法:
for(i=1;i>

問題二:如何計算演算法的時間復雜度 求解演算法的時間復雜度的具體步驟是:⑴找出演算法中的基本語句;演算法中執行次數最多的那條語句就是基本語句,通常是最內層循環的循環體。⑵計算基本語句的執行次數的數量級;只需計算基本語句執行次數的數量級,這就意味著只要保證基本語句執行次數的函數中的最高次冪正確即可,可以忽略所有低次冪和最高次冪的系數。這樣能夠簡化演算法分析,並且使注意力集中在最重要的一點上:增長率。⑶用大Ο記號表示演算法的時間性能。將基本語句執行次數的數量級放入大Ο記號中。如果演算法中包含嵌套的循環,則基本語句通常是最內層的循環體,如果演算法中包含並列的循環,則將並列循環的時間復雜度相指彎加。例如:for(i=1;i 問題三:C語言演算法的時間復雜度如何計算啊? 看看這個 每個循環都和上一層循環的參數有關。 所以要用地推公式: 設i(n)表示第一層循環的i為n時的循環次數,注意到他的下一層循環次數剛好就是n,分別是0,1,2...n-1 所以,把每一層循環設一個函數分別為:j(n),k(n),t(n) 則有 i(n)=j(0)+...+j(n-1) j(n)=k(0)+...+k(n-1) k(n)=t(0)+...+t(n-1) i(0)=j(0)=k(0)=0 t(n)=1 而總循環數是i(0)+i(1)...+i(n-1) 可以根據遞推條件得出准確值 所以演算法復雜度是O(i(0)+i(1)...+i(n-1))
記得採納啊

問題四:如何計算演算法的時間復雜度和空間復雜度 是說明一個程序根據其數據n的規模大小 所使用的大致時間和空間
說白了 就是表示 如果隨著n的增長 時間或空間會以什麼樣的方式進行增長

for(int i = 0; i 問題五:一個演算法的時間復雜度是什麼函數? 關於n的函數,n是問題的規模

問題六:請問遞歸演算法的時間復雜度如何計算呢? 遞歸演算法的時間復雜度分析 收藏
在演算法分析中,當一個演算法中包含遞歸調用時,其時間復雜度的分析會轉化為一個遞歸方程求解。實際上,這個問題是數學上求解漸近階的問題,而遞歸方程的形式多種多樣,其求解方法也是不一而足,比較常用的有以下四種方法:
(1)代入法(Substitution Method)

代入法的基本步驟是先推測遞歸方程的顯式解,然後用數學歸納法來驗證該解是否合理。

(2)迭代法(Iteration Method)

迭代法的基本步驟是迭代地展開遞歸方程的右端,使之成為一個非遞歸的和式,然後通過對和式的估計來達到對方程左端即方程的解的估計。

(3)套用公式法(Master Method)

這個方法針對形如「T(n) = aT(n/b) + f(n)」的遞歸方程。這種遞歸方程是分治法的譽逗漏時間復雜性所滿足的遞歸關系,即一個規模為n的問題被分成規模均為n/b的a個子問題,遞歸地求解這a個子問題,然後通過對這a個子間題的解的綜合,得到原問題的解。

(4)差分方程法(Difference Formula Method)
可以將某些遞歸方程看成差分方程,通過解差分方程的方法來解遞歸方程,然後對解作出漸近階估計。

下面就以上方法給出一些例子說明。

一、代入法

大整數乘法計算時間的遞歸方程為:T(n) = 4T(n/2) + O(n),其中T(1) = O(1),我們猜測一個解T(n) = O(n2 ),根據符號O的定義,對n>n0,有T(n) >

