Ⅰ 線性模型回歸系數估計的原理
在線性回歸基礎上演化發展了邏輯回歸(LR)、因子分解機(FM)等,而且深度學習的CNN、RNN、Attention機制都有線性回歸的思想的影子。
回歸演算法是一種比較常用的機器學習演算法,用來建立「解釋」變數(自變數X)和觀 測值(因變數Y)之間的關系;從機器學習的角度來講,用於構建一個演算法模型(函 數)來做屬性(X)與標簽(Y)之間的映射關系,在演算法的學習過程中,試圖尋找一個 函數使得參數之間的關系擬合性最好。 回歸演算法中雀亂大演算法(函數)的最終結果是一個連續的數據值,輸入值(屬性值)是一個d 維度的屬性/數值向量
Ⅱ 機器學習的方法之回歸演算法
我們都知道,機器學習是一個十分實用的技術,而這一實用的技術中涉及到了很多的演算法。所以說,我們要了解機器學習的話就要對這些演算法掌握通透。在這篇文章中我們就給大家詳細介紹一下機器學習中的回歸演算法,希望這篇文章能夠幫助到大家。
一般來說,回歸演算法是機器學習中第一個要學習的演算法。具體的原因,第一就是回歸演算法比較簡單,可以讓人直接從統計學過渡到機器學習中。第二就是回歸演算法是後面若干強大演算法的基石,如果不理解回歸演算法,無法學習其他的演算法。而回歸演算法有兩個重要的子類:即線性回歸和邏輯回歸。
那麼什麼是線性回歸呢?其實線性回歸就是我們常見的直線函數。如何擬合出一條直線最佳匹配我所有的數據?這就需要最小二乘法來求解。那麼最小二乘法的思想是什麼呢?假設我們擬合出的直線代表數據的真實值,而觀測到的數據代表擁有誤差的值。為了盡可能減小誤差的影響,需要求解一條直線使所有誤差的平方和最小。最小二乘法將最優問題轉化為求函數極值問題。
那麼什麼是邏輯回歸呢?邏輯回歸是一種與線性回歸非常類似的演算法,但是,從本質上講,線型回歸處理的問題類型與邏輯回歸不一致。線性回歸處理的是數值問題,也就是最後預測出的結果是數字。而邏輯回歸屬於分類演算法,也就是說,邏輯回歸預測結果是離散的分類。而邏輯回歸演算法劃出的分類線基本都是線性的(也有劃出非線性分類線的邏輯回歸,不過那樣的模型在處理數據量較大的時候效率會很低),這意味著當兩類之間的界線不是線性時,邏輯回歸的表達能力就不足。下面的兩個演算法是機器學習界最強大且重要的演算法,都可以擬合出非線性的分類線。這就是有關邏輯回歸的相關事項。
在這篇文章中我們簡單給大家介紹了機器學習中的回歸演算法的相關知識,通過這篇文章我們不難發現回歸演算法是一個比較簡答的演算法,回歸演算法是線性回歸和邏輯回歸組成的演算法,而線性回歸和邏輯回歸都有自己實現功能的用處。這一點是需要大家理解的並掌握的,最後祝願大家能夠早日學會回歸演算法。
Ⅲ 人工智慧是學習什麼
1、學習並掌握一些數學知識
高等數學是基礎中的基礎,一切理工科都需要這個打底,數據挖掘、人工智慧、模式識別此類跟數據打交道的又尤其需要多元微積分運算基礎。
線性代數很重要,一般來說線性模型是你最先要考慮的模型,加上很可能要處理多維數據,你需要用線性代數來簡潔清晰的描述問題,為分析求解奠定基礎。
概率論、數理統計、隨機過程更是少不了,涉及數據的問題,不確定性幾乎是不可避免的,引入隨機變數順理成章,相關理論、方法、模型非常豐富。很多機器學習的演算法都是建立在概率論和統計學的基礎上的,比如貝葉斯分類器、高斯隱馬爾可夫鏈。
再就是優化理論與演算法,除非你的問題是像二元一次方程求根那樣有現成的公式,否則你將不得不面對各種看起來無解但是要解的問題,優化將是你的GPS為你指路。
以上這些知識打底,就可以開拔了,針對具體應用再補充相關的知識與理論,比如說一些我覺得有幫助的是數值計算、圖論、拓撲,更理論一點的還有實/復分析、測度論,偏工程類一點的還有信號處理、數據結構。
2、掌握經典機器學習理論和演算法
如果有時間可以為自己建立一個機器學習的知識圖譜,並爭取掌握每一個經典的機器學習理論和演算法,我簡單地總結如下:
1) 回歸演算法:常見的回歸演算法包括最小二乘法(OrdinaryLeast Square),邏輯回歸(Logistic Regression),逐步式回歸(Stepwise Regression),多元自適應回歸樣條(MultivariateAdaptive Regression Splines)以及本地散點平滑估計(Locally Estimated Scatterplot Smoothing);
2) 基於實例的演算法:常見的演算法包括 k-Nearest Neighbor(KNN), 學習矢量量化(Learning Vector Quantization, LVQ),以及自組織映射演算法(Self-Organizing Map , SOM);
3) 基於正則化方法:常見的演算法包括:Ridge Regression, Least Absolute Shrinkage and Selection Operator(LASSO),以及彈性網路(Elastic Net);
