導航:首頁 > 源碼編譯 > 演算法常常用的方法

演算法常常用的方法

發布時間:2023-05-13 01:48:12

演算法的常用設計方法有哪些

演算法設計是一件非常困難的工作,經常採用的演算法設計技術主要有迭代法、窮舉搜索法、遞推法、貪婪法、回溯法、分治法、動態規劃法等等。
另外,為了更簡潔的形式設計和藐視演算法,在演算法設計時又常常採用遞歸技術,用遞歸描述演算法。

Ⅱ 簡述演算法的各種表示形式

最低0.27元/天開通網路文庫會員,可在文庫查看完整內容>
原發布者:lsqlsy123
演算法的表示方法演算法的常用表示方法有如下三種:1、使用自然語言描述演算法2、使用流程圖描述演算法3、使用偽代碼描述演算法我們來看怎樣使用這3種不同的表示方法去描述解決問題的過程,以求解sum=1+2+3+4+5……+(n-1)+n為例。第1種:使用自然語言描述從1開始的連續n個自然數求和的演算法①確定一個n的值;②假設等號右邊的算式項中的初始值i為1;③假設sum的初始值為0;④如果i≤n時,執行⑤,否則轉出執行⑧;⑤計算sum加上i的值後,重新賦值給sum;⑥計算i加1,然後將值重新賦值給i;⑦轉去執行④;⑧輸出sum的值,演算法結束。從上面的這個描述的求解過程中,我們不難發現,使用自然語言描述演算法的方法雖然比較容易掌握,但是存在著很大的缺陷。例如,當演算法中含有多分支或循環操作時很難表述清楚。另外,使用自然語言描述演算法還很容易造成歧義(稱之為二義性),譬如有這樣一句話——「武松打死老虎」,我們既可以理解為「武松/打死老虎」,又可以理解為「武松/打/死老虎」。自然語言中的語氣和停頓不同,就可能使他人對相同的一句話產生不同的理解。又如「你輸他贏」這句話,使用不同的語氣說,可以產生3種截然不同的意思,同學們不妨試試看。為了解決自然語言描述演算法中存在著可能的二義性,我們提出了第2種描述演算法的方法——流程圖。第2種:使用流程圖描述從1開始的連續n個自然

Ⅲ 演算法的描述方式有幾種分別是什麼

描述演算法的方法有多種,常用的有自然語言、結構化流程圖、偽代碼和PAD圖等,其中最普遍的是流程圖,分思法。

流程圖(Flow Chart)使用圖形表示演算法的思路是一種極好的方法,因為千言萬語不如一張圖。流程圖在匯編語言和早期的BASIC語言環境中得到應用。相關的還有一種PAD圖,對PASCAL或C語言都極適用。

(3)演算法常常用的方法擴展閱讀:

演算法可以宏泛的分為三類:

一、有限的,確定性演算法 這類演算法在有限的一段時間內終止。他們可能要花很長時間來執行指定的任務,但仍將在一定的時間內終止。這類演算法得出的結果常取決於輸入值。

二、有限的,非確定演算法 這類演算法在有限的時間內終止。然而,對於一個(或一些)給定的數值,演算法的結果並不是唯一的或確定的。

三、無限的演算法 是那些由於沒有定義終止定義條件,或定義的條件無法由輸入的數據滿足而不終止運行的演算法。通常,無限演算法的產生是由於未能確定的定義終止條件。

Ⅳ 常用的演算法表示形式有哪些

演算法的常用表示方法有三種:

1、使用自然語言描述演算法;

2、使用流程圖描述演算法;

3、使用偽代碼描述演算法。

演算法是指對解決方案的准確、完整的描述,是解決問題的一系列清晰的指令。該演算法代表了描述解決問題的策略和機制的系統方式。也就是說,對於某個標准輸入,可以在有限的時間內獲得所需的輸出。

如果一個演算法有缺陷或不適合某個問題,執行該演算法將無法解決該問題。不同的演算法可能使用不同的時間、空間或效率來完成相同的任務。一個演算法的優劣可以用空間復雜度和時間復雜度來衡量。

Ⅳ 描述演算法的常用方法

1.什麼是演算法
從字面上來說,演算法也就是用於計算的方法。是用來解決某些問題的方法。通過這個方法,可以達到想要的計算結果。它就像我們小時候學些的一些數學公式和解題步驟。
演算法,一般有5個特徵:

有窮性:
演算法的執行步驟、時間、都是有限的。不會無休止的一直執行下去。
確切性:
演算法的每一步都必須有明確的定義和描述。
輸入:
一個演算法應該有相應的輸入條件,就像我們小時候做的應用題,已知什麼什麼。來求某個結果,已知部分便是輸入條件。
輸出:
演算法必須有明確的結果輸出。沒有結果,那這個演算法是沒有任何意義的。
可行性:
演算法的步驟必須是可行的,無法執行的則沒有意義,也解決不了任何問題
2.演算法的分類
按照演算法的應用來分:演算法可以分為基本演算法、幾何演算法、加密/解密演算法、查找演算法、圖標數據分析演算法等。
按照演算法的思路來分:演算法可以分為遞推演算法、遞歸演算法、窮舉演算法、分治演算法等。

下面,我們就來講我們的重點之一:也就是演算法思想:

3.常用演算法思想
窮舉演算法思想;
遞推演算法思想;
遞歸演算法思想;
分治演算法思想;
概率演算法思想;

Ⅵ 演算法的6種設計方法

演算法的6種設計方法有分治與遞歸演算法、散列與凝聚演算法、貪心演算法、動態規劃演算法、回溯演算法和分支限界演算法。在每一章的開頭,都先對相應的典型演算法的基本思野悶鍵路進行詳細、清晰的闡述,然後通過多種實際問題的求解,對該典型頌巧演算法的設計方法作進一步的剖析。第8章對NP完全問題的基本理論進行討論,並介紹了求解NP困難問題的近似演算法和概率演算法。

《演算法設計方法》一書介紹了演算法描述和演算法分析的基本方法,詳細介紹了各種典型演算法的基本設計思路。演算法是計算機科學的核心內容之一罩做,也是應用電子計算機求解實際問題的基礎。對復雜的實際應用問題的求解,大多都歸結為演算法的設計,然後把求解演算法轉化為計算機程序。

Ⅶ 數值計算方法的主要研究對象有哪些其常用基本演算法主要包括哪三個方面

數值計算方法的主要研究對象:研究各種數學問題的數值方法設計、分析、有關的數學理論和具體實現。其常用基本演算法在數值分析中用到迭代法的情形會比直接法要多。例如像牛頓法、二分法、雅可比法、廣義最小殘量方法及共軛梯度法等等。在計算矩陣代數中,大型的問題一般會需要用迭代法來求解。

許多時候需要將連續模型的問題轉換為一個離散形式的問題,而離散形式的解可以近似原來的連續模型的解,此轉換過程稱為離散化。

例如求一個函數的積分是一個連續模型的問題,也就是求一曲線以下的面積若將其離散化變成數值積分,就變成將上述面積用許多較簡單的形狀(如長方形、梯形)近似,因此只要求出這些形狀的面積再相加即可。

(7)演算法常常用的方法擴展閱讀

數值分析也會用近似的方式計算微分方程的解,包括常微分方程及偏微分方程。

常微分方程往往會使用迭代法,已知曲線的一點,設法算出其斜率,找到下一點,再推出下一點的資料。歐拉方法是其中最簡單的方式,較常使用的是龍格-庫塔法。

偏微分方程的數值分析解法一般都會先將問題離散化,轉換成有限元素的次空間。可以透過有限元素法、有限差分法及有限體積法,這些方法可將偏微分方程轉換為代數方程,但其理論論證往往和泛函分析的定理有關。另一種偏微分方程的數值分析解法則是利用離散傅立葉變換或快速傅立葉變換。

Ⅷ 簡便演算法有哪些呢

簡便演算法有如下:

1、乘法分配律

簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。

2、乘法結合律

乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。

3、乘法交換律

乘法交換律用於調換各個數的位置:a×b=b×a。

4、加法交換律

加法交換律用於調換各個數的位置:a+b=b+a。

5、加法結合律

(a+b)+c=a+(b+c)。

簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算出得數。

Ⅸ 大數據最常用的演算法有哪些

奧地利符號計算研究所(Research Institute for Symbolic Computation,簡稱RISC)的Christoph Koutschan博士在自己的頁面上發布了一篇文章,提到他做了一個調查,參與者大多數是計算機科學家,他請這些科學家投票選出最重要的演算法,以下是這次調查的結果,按照英文名稱字母順序排序。