問題七:如何計算時間復雜度 如何計算時間復雜度
定義:如果一個問題的規模是n,解這一問題的某一演算法所需要的時間為T(n),它是n的某一函數 T(n)稱為這一演算法的「時間復雜性」。
當輸入量n逐漸加大時,時間復雜性的極限情形稱為演算法的「漸近時間復雜性」。
我們常用大O表示法表示時間復雜性,注意它是某一個演算法的時間復雜性。大O表示只是說有上界,由定義如果f(n)=O(n),那顯然成立f(n)=O(n^2),它給你一個上界,但並不是上確界,但人們在表示的時候一般都習慣表示前者。
此外,一個問題本身也有它的復雜性,如果某個演算法的復雜性到達了這個問題復雜性的下界,那就稱這樣的演算法是最佳演算法。
「大 O記法」:在這種描述中使用的基本參數是 n,即問題實例的規模,把復雜性或運行時間表達為n的函數。這里的「O」表示量級 (order),比如說「二分檢索是 O(logn)的」,也就是說它需要「通過logn量級的步驟去檢索一個規模為n的數組」記法 O ( f(n) )表示當 n增大時,運行時間至多將以正比於 f(n)的速度增長。
這種漸進估計對演算法的理論分析和大致比較是非常有價值的,但在實踐中細節也可能造成差異。例如,一個低附加代價的O(n2)演算法在n較小的情況下可能比一個高附加代價的 O(nlogn)演算法運行得更快。當然,隨著n足夠大以後,具有較慢上升函數的演算法必然工作得更快。
O(1)
Temp=i;i=j;j=temp;
以 上三條單個語句的頻度均為1,該程序段的執行時間是一個與問題規模n無關的常數。演算法的時間復雜度為常數階,記作T(n)=O(1)。如果演算法的執行時 間不隨著問題規模n的增加而增長,即使演算法中有上千條語句,其執行時間也不過是一個較大的常數。此類演算法的時間復雜度是O(1)。
O(n^2)
2.1. 交換i和j的內容
sum=0; (一次)
for(i=1;i>

問題八:演算法的時間復雜度 以下是考研時常用的計算方法,實際上最簡單的方法採用多項式最大階的方法,如:
f(n)=a1*n^m+a2*n^(m-1)+.......an-1*n+an
的時間復雜度為:T(f(n))=O(n^m)
採用時間步法,找一個函數g(n),找一個自然數n0,使f(n)T(n)=O(n)
(2)6n^2-12n+1=12)=7n^2=7*g(n)==>T(n)=O(n^2)
(3)n(n+1)(n+2)/6=n0=2時)=n0=4)=2*g(n)===>T(n)=O(n^3)
(4)2^(n+1)+100nT(n)=O(2^n)

6. 演算法空間復雜度怎麼算

演算法空間復雜度計算方法:

一個演算法的空間復雜度只考慮在運行過程中為局部變數分配的存儲空間的大小,它包括為參數表中形參變數分配的存儲空間和為在函數體中定義的局部變數分配的存儲空間兩個部分。

若一個演算法為遞歸演算法,其空間復雜度為遞歸所使用的堆棧空間的大小,它等於一次調用所分配的臨時存儲空間的大小乘以被調用的次數(即為遞歸調用的次數加1,這個1表示開始進行的一次非遞歸調用)。

演算法的空間復雜度一般也以數量級的形式給出。如當一個演算法的空間復雜度為一個常量,即不隨被處理數據量n的大小而改變時,可表示為O(1);當一個演算法的空間復雜度與以2為底的n的對數成正比時,可表示為O(log2n);當一個演算法的空間復雜度與n成線性比例關系時,可表示為O(n)。若形參為數組,則只需要為它分配一個存儲由實參傳送來的一個地址指針的空間,即一個機器字長空間;若形參為引用方式,則也只需要為其分配存儲一個地址的空間,用它來存儲對應實參變數的地址,以便由系統自動引用實參變數。

(6)如何計算演算法復雜度擴展閱讀:

空間復雜度(Space Complexity)是對一個演算法在運行過程中臨時佔用存儲空間大小的量度,記做S(n)=O(f(n))。比如直接插入排序的時間復雜度是O(n^2),空間復雜度是O(1) 。而一般的遞歸演算法就要有O(n)的空間復雜度了,因為每次遞歸都要存儲返回信息。一個演算法的優劣主要從演算法的執行時間和所需要佔用的存儲空間兩個方面衡量。

個演算法的空間復雜度S(n)定義為該演算法所耗費的存儲空間,它也是問題規模n的函數。漸近空間復雜度也常常簡稱為空間復雜度。空間復雜度(SpaceComplexity)是對一個演算法在運行過程中臨時佔用存儲空間大小的量度。一個演算法在計算機存儲器上所佔用的存儲空間,包括存儲演算法本身所佔用的存儲空間,演算法的輸入輸出數據所佔用的存儲空間和演算法在運行過程中臨時佔用的存儲空間這三個方面。