4) 決策樹學習:常見的演算法包括:分類及回歸樹(ClassificationAnd Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5, Chi-squared Automatic Interaction Detection(CHAID), Decision Stump, 隨機森林(Random Forest), 多元自適應回歸樣條(MARS)以及梯度推進機(Gradient Boosting Machine, GBM);
5) 基於貝葉斯方法:常見演算法包括:樸素貝葉斯演算法,平均單依賴估計(AveragedOne-Dependence Estimators, AODE),以及Bayesian Belief Network(BBN);
6) 基於核的演算法:常見的演算法包括支持向量機(SupportVector Machine, SVM), 徑向基函數(Radial Basis Function ,RBF), 以及線性判別分析(Linear Discriminate Analysis ,LDA)等;
7) 聚類演算法:常見的聚類演算法包括 k-Means演算法以及期望最大化演算法(Expectation Maximization, EM);
8) 基於關聯規則學習:常見演算法包括 Apriori演算法和Eclat演算法等;
9) 人工神經網路:重要的人工神經網路演算法包括:感知器神經網路(PerceptronNeural Network), 反向傳遞(Back Propagation), Hopfield網路,自組織映射(Self-OrganizingMap, SOM)。學習矢量量化(Learning Vector Quantization, LVQ);
10) 深度學習:常見的深度學習演算法包括:受限波爾茲曼機(RestrictedBoltzmann Machine, RBN), Deep Belief Networks(DBN),卷積網路(Convolutional Network), 堆棧式自動編碼器(Stacked Auto-encoders);
11) 降低維度的演算法:常見的演算法包括主成份分析(PrincipleComponent Analysis, PCA),偏最小二乘回歸(Partial Least Square Regression,PLS), Sammon映射,多維尺度(Multi-Dimensional Scaling, MDS), 投影追蹤(ProjectionPursuit)等;
12) 集成演算法:常見的演算法包括:Boosting, Bootstrapped Aggregation(Bagging),AdaBoost,堆疊泛化(Stacked Generalization, Blending),梯度推進機(GradientBoosting Machine, GBM),隨機森林(Random Forest)。
3、掌握一種編程工具,比如Python
一方面Python是腳本語言,簡便,拿個記事本就能寫,寫完拿控制台就能跑;另外,Python非常高效,效率比java、r、matlab高。matlab雖然包也多,但是效率是這四個裡面最低的。
4、了解行業最新動態和研究成果,比如各大牛的經典論文、博客、讀書筆記、微博微信等媒體資訊。
5、買一個GPU,找一個開源框架,自己多動手訓練深度神經網路,多動手寫寫代碼,多做一些與人工智慧相關的項目。
6、選擇自己感興趣或者工作相關的一個領域深入下去
人工智慧有很多方向,比如NLP、語音識別、計算機視覺等等,生命有限,必須得選一個方向深入的鑽研下去,這樣才能成為人工智慧領域的大牛,有所成就。
根據網路給的定義,人工智慧(Artificial Intelligence),英文縮寫為AI。它是研究、開發用於模擬、延伸和擴展人的還能的理論、方法、技術及應用系統的一門新的技術科學。
網路關於人工智慧的定義詳解中說道:人工智慧是計算機的一個分支,二十世紀七十年代以來被稱為世界三大尖端技術之一(空間技術、能源技術、人工智慧)。也被認為是二十一世紀三大尖端技術(基因工程、納米科學、人工智慧)之一。這是因為近三十年來它獲得了迅速的發展,在很多學科領域都獲得了廣泛應用,並取得了豐碩的成果,人工智慧已逐步成為一個獨立的分支,無論在理論和實踐上都已自成一個系統。
綜上,從定義上講,人工智慧是一項技術。
Ⅳ 線性回歸是什麼意思
沒有具體數據要求,一般來說,數據越多越好。
通過線性回歸演算法,我們可能會得到很多的線性回歸模型,但是不同的模型對春耐於數據弊森團的擬合或者是描述能力是不一樣的。我們的目的最終是需要找到一個能夠最精租橘確地描述數據之間關系的線性回歸模型。這是就需要用到代價函數。
代價函數就是用來描述線性回歸模型與正式數據之前的差異。如果完全沒有差異,則說明此線性回歸模型完全描述數據之前的關系。
一條趨勢線代表著時間序列數據的長期走勢。它告訴我們一組特定數據(如GDP、石油價格和股票價格)是否在一段時期內增長或下降。雖然我們可以用肉眼觀察數據點在坐標系的位置大體畫出趨勢線,更恰當的方法是利用線性回歸計算出趨勢線的位置和斜率。
Ⅳ 機器學習故事匯-邏輯回歸演算法
機器學習故事匯-邏輯回歸演算法
今天我們要來討論的一個分類演算法-邏輯回歸(你有沒有搞錯,這不還是回歸嗎,雖然名字帶上了回歸其實它是一個非常實用的分類演算法)。,適合對數學很頭疼的同學們,小板凳走起!