大數據等最核心的關鍵技術:32個演算法

1、A* 搜索演算法——圖形搜索演算法,從給定起點到給定終點計算出路徑。其中使用了一種啟發式的估算,為每個節點估算通過該節點的最佳路徑,並以之為各個地點排定次序。演算法以得到的次序訪問這些節點。因此,A*搜索演算法是最佳優先搜索的範例。

2、集束搜索(又名定向搜索,Beam Search)——最佳優先搜索演算法的優化。使用啟發式函數評估它檢查的每個節點的能力。不過,集束搜索只能在每個深度中發現最前面的m個最符合條件的節點,m是固定數字——集束的寬度。

3、二分查找(Binary Search)——在線性數組中找特定值的演算法,每個步驟去掉一半不符合要求的數據。

4、分支界定演算法(Branch and Bound)——在多種最優化問題中尋找特定最優化解決方案的演算法,特別是針對離散、組合的最優化。

5、Buchberger演算法——一種數學演算法,可將其視為針對單變數最大公約數求解的歐幾里得演算法和線性系統中高斯消元法的泛化。

6、數據壓縮——採取特定編碼方案,使用更少的位元組數(或是其他信息承載單元)對信息編碼的過程,又叫來源編碼。

7、Diffie-Hellman密鑰交換演算法——一種加密協議,允許雙方在事先不了解對方的情況下,在不安全的通信信道中,共同建立共享密鑰。該密鑰以後可與一個對稱密碼一起,加密後續通訊。

8、Dijkstra演算法——針對沒有負值權重邊的有向圖,計算其中的單一起點最短演算法。

9、離散微分演算法(Discrete differentiation)。

10、動態規劃演算法(Dynamic Programming)——展示互相覆蓋的子問題和最優子架構演算法

11、歐幾里得演算法(Euclidean algorithm)——計算兩個整數的最大公約數。最古老的演算法之一,出現在公元前300前歐幾里得的《幾何原本》。

12、期望-最大演算法(Expectation-maximization algorithm,又名EM-Training)——在統計計算中,期望-最大演算法在概率模型中尋找可能性最大的參數估算值,其中模型依賴於未發現的潛在變數。EM在兩個步驟中交替計算,第一步是計算期望,利用對隱藏變數的現有估計值,計算其最大可能估計值;第二步是最大化,最大化在第一步上求得的最大可能值來計算參數的值。

13、快速傅里葉變換(Fast Fourier transform,FFT)——計算離散的傅里葉變換(DFT)及其反轉。該演算法應用范圍很廣,從數字信號處理到解決偏微分方程,到快速計算大整數乘積。

14、梯度下降(Gradient descent)——一種數學上的最優化演算法。

15、哈希演算法(Hashing)。

16、堆排序(Heaps)。

17、Karatsuba乘法——需要完成上千位整數的乘法的系統中使用,比如計算機代數系統和大數程序庫,如果使用長乘法,速度太慢。該演算法發現於1962年。

18、LLL演算法(Lenstra-Lenstra-Lovasz lattice rection)——以格規約(lattice)基數為輸入,輸出短正交向量基數。LLL演算法在以下公共密鑰加密方法中有大量使用:背包加密系統(knapsack)、有特定設置的RSA加密等等。

19、最大流量演算法(Maximum flow)——該演算法試圖從一個流量網路中找到最大的流。它優勢被定義為找到這樣一個流的值。最大流問題可以看作更復雜的網路流問題的特定情況。最大流與網路中的界面有關,這就是最大流-最小截定理(Max-flow min-cut theorem)。Ford-Fulkerson 能找到一個流網路中的最大流。

20、合並排序(Merge Sort)。

21、牛頓法(Newton』s method)——求非線性方程(組)零點的一種重要的迭代法。

22、Q-learning學習演算法——這是一種通過學習動作值函數(action-value function)完成的強化學習演算法,函數採取在給定狀態的給定動作,並計算出期望的效用價值,在此後遵循固定的策略。Q-leanring的優勢是,在不需要環境模型的情況下,可以對比可採納行動的期望效用。

23、兩次篩法(Quadratic Sieve)——現代整數因子分解演算法,在實踐中,是目前已知第二快的此類演算法(僅次於數域篩法Number Field Sieve)。對於110位以下的十位整數,它仍是最快的,而且都認為它比數域篩法更簡單。

24、RANSAC——是「RANdom SAmple Consensus」的縮寫。該演算法根據一系列觀察得到的數據,數據中包含異常值,估算一個數學模型的參數值。其基本假設是:數據包含非異化值,也就是能夠通過某些模型參數解釋的值,異化值就是那些不符合模型的數據點。

25、RSA——公鑰加密演算法。首個適用於以簽名作為加密的演算法。RSA在電商行業中仍大規模使用,大家也相信它有足夠安全長度的公鑰。

26、Sch?nhage-Strassen演算法——在數學中,Sch?nhage-Strassen演算法是用來完成大整數的乘法的快速漸近演算法。其演算法復雜度為:O(N log(N) log(log(N))),該演算法使用了傅里葉變換。

27、單純型演算法(Simplex Algorithm)——在數學的優化理論中,單純型演算法是常用的技術,用來找到線性規劃問題的數值解。線性規劃問題包括在一組實變數上的一系列線性不等式組,以及一個等待最大化(或最小化)的固定線性函數。

28、奇異值分解(Singular value decomposition,簡稱SVD)——在線性代數中,SVD是重要的實數或復數矩陣的分解方法,在信號處理和統計中有多種應用,比如計算矩陣的偽逆矩陣(以求解最小二乘法問題)、解決超定線性系統(overdetermined linear systems)、矩陣逼近、數值天氣預報等等。

29、求解線性方程組(Solving a system of linear equations)——線性方程組是數學中最古老的問題,它們有很多應用,比如在數字信號處理、線性規劃中的估算和預測、數值分析中的非線性問題逼近等等。求解線性方程組,可以使用高斯—約當消去法(Gauss-Jordan elimination),或是柯列斯基分解( Cholesky decomposition)。

30、Strukturtensor演算法——應用於模式識別領域,為所有像素找出一種計算方法,看看該像素是否處於同質區域( homogenous region),看看它是否屬於邊緣,還是是一個頂點。

31、合並查找演算法(Union-find)——給定一組元素,該演算法常常用來把這些元素分為多個分離的、彼此不重合的組。不相交集(disjoint-set)的數據結構可以跟蹤這樣的切分方法。合並查找演算法可以在此種數據結構上完成兩個有用的操作:

查找:判斷某特定元素屬於哪個組。

合並:聯合或合並兩個組為一個組。

32、維特比演算法(Viterbi algorithm)——尋找隱藏狀態最有可能序列的動態規劃演算法,這種序列被稱為維特比路徑,其結果是一系列可以觀察到的事件,特別是在隱藏的Markov模型中。

以上就是Christoph博士對於最重要的演算法的調查結果。你們熟悉哪些演算法?又有哪些演算法是你們經常使用的?

Ⅹ 演算法的常用設計方法有哪些

遞歸和遞推。遞歸和遞推是學習演算法設計的第一步。遞歸演算法是把大問題分解成相對較小的問題的過程,而遞推就是從小問題逐步推導出大問題的過程;搜索、枚舉及優化剪枝。搜索在所有演算法中既是最簡單也是最復雜的演算法;動態規劃(沖鉛簡稱DP)。動凳嘩態規棗判行劃的特點是能夠把很復雜的問題分解成一個個階段來處理的遞推方法;貪心。貪心演算法是所謂的「只顧眼前利益」的演算法;分治、構造等。分治就是把問題分成若乾子問題,然後「分而治之」;構造是指按照一定的規則產生解決問題的方法。

閱讀全文

與演算法常常用的方法相關的資料

熱點內容
非科班程序員自學 瀏覽:799
壓縮泡沫鞋底底材 瀏覽:217
程序員職場第一課2正確的溝通 瀏覽:677
遇到不合法app應該怎麼辦 瀏覽:90
匯編程序編譯後的文件 瀏覽:77
大智慧均線源碼 瀏覽:371
單片機排阻的作用 瀏覽:213
滴滴金融app被下架如何還款 瀏覽:210
jpg轉換成pdf免費軟體 瀏覽:741
范里安pdf 瀏覽:443
偽造pdf 瀏覽:75
能刪除android文件夾嗎 瀏覽:446
LINUX使用V2ray 瀏覽:797
找人幫忙注冊app推廣是什麼 瀏覽:820
獨立伺服器如何恢復初始化 瀏覽:11
優秀到不能被忽視pdf 瀏覽:316
導遊程序員家政 瀏覽:586
22乘28的快速演算法 瀏覽:338
軟通動力程序員節2021 瀏覽:847
安卓系統如何卸載安裝包 瀏覽:870