7. 演算法時間復雜度怎麼算

一、概念
時間復雜度是總運算次數表達式中受n的變化影響最大的那一項(不含系數)
比如:一般總運算次數表達式類似於這樣:
a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f
a ! =0時,時間復雜度就是O(2^n);
a=0,b<>0 =>O(n^3);
a,b=0,c<>0 =>O(n^2)依此類推
eg:
(1) for(i=1;i<=n;i++) //循環了n*n次,當然是O(n^2)
for(j=1;j<=n;j++)
s++;
(2) for(i=1;i<=n;i++)//循環了(n+n-1+n-2+...+1)≈(n^2)/2,因為時間復雜度是不考慮系數的,所以也是O(n^2)
for(j=i;j<=n;j++)
s++;
(3) for(i=1;i<=n;i++)//循環了(1+2+3+...+n)≈(n^2)/2,當然也是O(n^2)
for(j=1;j<=i;j++)
s++;
(4) i=1;k=0;
while(i<=n-1){
k+=10*i; i++; }//循環了n-1≈n次,所以是O(n)(5) for(i=1;i<=n;i++)
for(j=1;j<=i;j++)
for(k=1;k<=j;k++)
x=x+1;
//循環了(1^2+2^2+3^2+...+n^2)=n(n+1)(2n+1)/6(這個公式要記住哦)≈(n^3)/3,不考慮系數,自然是O(n^3)
另外,在時間復雜度中,log(2,n)(以2為底)與lg(n)(以10為底)是等價的,因為對數換底公式:
log(a,b)=log(c,b)/log(c,a)
所以,log(2,n)=log(2,10)*lg(n),忽略掉系數,二者當然是等價的
二、計算方法1.一個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機運行測試才能知道。但我們不可能也沒有必要對每個演算法都上機測試,只需知道哪個演算法花費的時間多,哪個演算法花費的時間少就可以了。並且一個演算法花費的時間與演算法中語句的執行次數成正比例,哪個演算法中語句執行次數多,它花費時間就多。
一個演算法中的語句執行次數稱為語句頻度或時間頻度。記為T(n)。
2.一般情況下,演算法的基本操作重復執行的次數是模塊n的某一個函數f(n),因此,演算法的時間復雜度記做:T(n)=O(f(n))。隨著模塊n的增大,演算法執行的時間的增長率和f(n)的增長率成正比,所以f(n)越小,演算法的時間復雜度越低,演算法的效率越高。
在計算時間復雜度的時候,先找出演算法的基本操作,然後根據相應的各語句確定它的執行次數,再找出T(n)的同數量級(它的同數量級有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出後,f(n)=該數量級,若T(n)/f(n)求極限可得到一常數c,則時間復雜度T(n)=O(f(n))。
3.常見的時間復雜度
按數量級遞增排列,常見的時間復雜度有:
常數階O(1), 對數階O(log2n), 線性階O(n), 線性對數階O(nlog2n), 平方階O(n^2), 立方階O(n^3),..., k次方階O(n^k), 指數階O(2^n) 。
其中,1.O(n),O(n^2), 立方階O(n^3),..., k次方階O(n^k) 為多項式階時間復雜度,分別稱為一階時間復雜度,二階時間復雜度。。。。2.O(2^n),指數階時間復雜度,該種不實用3.對數階O(log2n), 線性對數階O(nlog2n),除了常數階以外,該種效率最高
例:演算法:
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
c[ i ][ j ]=0; //該步驟屬於基本操作 執行次數:n^2
for(k=1;k<=n;++k)
c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //該步驟屬於基本操作 執行次數:n^3
}
}
則有 T(n)= n^2+n^3,根據上面括弧里的同數量級,我們可以確定 n^3為T(n)的同數量級
則有f(n)= n^3,然後根據T(n)/f(n)求極限可得到常數c
則該演算法的 時間復雜度:T(n)=O(n^3)
四、

定義:如果一個問題的規模是n,解這一問題的某一演算法所需要的時間為T(n),它是n的某一函數
T(n)稱為這一演算法的「時間復雜性」。

當輸入量n逐漸加大時,時間復雜性的極限情形稱為演算法的「漸近時間復雜性」。

我們常用大O表示法表示時間復雜性,注意它是某一個演算法的時間復雜性。大O表示只是說有上界,由定義如果f(n)=O(n),那顯然成立f(n)=O(n^2),它給你一個上界,但並不是上確界,但人們在表示的時候一般都習慣表示前者。

此外,一個問題本身也有它的復雜性,如果某個演算法的復雜性到達了這個問題復雜性的下界,那就稱這樣的演算法是最佳演算法。

「大O記法」:在這種描述中使用的基本參數是
n,即問題實例的規模,把復雜性或運行時間表達為n的函數。這里的「O」表示量級 (order),比如說「二分檢索是 O(logn)的」,也就是說它需要「通過logn量級的步驟去檢索一個規模為n的數組」記法 O ( f(n) )表示當 n增大時,運行時間至多將以正比於 f(n)的速度增長。