先來吹一吹邏輯回歸的應用,基本上所有的機器學習分類問題都可以使用邏輯回歸來求解,當前拿到一份數據想做一個分類任務的時候第一手准備一定要拿邏輯回歸來嘗試(雖然有很多復雜的模型比如神經網路,支持向量機的名氣更大,但是邏輯回歸卻更接地氣,用的最多的還是它)!在機器學習中無論是演算法的推導還是實際的應用一直有這樣的一種思想,如果一個問題能用簡單的演算法去解決那麼絕對沒必要去套用復雜的模型。
在邏輯回歸中最核心的概念就是Sigmoid函數了,首先我們先來觀察一下它的自變數取值范圍以及值域,自變數可以是任何實數(這沒啥特別的!)但是我們觀察值域的范圍是[0,1]也就是任意的一個輸入都會映射到[0,1]的區間上,我們來想一想這個區間有什麼特別的含義嗎?在我們做分類任務的時候一般我都都會認為一個數據來了它要麼是0要麼是1(只考慮二分類問題),我們其實可以更細致一點得出來它是0或者1的可能性有多大,由此我們就得出了一個輸入屬於某一個類別的概率值,這個[0,1]不就恰好是這個概率嗎!
在這里我們的預測函數還是跟線性回歸沒有多大差別,只不過我們將結果又輸入到Sigmoid函數中,這樣得到了數據屬於類別的概率值。在推導過程中,我們假定分類是兩個類別的(邏輯回歸是經典的而分類器)。設定y(標簽)要麼取0要麼取1,這樣就可以把兩個類別進行整合,得到一個更直觀的表達。
對於邏輯回歸的求解,已然沿用我們上次跟大家討論的梯度下降演算法。給出似然函數,轉換對數似然(跟線性回歸一致),但是我們現在的優化目標卻跟之前不太一樣了,線性回歸的時候我們要求解的是最小值(最小二乘法),但是現在我們想得到的卻是使得該事件發生得最大值,為了沿用梯度下降來求解,可以做一個簡單的轉換添加一個負號以及一個常數很簡單的兩步就可以把原始問題依然轉換成梯度下降可以求解的問題。
此處求導過程看起來有些長,但也都是非常非常基本的運算了,感興趣拿起一支筆來實際算算吧!
最終就是參數更新了,迭代更新是機器學習的常規套路了。但是我們來簡單想一想另外的一個問題,現在我們說的邏輯回歸是一個二分類演算法,那如果我的實際問題是一個多分類該怎麼辦呢?這個時候就需要Softmax啦,引入了歸一化機制,來將得分值映射成概率值。
最後一句話總結一下吧,任何時候(沒錯就是這么狠)當我們一個實際任務來了,第一個演算法就是邏輯回歸啦,可以把它當成我們的基礎模型,然後不斷改進對比!