這種漸進估計對演算法的理論分析和大致比較是非常有價值的,但在實踐中細節也可能造成差異。例如,一個低附加代價的O(n2)演算法在n較小的情況下可能比一個高附加代價的 O(nlogn)演算法運行得更快。當然,隨著n足夠大以後,具有較慢上升函數的演算法必然工作得更快。

O(1)

Temp=i;i=j;j=temp;

以上三條單個語句的頻度均為1,該程序段的執行時間是一個與問題規模n無關的常數。演算法的時間復雜度為常數階,記作T(n)=O(1)。如果演算法的執行時間不隨著問題規模n的增加而增長,即使演算法中有上千條語句,其執行時間也不過是一個較大的常數。此類演算法的時間復雜度是O(1)。

O(n^2)

2.1.
交換i和j的內容
sum=0;(一次)
for(i=1;i<=n;i++)(n次 )
for(j=1;j<=n;j++)
(n^2次 )
sum++;(n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)

2.2.
for (i=1;i<n;i++)
{
y=y+1;①
for
(j=0;j<=(2*n);j++)
x++;②
}
解:
語句1的頻度是n-1
語句2的頻度是(n-1)*(2n+1)=2n^2-n-1
f(n)=2n^2-n-1+(n-1)=2n^2-2
該程序的時間復雜度T(n)=O(n^2).

O(n)

2.3.
a=0;
b=1;①
for
(i=1;i<=n;i++) ②
{
s=a+b;③
b=a;④
a=s;⑤
}
解:語句1的頻度:2,
語句2的頻度:
n,
語句3的頻度: n-1,
語句4的頻度:n-1,
語句5的頻度:n-1,
T(n)=2+n+3(n-1)=4n-1=O(n).

O(log2n
)

2.4.
i=1;①
while (i<=n)
i=i*2; ②
解: 語句1的頻度是1,
設語句2的頻度是f(n),則:2^f(n)<=n;f(n)<=log2n
取最大值f(n)=
log2n,
T(n)=O(log2n )

O(n^3)

2.5.
for(i=0;i<n;i++)
{
for(j=0;j<i;j++)
{
for(k=0;k<j;k++)
x=x+2;
}
}
解:當i=m,
j=k的時候,內層循環的次數為k當i=m時, j 可以取 0,1,...,m-1 , 所以這里最內循環共進行了0+1+...+m-1=(m-1)m/2次所以,i從0取到n, 則循環共進行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以時間復雜度為O(n^3).


我們還應該區分演算法的最壞情況的行為和期望行為。如快速排序的最
壞情況運行時間是 O(n^2),但期望時間是 O(nlogn)。通過每次都仔細 地選擇基準值,我們有可能把平方情況 (即O(n^2)情況)的概率減小到幾乎等於 0。在實際中,精心實現的快速排序一般都能以 (O(nlogn)時間運行。
下面是一些常用的記法:


訪問數組中的元素是常數時間操作,或說O(1)操作。一個演算法如 果能在每個步驟去掉一半數據元素,如二分檢索,通常它就取 O(logn)時間。用strcmp比較兩個具有n個字元的串需要O(n)時間。常規的矩陣乘演算法是O(n^3),因為算出每個元素都需要將n對
元素相乘並加到一起,所有元素的個數是n^2。
指數時間演算法通常來源於需要求出所有可能結果。例如,n個元 素的集合共有2n個子集,所以要求出所有子集的演算法將是O(2n)的。指數演算法一般說來是太復雜了,除非n的值非常小,因為,在 這個問題中增加一個元素就導致運行時間加倍。不幸的是,確實有許多問題 (如著名的「巡迴售貨員問題」 ),到目前為止找到的演算法都是指數的。如果我們真的遇到這種情況,通常應該用尋找近似最佳結果的演算法替代之。

8. 如何計算一個演算法的時間復雜度

你這個問題是自己想出來的吧?
第一,你指的時間復雜度是大o表示法的復雜度,也就是一個上界,但不是上確界,所以就算你以一種方式中斷排序過程,時間復雜度還是o(n*logn),假設排序過程還能執行的話。
第二,達到o(n*logn)的排序演算法,以快速排序為例,快速排序不知道你看過沒有,它不像選擇排序或者冒泡排序那樣,每一趟可以確定一直最大或者最小值,對於快速排序,每一趟排序後如果你刪掉最後一個元素將導致整個演算法失效。如果你要用這種刪除元素方法的話,只能採用冒泡排序或者選擇排序,時間復雜度是o(n^2)
所以,我猜想你是不是想做類似於在n個元素中尋找前k個最大者之類的事情(k=n-l)
如果是這樣的話,有復雜度是o(n*logk)的演算法,利用快速排序中的partition操作
經過partition後,pivot左邊的序列sa都大於pivot右邊的序列sb;
如果|sa|==k或者|sa|==k-1,則數組的前k個元素就是最大的前k個元素,演算法終止;
如果|sa|
k,則從sa中尋找前k大的元素。
一次partition(arr,begin,end)操作的復雜度為end-begin,也就是o(n),最壞情況下一次partition操作只找到第1大的那個元素,則需要進行k次partition操作,總的復雜度為o(n*k)。平均情況下每次partition都把序列均分兩半,需要logk次partition操作,總的復雜度為o(n*logk)。
由於k的上界是n,所以以n表示的總復雜度還是o(n*logn)

9. 請問演算法的時間復雜度是怎麼計算出來的

首先假設任意一個簡單運算的時間都是1,例如a=1;a++;a=a*b;這些運算的時間都是1.

那麼例如
for(int i=0;i<n;++i)
{
for(int j=0;j<m;++j)
a++; //注意,這里計算一次的時間是1.
}
那麼上面的這個例子的時間復雜度就是 m*n

再例如冒泡排序的時間復雜度是N*N;快排的時間復雜度是log(n)。

詳細的情況,建議你看《演算法導論》,裡面有一章節,具體講這個的。

10. 演算法復雜度的計算

同一個問題可以用不同的演算法解決,而一個算豎帆擾法的質量優劣將會影響到演算法甚至程序的運行效率。一個演算法的好壞主要從時間復雜度和空間復雜度來計算。

    時間復雜度

    一個演算法所耗費的時間實際上是不能算出來的,必須上機運行才能知道。但我們也不需要對每個演算法都去進行測試,只需要知道哪個演算法耗時多,哪個演算法耗時少就可以了。一個演算法花     費的時間與演算法中語句執行的次數成正比,哪個演算法中語句執行次數多,它花費時間就多。

    一個演算法所耗費的時間=演算法中每條語句的執行時間之和

    每條語句的執行時間=語句的執行次數(即頻度)×語句執行一次所需時間

    一般情況下,演算法中基本操作重復執行的次數是問題規模n的某個函數,用T(n)表示,若有某個輔助函數f(n),存在一個正常數c使得fn*c>=T(n)恆成立。記作T(n)=O(f(n)),稱O(f(n)) 為演算法的 漸進時間復雜度。

所以我們可以得出的結論是:演算法執行時間可以用執行次數表示。

    空間復雜度

與時間復雜度類似,空間復雜度是指演算法在計算機內執行時所需存儲空間的度量。記作:

S(n)=O(f(n))

演算法執行期間所需要的存儲空間包括三個部分:

1.演算法程序轎棚所佔的空間;

2.輸入的初始數據所佔的存儲空間;

3.演算法執行過程中所需要的額外空間。

具體的例子可以余旦參考 十分鍾搞定時間復雜度

轉自:https://github.com/cttin/cttin.github.io/issues/17

閱讀全文

與如何計算演算法復雜度相關的資料

熱點內容
阿里雲伺服器遠程鏈接不成功 瀏覽:482
文件系統pdf 瀏覽:762
原神安卓區服什麼意思 瀏覽:34
貝殼app怎麼線上發布 瀏覽:157
如何挑選安卓系統機頂盒 瀏覽:53
安卓快充使用有什麼注意事項 瀏覽:909
黑馬程序員的雲計算網課 瀏覽:946
endnotestyle文件夾怎麼導入 瀏覽:460
講解少兒編程演講會開頭 瀏覽:424
思科交換機基礎命令 瀏覽:497
便簽可以設置加密嗎 瀏覽:339
免費漫畫app怎麼看書 瀏覽:27
華為筆記本電腦怎麼安裝抖音app 瀏覽:412
阿里雲國際版試用的伺服器怎麼搞 瀏覽:895
java正則表達式工具 瀏覽:160
oa伺服器怎麼設置ftp 瀏覽:10
安卓如何安裝obb 瀏覽:442
QQ聊天記錄journal文件夾 瀏覽:118
蘋果公司雲伺服器地址 瀏覽:85
加密記事本手機 瀏覽:437