Ⅵ 回歸演算法有哪些
回歸演算法有:
線性回歸使用最佳的擬合直線(也就是回歸線)在因變數(Y)和一個或多個自變數(X)之間建立一種關系。
用一個方程式來表示它,即Y=a+b*X + e,其中a表示截距,b表示直線的斜率,e是誤差項。這個方程可以根據給定的預測變數(s)來預測目標變數的值。
邏輯回歸是用來計算「事件=Success」和「事件=Failure」的概率。當因變數的類型屬於二元(1 / 0,真/假,是/否)變數時,我們就應該使用邏輯回歸。這里,Y的值從0到1,它可以方程表示。
Ⅶ 正態回歸是什麼
數據點之間關系的擾祥肆分析。緩轎找數據點之間關系的分析宴汪方法就是回歸。回歸演算法是一種比較常用的機器學習演算法,用來表示自變數X和因變數Y之間的關系。
Ⅷ 多元回歸是機器學習模型嗎
是的
資料擴展:回歸宏洞演算法蔽返枯是試圖採用對誤差的衡量來探索變數之間的關系的一類演算法。回歸演算法是統計機器學習的利器。在機器學習領域,人們說起回歸,有時候是指一類問題,有時候是指一類演算法,這一點常常會使初學者有世戚所困惑。常見的回歸演算法包括:最小二乘法(Ordinary Least Square),邏輯回歸(Logistic Regression),逐步式回歸(Stepwise Regression),多元自適應回歸樣條(Multivariate Adaptive Regression Splines)以及本地散點平滑估計(Locally Estimated Scatterplot Smoothing)。
Ⅸ 邏輯回歸演算法原理是什麼
邏輯回歸就是這樣的一個過程:面對一個回歸或者分類問題,建立代價函數,然後通過優化方法迭代求解出最優的模型參數,測試驗證這個求解的模型的好壞。
Logistic回歸雖然名字里帶「回歸」,但是它實際上是一種分類方法,主要用於兩分類問題(即輸出只有兩種,分別代表兩個類別)。回歸模型中,y是一個定性變數,比如y=0或1,logistic方法主要應用於研究某些事件發生的概率。
Logistic回歸模型的適用條件
1、因變數為二分類的分類變數或某事件的發生率,並且是數值型變數。但是需要注意,重復計數現象指標不適用於Logistic回歸。
2、殘差和因變數都要服從二項分布。二項分布對應的是分類變數,所以不是正態分布,進而不是用最小二乘法,而是最大似然法來解決方程估計和檢驗問題。
3、自變數和Logistic概率是線性關系。
以上內容參考:網路-logistic回歸
Ⅹ 線性回歸演算法原理(越詳細越好)
線性回歸是利用數理統計中的回歸分析,來確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法之一,運用十分廣泛。
分析按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。
如果在回歸分析中,只包括一個自變數和一個因變數,且二者的關系可用一條直線近似表示,這種回歸分析稱為一元線性回歸分析。如果回歸分析中包括兩個或兩個以上的自變數,且因變數和自變數之間是線性關系,則稱為多元線性回歸分析。
我們以一簡單數據組來說明什麼是線性回歸。假設有一組數據型態為y=y(x),其中
x={0,1,2,3,4,5},y={0,20,60,68,77,110}
如果我們要以一個最簡單的方程式來近似這組數據,則非一階的線性方程式莫屬。先將這組數據繪圖如下
圖中的斜線是我們隨意假設一階線性方程式y=20x,用以代表這些數據的一個方程式。以下將上述繪圖的MATLAB指令列出,並計算這個線性方程式的y值與原數據y值間誤差平方的總合。
>>x=[012345];
>>y=[020606877110];
>>y1=20*x;%一階線性方程式的y1值
>>sum_sq=sum(y-y1).^2);%誤差平方總合為573
>>axis([-1,6,-20,120])
>>plot(x,y1,x,y,'o'),title('Linearestimate'),grid
如此任意的假設一個線性方程式並無根據,如果換成其它人來設定就可能採用不同的線性方程式;所以我們須要有比較精確方式決定理想的線性方程式。我們可以要求誤差平方的總合為最小,做為決定理想的線性方程式的准則,這樣的方法就稱為最小平方誤差(leastsquareserror)或是線性回歸。MATLAB的polyfit函數提供了從一階到高階多項式的回歸法,其語法為polyfit(x,y,n),其中x,y為輸入數據組n為多項式的階數,n=1就是一階的線性回歸法。polyfit函數所建立的多項式可以寫成
從polyfit函數得到的輸出值就是上述的各項系數,以一階線性回歸為例n=1,所以只有二個輸出值。如果指令為coef=polyfit(x,y,n),則coef(1)=,coef(2)=,...,coef(n+1)=。注意上式對n階的多項式會有n+1項的系數。我們來看以下的線性回歸的示範:
>>x=[012345];
>>y=[020606877110];
>>coef=polyfit(x,y,1);%coef代表線性回歸的二個輸出值
>>a0=coef(1);a1=coef(2);
>>ybest=a0*x+a1;%由線性回歸產生的一階方程式
>>sum_sq=sum(y-ybest).^2);%誤差平方總合為356.82
>>axis([-1,6,-20,120])
>>plot(x,ybest,x,y,'o'),title('Linearregressionestimate'),grid
[編輯本段]線性回歸擬合方程
一般來說,線性回歸都可以通過最小二乘法求出其方程,可以計算出對於y=bx+a的直線,其經驗擬合方程如下: